Semin Hear 2002; 23(4): 349-356
DOI: 10.1055/s-2002-35883
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Clinical Efficacy of Electrophysiologic Measures in APD Management Programs

Robert E. Jirsa
  • Professor of Audiology, Department of Communication Disorders, Southern Connecticut State University, New Haven, Connecticut
Further Information

Publication History

Publication Date:
04 December 2002 (online)

ABSTRACT

Determining the relative efficacy of various intervention programs for auditory processing disorders (APD) is a major goal in the field of rehabilitative audiology. Currently, because of their widespread availability, the most commonly used measuring tools to assess the central auditory system have been behaviorally based. Such measures do have notable disadvantages in that they may be influenced by a number of extraneous variables that may impede, or at least influence, efficacy measures. Electrophysiologic measures offer unique advantages not available from the behavioral measures. A significant amount of research has been completed offering compelling evidence relative to the clinical utility of a number of these electrophysiologic measures, including the maximum length sequences-auditory brainstem response, the middle latency response, the obligatory long latency responses, and the MMN and P3 event-related potentials. This article will review the current research related to electrophyiologic measures and present a rationale for including them in the management program.

REFERENCES

  • 1 Jerger J F, Musiek F E. Report of a consensus conference on the diagnosis of auditory processing disorders in school-aged children.  J Am Acad Audiol . 2000;  11 467-474
  • 2 Jirsa R E, Clontz K. Long latency auditory event-related potentials from children with auditory processing disorders.  Ear Hear . 1990;  11 222-232
  • 3 Jirsa R E. The clinical utility of the P3 AERP in children with auditory processing disorders.  J Speech Hear Res . 1992;  35 903-912
  • 4 Musiek F E, Baran J A, Pinheiro M L. Neuroaudiology Case Studies.  San Diego, CA: Singular 1994
  • 5 Jerger J F. Controversial issues in central auditory processing disorders.  Semin Hear . 1998;  19 393-397
  • 6 Kraus N, Koch D, McGee T, Nicol T, Cunningham J. Speech-sound discrimination in school-age children: psychophysical and neurophysiologic measures.  J Speech Lang Hear Res . 1999;  42 1042-1060
  • 7 Musiek F E, Berge B E. How electrophysiologic tests of central auditory processing influence management. In: Bess F, ed. Children with Hearing Impairment Nashville, TN:Vanderbilt-Bill Wilkerson Center Press 1998: 145-161
  • 8 Delgutte B, Kiang N YS. Speech coding in the auditory nerve. I. Vowel-like sounds.  J Acoust Soc Am . 1984;  75 866-878
  • 9 Werner L A, Folsom R C, Mancl L R, Syapin C L. Human auditory brainstem response to temporal gaps in noise.  J Speech Lang Hear Res . 2001;  44 737-750
  • 10 Kraus N, McGee T, Carrell T. Discrimination of speech-like contrasts in the auditory thalamus and cortex.  J Acoust Soc Am . 1994;  96 2758-2768
  • 11 Dalebout S D, Stack J W. Mismatch negativity to acoustical differences not differentiated behaviorally.  J Am Acad Audiol . 1999;  10 388-399
  • 12 Jirsa R E. Maximum length sequences-auditory brainstem responses from children with auditory processing disorders.  J Am Acad Audiol . 2001;  12 155-164
  • 13 Kraus N, McGee T, Carrell T D. Central auditory system plasticity associated with speech discrimination training.  J Cog Neurosci . 1995;  7 25-32
  • 14 Hall III J W. Handbook of Auditory Evoked Responses Boston, MA: Allyn & Bacon 1992
  • 15 Goldstein R, Aldrich W M. Evoked Potential Audiometry.  Boston, MA: Allyn & Bacon 1999
  • 16 Fifer R, Sierra-Irizarry B. Clinical applications of the auditory middle latency response.  Am J Otol . 1988;  9(Suppl 1) 47-56
  • 17 Musiek F E, Lenz S, Gollegly K. Neuroaudiologic correlates to anatomical changes in the brain.  Am J Audiol . 1991;  1 19-24
  • 18 Cacace A T, McFarland D J. Middle-latency auditory evoked potentials: basic issues and potential applications. In: Katz J, ed. Handbook of Clinical Audiology, 5th ed Philadelphia, PA: Lippincott Williams & Wilkins 2002: 349-377
  • 19 Sharma A, Kraus N, McGee T J, Nicol T. Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables.  Electroencephalogr Clin Neurophys . 1997;  104 540-545
  • 20 Martin B A, Kurtzberg D, Stapells D R. The effects of decreased audibility produced by high-pass noise masking on N1 and the mismatch negativity to speech sounds /ba/ and /da/.  J Speech Lang Hear Res . 1999;  42 271-286
  • 21 Sharma A, Dorman M F. Cortical auditory evoked potential correlates of categorical perception of voice-onset time.  J Acoust Soc Am . 1999;  106 1078-1083
  • 22 Tremblay K, Kraus N, McGee T, Ponton C, Otis B. Central auditory plasticity: changes in the N1-P2 complex after speech-sound training.  Ear Hear . 2001;  22 79-90
