Klinische Neurophysiologie 2002; 33(3): 168-177
DOI: 10.1055/s-2002-34829
Originalia
© Georg Thieme Verlag Stuttgart · New York

Postoperative Untersuchungen in der Epilepsiechirurgie: Enzyme der oxidativen Stresskaskade, Multi-Drug-Transporter und Transmitterrezeptoren

Postoperative Investigations in Epilepsy Surgery: Enzymes of the Oxidative Stress Cascade, Multi-Drug Transporters and Transmitter ReceptorsH.-J.  Bidmon1 , N.  Palomero-Gallagher2 , K.  Zilles1, 2
  • 1C. und O. Vogt Institut für Hirnforschung, Heinrich-Heine-Universität Düsseldorf
  • 2Institut für Medizin, Forschungszentrum Jülich
Die Untersuchungen wurden von der Deutschen Forschungsgemeinschaft (Zi 192/12-1/2) gefördert
Further Information

Publication History

Publication Date:
17 October 2002 (online)

Zusammenfassung

In der vorliegenden Untersuchung wurden bei Patienten mit pharmakoresistenten Formen der fokalen temporalen Epilepsie neurochirurgisch die kortikalen Foki entfernt und das Gewebe histochemisch, immunhistochemisch und rezeptorautoradiographisch untersucht. Da Hirngewebe von derselben Stelle desselben Patienten auch in elektrophysiologischen und neurochemischen Analysen untersucht wurde (siehe andere Beiträge in diesem Band), bieten die koordinierten Studien aller beteiligten Wissenschaftler eine einmalige Chance zur Analyse der zugrunde liegenden pathophysiologischen Mechanismen sowohl auf struktureller als auch funktioneller Ebene. Wir konnten zeigen, dass Enzyme der oxidativen Stresskaskade Veränderungen aufweisen, die ein deutliches Anzeichen dafür sind, dass Superoxidradikale und Metaboliten aus Superoxid und Stickstoffmonoxid zur zerebralen Schädigung und eventuell auch zur Ausweitung der Foki beitragen können. Zudem ließ sich zeigen, dass die Expression und intrazerebrale Verteilung von so genannten Multi-Drug-Transportern, die im Wesentlichen für die Pharmakoresistenz verantwortlich gemacht werden, verändert war. Weiterhin zeigten die exzitatorischen und inhibitorischen Neurotransmittersysteme im epileptischen Gewebe ein Ungleichgewicht mit einer Verschiebung hin zur Übererregbarkeit, da die Dichten der AMPA-, Kainat- und NMDA-Rezeptoren in allen hier untersuchten Epilepsiefällen hochreguliert waren. Die Hochregulierung der NMDA-Rezeptoren war mit dem Auftreten spontan entladender Neuronen im epileptischem Gewebe korreliert. Die GABAA-Rezeptoren und Benzodiazepinbindungsstellen zeigten dagegen in vielen Fällen eine Abnahme ihrer Dichten im epileptischen Gewebe, wodurch die Imbalance zwischen exzitatorischen und inhibitorischen Transmittersystemen noch weiter verstärkt wird.

Abstract

Brain tissue surgically removed from patients suffering from drug-resistant, focal temporal lobe epilepsy was studied using a variety of histochemical methods such as conventional histochemistry, immunohistochemistry and receptor autoradiography. Since brain tissue from the same site of the same patient was also used for electrophysiological and neurochemical analyses (see other contributions in this volume), coordinated efforts by all participating groups provide a unique chance to study pathological mechanisms associated with epileptic discharges both at functional and structural levels. We found enzymes of the oxidative stress cascade altered in most of the examined biopsies, thus indicating that superoxide radicals as well as NO and superoxide metabolites could play an important role in brain tissue alterations, including the expansion of epileptic foci. Furthermore, the expression and distribution patterns of multi-drug-transporters, to which drug-resistance has been attributed in cases of intractable focal epilepsy, was also found to be impaired in epileptic tissue. However, it remains to be analysed whether alterations of these transporters are the primary cause of epileptic seizures, or whether they develop as a result of pathological changes of the blood-brain barrier associated with the disease. Furthermore, epileptic tissue showed alterations mainly in the glutamatergic and GABAergic systems, characterised by a disturbed balance between the expression of excitatory and inhibitory amino acid transmitter receptors. The densities of AMPA, kainate, and NMDA receptors were found to be increased in all examined biopsies. The up-regulation of the NMDA receptor is correlated with the presence of spontaneously spiking neurons. Contrastingly, the GABAA receptor and benzodiazepine binding site showed down-regulations of their densities.

