References
For example:
<A NAME="RG26802ST-1A">1a</A>
Nicolaou KC.
Yang Z.
Liu JJ.
Ueno H.
Nantermet PG.
Guy RK.
Clairborne CF.
Renaud J.
Couladouros EA.
Paulvannan K.
Sorensen EJ.
J. Am.
Chem. Soc.
1995,
117:
634
<A NAME="RG26802ST-1B">1b</A>
Nazare M.
Waldmann H.
Angew. Chem. Int. Ed.
2000,
39:
1125
<A NAME="RG26802ST-1C">1c</A>
Shiina I.
Nishimura T.
Ohkawa N.
Sakoh H.
Nishimura K.
Saitoh K.
Mukaiyama T.
Chem.
Lett.
1997,
419
<A NAME="RG26802ST-2A">2a</A> SmI2/Mg:
Nomura R.
Matsuno T.
Endo T.
J. Am. Chem. Soc.
1996,
118:
11666
<A NAME="RG26802ST-2B">2b</A> (EBTHI)TiCl2/Zn:
Gansäuer A.
Synlett
1997,
363
<A NAME="RG26802ST-2C">2c</A> CpV(CO)4/Zn/Me3SiCl:
Hirao T.
Hasegawa T.
Muguruma Y.
Ikeda I.
J.
Org. Chem.
1996,
61:
366
<A NAME="RG26802ST-2D">2d</A> CrCl2/Mn:
Svato A.
Boland W.
Synlett
1998,
548
<A NAME="RG26802ST-2E">2e</A> Cp2Ti(Ph)Cl/Zn:
Yamamoto Y.
Hattori R.
Itoh K.
Chem. Commun.
1999,
825
<A NAME="RG26802ST-2F">2f</A> Ce(i-PrO)3/Et2Zn:
Groth U.
Jeske M.
Angew.
Chem. Int. Ed.
2000,
39:
574
<A NAME="RG26802ST-2G">2g</A> Ce(t-BuO)3/Mg,
Zn, Mn:
Groth U.
Jeske M.
Synlett
2001,
129
<A NAME="RG26802ST-3">3</A>
Takai K.
Morita R.
Toratsu C.
Angew.
Chem. Int. Ed.
2001,
40:
1116
For reviews on C-C bond
formation involving organochromium reagents see:
<A NAME="RG26802ST-4A">4a</A>
Fürstner A.
Chem. Rev.
1999,
99:
991
<A NAME="RG26802ST-4B">4b</A>
Wessjohann LA.
Scheid G.
Synthesis
1999,
1
<A NAME="RG26802ST-5A">5a</A>
Fürstner A.
Shi N.
J.
Am. Chem. Soc.
1996,
118:
2533
<A NAME="RG26802ST-5B">5b</A>
Fürstner A.
Shi N.
J. Am. Chem.
Soc.
1996,
118:
12349
<A NAME="RG26802ST-5C">5c</A>
Fürstner A.
Pure Appl. Chem.
1998,
70:
1071
<A NAME="RG26802ST-5D">5d</A>
Fürstner A.
Chem.-Eur. J.
1998,
4:
567
<A NAME="RG26802ST-5E">5e</A>
Ref.
[2d]
For mechanistic studies see ref.3 and:
<A NAME="RG26802ST-6A">6a</A>
Buse CT.
Heathcock CH.
Tetrahedron
Lett.
1978,
19:
1685
<A NAME="RG26802ST-6B">6b</A>
Hiyama T.
Kimura K.
Nozaki H.
Tetrahedron
Lett.
1981,
22:
1037
<A NAME="RG26802ST-6C">6c</A>
Jubert C.
Nowotny S.
Kornemann D.
Antes I.
Tucker CE.
Knochel P.
J. Org. Chem.
1992,
57:
6384
<A NAME="RG26802ST-6D">6d</A>
Nowotny S.
Tucker CE.
Jubert C.
Knochel P.
J. Org. Chem.
1995,
60:
2762
<A NAME="RG26802ST-7">7</A>
The substituted acroleins can be easily
prepared by Mannich reaction starting with the corresponding aldehyde.
<A NAME="RG26802ST-8">8</A>
Boeckman RK.
Hudack RA.
J.
Org. Chem.
1998,
63:
3524
<A NAME="RG26802ST-9">9</A>
Takai K.
Nitta K.
Utimoto K.
Tetrahedron
Lett.