  • 23 Sams M, Paavilainen P, Alho K, Naatanen R. Auditory frequency discrimination and event-related potentials.  Electroencephalogr Clin Neurophys . 1985;  62 437-448
  • 24 Kraus N, McGee T, Micco A. Mismatch negativity in school-age children to speech stimuli that are just perceptibly different.  J Clin Neurophys . 1993;  88 123-130
  • 25 Sharma A., Kraus N, McGee T, Carrell T, Nicol T. Acoustic versus phonetic representation of speech as reflected by the mismatch negativity event-related potential.  Electroencephalogr Clin Neurophys . 1993;  88 64-71
  • 26 Kraus N, McGee T, Littman T, Nicol T, King C. Nonprimary auditory thalamic representation of acoustic change.  J Neurophys . 1994;  72 1270-1277
  • 27 Naatanen R. The mismatch negativity: a powerful tool for cognitive neuroscience.  Ear Hear . 1995;  16 6-18
  • 28 Tremblay K, Kraus N, Carrell T D, McGee T. Central auditory system plasticity: generalization to novel stimuli following listening training.  J Acoust Soc Am . 1997;  102 3762-3773
  • 29 Dalebout S D, Fox L G. Identification of the mismatch negativity in the responses of individual listeners.  J Am Acad Audiol . 2000;  11 12-22
  • 30 Dalebout S D, Fox L G. Reliability of the mismatch negativity in the responses of individual listeners.  J Am Acad Audiol . 2001;  12 245-253
  • 31 Takegata R, Paavilainen P, Naatanen R, Winkler I. Preattentive processing of spectral, temporal, and structural characteristics of acoustic regulatrities: a mismatch negativity study.  Psychophysiology . 2001;  38 92-98
  • 32 Walker L J, Carpenter M, Down C R. Possible neuronal refractory or recovery artifacts associated with recording the mismatch negativity response.  J Am Acad Audiol . 2001;  12 348-356
  • 33 Polich J. Task difficulty, probability, and interstimulus interval as determinants of P300 from auditory stimuli.  Electroencephalogr Clin Neurophys . 1987;  68 311-320
  • 34 Polich J. P300 clinical utility and control of variability.  J Clin Neurophys . 1998;  15 14-33
  • 35 Salamat M, McPherson D. Interactions among variables in the P300 response to a continuous performance task.  J Am Acad Audiol . 1999;  10 379-387
  • 36 Kiehl K A, Laurens K R, Duty T L, Forster B B, Liddle P F. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study.  Psychophysiology . 2001;  38 133-142
  • 37 Yordanova J, Kolev V, Polich J. P300 and alpha event-related desynchronization (ERD).  Psychophysiology . 2001;  38 143-152
  • 38 Suzki T, Hirabayashi M. Age-related morphological changes in auditory middle-latency response.  Audiology . 1987;  26 312-320
  • 39 Musiek F E, Verkst S B, Gollegly K M. Effects of neuro-maturation in auditory-evoked potentials.  Semin Hear . 1988;  9 1-13
  • 40 Mason B M, Mellor D H. Brain-stem, middle latency, and late cortical evoked potentials in children with speech and language disorders.  Electroencephalogr Clin Neurophys . 1984;  59 297-309
  • 41 Jerger S, Jerger J. Audiologic applications of early, middle, and late evoked potentials.  Hear J . 1985;  38 31-36
  • 42 Jerger J, Oliver T, Chimel R. Auditory middle latency response: a perspective.  Semin Hear . 1988;  9 75-86
  • 43 Musiek F E, Charette L, Kelly T, Wee W W, Musiek E. Hit and false-positive rates for the middle latency response in patients with central nervous system involvement.  J Am Acad Audiol . 1999;  10 124-132
  • 44 Alho K, Sainio K, Reinikainen K, Naatanen R. Electrical brain response of human new borns to pitch change of an acoustic stimulus.  Electroencephalogr Clin Neurophys . 1990;  77 151-155
  • 45 Squires K C, Hecox K C. Electrophysiological evaluation of higher level auditory processing.  Semin Hear . 1983;  4 415-433
  • 46 McPherson D. Late Potentials of the Auditory System.  San Diego, CA: Singular 1996
  • 47 Courchesne E. Neurophysiological correlates of cognitive development: changes in long-latency event-related potentials from childhood to adulthood.  Electroencephalogr Clin Neurophys . 1978;  45 468-482
  • 48 Pfefferbaum A, Ford J M, Roth W T, Kopell B S. Age-related changes in auditory event-related potentials.  Electroencephalogr Clin Neurophys . 1980;  49 266-276
  • 49 Polich J, Howard L, Starr A. Effects of age on the P300 component of the event-related potential from auditory stimuli: peak definition, variation, and measurement.  J Gerontol . 1985;  40 721-726
  • 50 Johnson R. A triarchic model of P300 amplitude.  Psychophysiology . 1986;  30 367-384
  • 51 Ford J M, White P M, Csernansky J G. ERPs in schizophrenia: effects of antipsychotic medication.  Biol Psychol . 1994;  36 153-170
  • 52 Satterfield J H, Schell A M, Backs R W, Hidaka K C. A cross-sectional and longitudinal study of age effects of electrophysiological measures in hyperactive and normal children.  Biol Psychol . 1984;  19 973-990
    >