Zusammenfassung
Hintergrund: Darstellung von Mutationen im ABCA4-Gen in einer Familie mit klinischem Phänotyp
einer Stargardtschen Erkrankung und einer Retinitis pigmentosa. Methoden: Die klinische Untersuchung bestand in der Funduskopie, der Duchführung eines ERG,
der Farbsinntestung mit dem Arden-Color-Contrast-Gerät, der FLA bei einer Patientin,
einer Perimetrie und SLO-Perimetrie. Die 50 Exone des ABCA4-Gens wurden mit einer
Kombination einer denaturierenden HPLC und mittels SSCP analysiert. Ergebnisse: Patientin I/1, die Mutter eines ebenfalls betroffenen Sohnes (II/2) imponierte mit
den typischen Zeichen einer Stargardtschen Erkrankung, wohingegen ihr Sohn (II/2)
morphologisch, wie funktionell die klassischen Zeichen für das Vorliegen einer Retinitis
pigmentosa aufwies. Bei Patientin I/1 fand sich molekulargenetisch eine Missense-Mutation
im Exon 42 (G5882G > A) sowie eine Leserasterverschiebung im Exon 43 (5917delG), welche
zu einem Stopp in der Proteintranslation führt. Bei dem Patienten II/2 fand sich diese
Stop-Codon-Mutation im Exon 43 in homozygotem Zustand. Schlussfolgerungen: Unterschiedliche Mutationen im ABCA4-Gen (STGD1) können in ein und derselben Familie
zu unterschiedlichen klinischen Phänotypen führen, wobei es einerseits zur Manifestation
eines typischen Morbus Stargardt und andererseits zum Phänotyp einer autosomal rezessiven
Retinitis pigmentosa kommen kann (RP19).
Abstract
Background: Demonstrating the types of ABCA4 mutations in the STGD1 gene in a family manifesting
both Stargardt's disease and retinitis pigmentosa (RP19). Methods: Clinical ophthalmological examination included funduscopy, ERG, Arden Colour contrast
test, fluorescein angiography in one patient, perimetry and SLO perimetry. The 50
exons of the ABCA4 gene were screened using a combination of denaturating gradient
gel electrophoresis (DGGE), high performance electrophoresis (dHPLC) and SSCP analysis.
Results: Patient I/1 showed typical signs of Stargardt's disease, while her son, II-1 demonstrated
functional signs and morphological features of retinitis pigmentosa. Mutational analysis
of the ABCA4 gene revealed a missense mutation in exon 42 (G5882G > A) and a frameshift
mutation in exon 43 (5917delG) of patient I-1. Patient II/1 demonstrated a homozygous
5917delG mutation in exon 43, resulting in a functional null-mutation. Conclusions: The combination of ABCA4 alleles with various functional consequences to protein
activity can lead to different clinical phenotypes in one and the same family, resulting
either in typical Stargardt's disease or in autosomal recessive retinitis pigmentosa
(RP19).
Schlüsselwörter
Morbus Stargardt - STGD1 - homozygote und compound-heterozygote Mutationen - Null-Allel
- rezessive Retinitis pigmentosa - RP19
Key words
Stargardt' s disease - STGD1 - homozygous and compound heterozygous mutations - null
alleles causing autosomal recessive retinitis pigmentosa - RP19
Literatur
1
Allikmets R, Shroyer N F, Singh N. et al .
Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration.
Science.
1997;
277
1805-1807
2
Allikmets R, Singh N, Sun H. et al .
A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive
Stargardt macular dystrophy.
Nat Genet.
1997b;
15
236-246
3
Briggs C, Rucinski D, Rosenfeld P J, Hirose T, Berson E L, Dryja T P.
Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod
degeneration.
IOVS.
2001;
42
2229-2236
4
Cremers F P, van de Pol D J, van Driel M. et al .
Autosomal recessive retinitis pigmentosa and rod-cone dystrophy caused by splice site
mutations in the Stargardt's disease gene ABCR.
Hum Mol Genet.
1998;
7
355-362
5
Fishman G A, Stone E M, Grover S, Derlacki D J, Hockey R R.
Variation of clinical expression in patients with Stargardt dystrophy in sequence
variations in the ABCR gene.