1988,
29:
5266
<A NAME="RG26802ST-10">10</A>
Typical Procedure:
Reactions were carried out under an argon atmosphere using Schlenk
techniques. The chromium catalysts and the manganese powder were
stored in a glove box under nitrogen atmosphere. In a Schlenk tube
8 mL of DMF and 0.51 mL of TMS-Cl (4 mmol) were added to 220 mg
(4 mmol) of Mn powder and 25 mg (0.2 mmol) of CrCl2. The
resulting suspension was stirred at room temperature for 15 min,
2 mmol of the less reactive coupling component [the vinylketones
for reactions as shown in Table
[1]
except
for 2-methylene-1-tetralone (Table
[1]
,
entry 4); the aliphatic aldehydes in the cases of coupling reactions
with acroleins (Table
[2]
)
or 2-methylidene-1-tetralone (Table
[1]
,
entry 4)] was added in one portion. 2 mL of a 0.5 M solution
of the second coupling component (1 mmol) was added slowly over
a period of 40 hours by use of a syringe pump. 20 mL of ether and
20 mL of water were added. After separation of the organic layer,
the aqueous layer was extracted with diethyl ether (3 × 20
mL), the combined organic layers were dried over MgSO4 and
concentrated in vacuo. To the residue 10 mL of THF and 1.4 g (4
mmol, 2 equiv) of TBAF were added and stirred for 45 min at room
temperature. After adding 10 mL of water and 20 mL of ether the
aqueous layer was extracted with ether (4 × 20 mL), the
combined organic layers were dried over MgSO4 and concentrated
in vacuo. The residue was purified by flash chromatography on 25
g of silica gel (petroleum ether-ethyl acetate, 9:1). The
relative configuration was determined by either NOE spectroscopy of
the corresponding acetonides or by Corey-Winter-reaction
followed by NMR examination of the resulting olefins.
Table 1, entry 1: 1H
NMR (CDCl3, 400 MHz) δ 7.14 (m, 5 H), 5.11 (s,
1 H), 5.04 (s, 1 H), 3.34 (m, 1 H), 2.87 (m, 1 H), 2.55 (m, 1 H),
2.28 (m, 2 H), 1.84-1.11 (m, 12 H); 13C
NMR (CDCl3, 100 MHz) δ 155.3, 142.2, 128.4,
128.3, 125.7, 113.8, 80.1, 75.7, 34.8, 34.5, 32.5, 31.5, 30.9, 23.0;
Anal. calcd for C17H24O2: C, 78.42;
H, 9.29; O, 12.29. Found: C, 78.22; H, 9.15.
Table 2, entry 1: 1H
NMR (CDCl3, 400 MHz) δ 5.32 (s, 1 H), 5.12 (s,
1 H), 4.48 (s, 1 H), 3.20 (s, 1 H), 2.55 (br s, 1 H), 2.06 (bs,
1 H), 1.12 (s, 9 H), 1.00 (s, 9 H); 13C
NMR (CDCl3, 100 MHz) δ 160.8, 109.0, 79.2, 67.0,
35.8, 35.7, 29.4, 26.6. Anal. calcd for C12H24O2:
C, 71.95; H, 12.08; O, 15.97. Found: C, 72.03; H, 11.98.
Table 2, entry 2, syn
-diol: 1H NMR (CDCl3,
400 MHz) δ 5.14 (s, 1 H), 5.11 (s, 1 H), 3.98 (d, J = 6.6 Hz, 1 H), 3.56 (m, 1
H), 2.66 (bs, 2 H), 1.55 (m, 1 H), 1.37 (m, 1 H), 1.10 (s, 9 H),
1.00 (t, J = 7.4 Hz, 3 H); 13C
NMR (CDCl3, 100 MHz) δ 158.6, 109.6, 75.4, 72.3,
35.7, 29.0, 26.0, 10.6. Anal. calcd for C10H20O2 (mixture
of syn and anti, not
separable by column chromatography): C, 69.72; H, 11.70; O, 18.58. Found:
C, 69.60, H, 11.76. anti
-diol: 1H NMR (CDCl3,
400 MHz) δ 5.27 (s, 1 H), 5.21 (s, 1 H), 4.14 (d, J = 6.2 Hz, 1 H), 3.61 (m, 1
H), 2.66 (br s, 2 H), 1.81 (m, 1 H), 1.22 (m, 1 H), 1.11 (s, 9 H),
1.02 (t, J = 7.4 Hz, 3 H); 13C
NMR (CDCl3, 100 MHz) δ 159.1, 109.7, 75.1, 72.6,
35.7, 29.1, 24.3, 10.3.
<A NAME="RG26802ST-11">11</A>
Bandini M.
Cozzi PG.
Melchiorre P.
Umani-Ronchi A.
Angew. Chem. Int. Ed.
1999,
38:
3357
<A NAME="RG26802ST-12">12</A>
Martínez LE.
Leighton JL.
Carsten DH.
Jacobsen EN.
J.
Am. Chem. Soc.
1995,
117:
5897