Literatur

  • 1 Treiman L J, Treiman D M. Genetic aspects of epilepsy. In: Wyllie E (ed) The Treatment of Epilepsy. Philadelphia; Lippincott Williams & Wilkins 2001: 115-129
  • 2 Crino P B, Duhaime A C, Baltuch G, White R. Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia.  Neurology. 2001;  56 906-913
  • 3 Zilles K, Qü M S, Köhling R, Speckmann E-J. Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography.  Neuroscience. 1999;  94 1051-1061
  • 4 Shtilbans A, Shanske S, Goodman S, Sue C M, Bruno C, Johnson T L, Lava N S, Waheed N, DiMauro S. G8363A mutation in the mitochondrial DNA transfer ribonucleic acid Lys gene: another cause of Leigh syndrome.  J Child Neurol. 2000;  15 759-761
  • 5 Blümcke I, Beck H, Lie A A, Wiestler O D. Molecular neuropathology of human mesial temporal lobe epilepsy.  Epilepsy Res. 1999;  36 205-223
  • 6 Speckmann E-J, Köhling R, Straub H, Wolf P, Ebner A, Tuxhorn I, Pannek H W, Rambeck B, Zilles K, Coenen H H, Löscher W. Perioperative Untersuchungen in der Epilepsiechirugie: Eine Einführung.  Klin Neurophysiol. 2002;  33 144-146
  • 7 Bidmon H J, Emde B, Kowalski T, Schmitt M, Mayer B, Kato K, Asayama K, Witte O W, Zilles K. Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: evidence for direct and indirect mechanisms towards their resistance to neuropathology.  J Chem Neuroanat. 2001;  22 167-184
  • 8 Celio M R, Spreafico R, de Biasi S, Vitellaro-Zuccarello L. Perineuronal nets: past and present.  Trends Neurosci. 1998;  21 510-515
  • 9 Löscher W. Current status and future directions in pharmacotherapy of epilepsy.  Trends Pharmacol Sci. 2002;  23 113-118
  • 10 Judas M, Sestan N, Kostovic L. Nitrinergic neurons in the developing and adult human telencephalon: transient and permanent patterns of expression in comparison to other mammals.  Microsc Res Tech. 1999;  45 401-419
  • 11 Kara P, Friedlander M J. Dynamic modulation of cerebral cortex synaptic function by nitric oxide.  Prog Brain Res. 1998;  118 183-198
  • 12 Bidmon H-J, Pannek H-W, Lahl R, Speckmann E-J, Zilles K. Dysplastic cell types in cerebral cortex biopsies obtained during hemispherectomy and focal resections from patients with intractable epilepsy: an immunohistochemical characterization of cytoskeletal components and enzymes of the oxidative stress cascade. In: Elsner N, Kreutzberg GW (eds) The Neuroscience at the Turn of the Century; Proceedings of the 4th Meeting of the German Neuroscience Soc. Suttgart; Thieme 2001 Vol. II: 998
  • 13 Wallace M N, Brown I E, Cox A T, Harper M S. Pyramidal neurons in human precentral gyrus contain nitric oxide synthase.  Neuroreport. 1995;  6 2532-2536
  • 14 Sohn Y K, Ganju N, Bloch K D, Wands J R, de la Monte S M. Neuritic sprouting with aberrant expression of nitric oxide synthase III gene in neurodegenerative diseases.  J Neurol Sci. 1999;  162 133-151
  • 15 Lüth H J, Holzer M, Gertz H J, Arendt T. Aberrant expression of nNOS in pyramidal neurons in Alzheimer's disease is highly co-localized with p21ras and p16INK4a.  Brain Res. 2000;  852 45-55
  • 16 Gonzalez-Hernandez T, Garcia-Marin V, Perez-Delgado M M, Gonzalez-Gonzalez M L, Rancel-Torres N, Gonzalez-Feria L. Nitric oxide synthase expression in the cerebral cortex of patients with epilepsy.  Epilepsia. 2000;  41 1259-1268
  • 17 Martin R, Gutierrez A, Penafiel A, Marin-Padilla M, de la Calle A. Persistence of Cajal-Retzius cells in the adult human cerebral cortex. An immunohistochemical study.  Histol Histopathol. 1999;  14 487-490
  • 18 Yermakova A, O'Banion M K. Cyclooxygenases in central nervous system: implications for treatment of neurological disorders.  Curr Pharmaceut Design. 2000;  6 1755-1776
  • 19 O'Banion M K. Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology.  Crit Rev Neurobiol. 1999;  13 45-82
  • 20 Bidmon H-J, Oermann E, Schiene K, Schmitt M, Kato K, Asayama K, Witte O W, Zilles K. Unilateral upregulation of cyclooxygenase-2 (COX-2) following cerebral, cortical photothrombosis in the rat: Suppression by MK-801 and co-distribution with enzymes involved in the oxidative stress cascade.  J Chem Neuroanat. 2000;  20 163-176
  • 21 Aoyama K, Matsubara K, Fujikawa Y, Nagahiro Y, Shimizu K, Umegae N, Hayase N, Shiono H, Kobayashi S. Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases.  Ann Neurol. 2000;  47 524-527
  • 22 Estevez A G, Sampson J B, Zhuang Y X, Spear N, Richardson G J, Crow J P, Tarpey M M, Barbeito L, Beckman J S. Liposome-delivered superoxide dismutase prevents nitric oxide-dependent motor neuron death induced by trophic factor withdrawal.  Free Radical Biol Med. 2000;  28 437-446
  • 23 Yamakura F, Taka H, Fujimura T, Murayama K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine.  J Biol Chem. 1998;  273 14085-14089
  • 24 Kurazono S, Okamoto M, Sakiyama J, Mori S, Nakata Y, Fukuoka J, Amano S, Oohira A, Matsui H. Expression of brain specific chondroitin sulfate proteoglycans, neurocan and phosphacan, in the developing and adult hippocampus of Ihara's epileptic rats.  Brain Res. 2001;  898 36-48
  • 25 Härtig W, Derouiche A, Welt K, Brauer K, Grosche J, Mäder M, Reichenbach A, Brückner G. Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations.  Brain Res. 1999;  842 15-29
  • 26 Morris N P, Henderson Z. Perineuronal nets ensheath fast spiking, parvalbumin-immunoreactive neurons in the medial septum/diagonal band complex.  Eur J Neurosci. 2000;  12 828-838
  • 27 Potschka H, Fedrowitz M, Löscher W. P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain.  Neuroreport. 2001;  12 3557-3560
  • 28 Sisodiya S M, Heffernan J, Squier M V. Over-expression of P-glycoprotein in malformations of cortical development.  Neuroreport. 1999;  10 3437-3441
  • 29 DeLorenzo R J, Pal S, Sombati S. Prolonged activation of the N-methyl-d-aspartate receptor-Ca2+ transduction pathway causes spontaneous recurrent epileptiform discharges in hippocampal neurons in culture.  Proc Natl Acad Sci USA. 1998;  95 14482-14487
  • 30 Rice A C, DeLorenzo R J. NMDA receptor activation during status epilepticus is required for the development of epilepsy.  Brain Res. 1998;  782 240-247
  • 31 Doi T, Ueda Y, Tokumaru J, Mitsuyama Y, Willmore L J. Sequential changes in AMPA and NMDA protein levels during Fe3+-induced epileptogenesis.  Molecular Brain Res. 2001;  92 107-114
  • 32 Ekonomou A, Smith A L, Angelatou F. Changes in AMPA receptor binding and subunit messenger RNA expression in hippocampus and cortex in the pentylenetetrazole-induced „kindling” model of epilepsy.  Molecular Brain Res. 2001;  95 27-35
  • 33 Okazaki M M, Nadler J V. Glutamate receptor involvement in dentate granule cell epileptiform activity evoked by mossy fiber stimulation.  Brain Res. 2001;  915 58-69
  • 34 Buchkremer-Ratzman I, August M, Hagemann G, Witte O. Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain.  Stroke. 1996;  27 1105-1109
  • 35 Luhmann H J, Mittmann T, van Luijtelaar G, Heinemann U. Impairment of intracortical GABAergic inhibition in a rat model of absence epilepsy.  Epilepsy Res. 1995;  22 43-51
  • 36 Joseph S A, Lynd-Balta E. Evidence for an anatomical substrate of hyperexcitability in human temporal lobe epilepsy: glutamate receptor alterations and reorganized ciscuitry.  Funct Neurol. 2001;  16 347-365
  • 37 Hammers A, Koepp M J, Labbé C, Brooks D J, Thom M, Cunningham V J, Duncan J S. Neocortical abnormalities of [11C]-flumazenil PET in mesial temporal lobe epilepsy.  Neurology. 2001;  56 897-906
  • 38 Hammers A, Koepp M J, Richardson M P, Labbé C, Brooks D J, Cunningham V J, Duncan J S. Central benzodiazepine receptors in malformations of cortical development. A quantitative study.  Brain. 2001;  124 1555-1565
  • 39 Koepp M J, Labbé C, Richardson M P, Brooks D J, Van Paesschen W, Cunningham V J, Duncan J S. Regional hippocampal [11C]flumazenil PET in temporal lobe epilepsy with unilateral and bilateral hippocampal sclerosis.  Brain. 1997;  120 1865-1876
  • 40 Koepp M J, Richardson M P, Brooks D J, Cunningham V J, Duncan J S. Central benzodiazepine/γ-aminobutyric acidA receptors in idiopathic generalized epilepsy: an [11C]Flumazenil positron emission tomography study.  Epilepsia. 1997;  38 1089-1097
  • 41 Crino P B, Duhaime A-C, Baltuch G, White R. Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia.  Neurology. 2001;  56 906-913
  • 42 Kamphuis W, De Rijk T C, Lopes da Silva F H. Expression of GABAA receptor subunit mRNAs in hippocampal pyramidal and granular neurons in the kindling model of epileptogenesis: an In-situ hybridization study.  Molec Brain Res. 1995;  31 33-47
  • 43 Lahtintn H, Castrén E, Miettinen R, Ylinen A, Paljärvi L, Riekkinen P J. NMDA-sensitive [3H]glutamate binding in the epileptic rat hippocampus: an autoradiographic study.  NeuroReport. 1993;  4 45-48
  • 44 Köhling R, Qü M, Zilles K, Speckmann E-J. Current-source-density profiles associated with sharp waves in human epileptic neocortical tissue.  Neuroscience. 1999;  94 1039-1050
  • 45 Köhling R, Straub H, Speckmann E-J. Postoperative Untersuchungen: Funktionelle Analysen: Bioelektrische Registrierungen mit konventionellen Methoden und spannungsempfindlichen Farbstoffen.  Klin Neurophysiol. 2002;  33 163-167

Dr. K. Zilles

Institut für Medizin · Forschungszentrum Jülich

52425 Jülich

    >