Arch Ophthalmol.
1999;
117
504-510
6
Fodde R, Losekoot M.
Mutation detection by denaturating gradient gel electrophoresis (DGGE).
Hum Mutat.
1994;
3
83-94
7
Franceschetti A.
A special form of tapetoretinal degeneration: fundus flavimaculatus.
Trans Am Acad Ophthalmol Otolaryngol.
1965;
69
1048-1053
8
Kaplan J, Gerber S, Larget-Piet D, Rozet J M, Dollfus H, Dufier J L, Odent S. et al
.
A gene for Stargardt' disease (fundus flavimaculatus) maps to the short arm of chromosome
1.
Nat Genet.
1993;
5
308-311
9
Krawczak M, Cooper D N.
The human gene mutation data base.
Trends Genet.
1997;
13
1221-1222
10
Liu D, Smith D I, Rechtzigel K J, Thibodeau S N, James C D.
Denaturing high performance liquid chromatography (DHPLC) used in the detection of
germline and somatic mutations.
Nucleic Acids Res.
1998;
26
1396-1400
11
Lois N, Holder G E, Bunce C, Fitzke F W, Bird A C.
Phenotypic subtypes of Stargardt's macular dystrophy-fundus flavimaculatus.
Arch Ophthalmol.
2001;
119
359-369
12
Martinez-Mir A, Paloma E, Allikmets R. et al .
Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene
ABCR.
Nat Genet.
1998;
18
11-12
13
Maugeri A, Klevering B J, Rohrschneider K. et al .
Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod
dystrophy.
Am J Hum Genet.
2000;
67
960-966
14
Molday L L, Rabin A R, Molday R S.
ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy.
Nat Genet.
2000;
25
257-258
15
Orita M, Iwahana H, Kanzawa H, Hayashi K, Sekiya T.
Detection of polymorphisms of human DANN by gel electrophoresis as single-strand conformation
polymorphisms.
Proc Natl Acad Sci USA.
1989;
86
2766-2770
16
Paloma E, Martinez-Mir A, Vilageliu L, Gonzalez-Duarte R, Balcells S.
Spectrum of ABCA4 (ABCR) gene mutations in Spanish patients with autosomal recessive
macular dystrophies.
Hum Mut.
2001;
17
504-510
17
Rivera A, White K, Stöhr H, Steiner K, Hemmrich N, Grimm T, Jurklies B, Lorenz B,
Scholl H PN, Apfelstedt-Sylla E, Weber B HF.
A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt
disease and age-related macular degeneration.
Am J Hum Genet.
2000;
67
800-813
18
Rozet J M, Gerber S, Ghazi I. et al .
Mutations of the retinal specific ATP binding transporter gene (ABCR) in a single
family segregating both autosomal recessive retinitis pigmentosa RP19 and Stargardt
disease: evidence of clinical heterogeneity at this locus.
J Med genet.
1999;
36
447-451
19
Rozet J M, Gerber S, Souied E, Perrault I, Chatelin S, Ghazi I, Leowski C, Dufier J L,
Munnich A, Kaplan J.
Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies.
Eur J Hum Genet.
1998;
6
291-295
20
Shroyer N F, Lewis R A, Yatsenko A N, Lupski J R.
Null missense ABCR (ABCA4) mutations in a family with Stargardt's disease and retinitis
pigmentosa.
IOVS.
2001;
42
2757-2761
21
Stargardt K.
Über familiäre, progressive Degeneration in der Makulagegend des Auges.
Graefe's Arch Clin Exp Ophthalmol.
1909;
71
534-550
22
Webster A R, Heon E, Lotery A J. et al .
An analysis of allelic variation in the ABCA4 gene.
IOVS.
2001;
42
1179-1189
23
Wenig J, Mata N L, Azarian S M, Tzekow R T, Birch D G, Travis G H.
Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's
disease from the phenotype in abcr knockout mice.
Cell.
1999;
98
13-23
Dr. Günther Rudolph
Augenklinik der Ludwig-Maximilians-Universität
Mathildenstraße 8
80336 München
Email: Guenther.Rudolph@ak-i.med.uni-muenchen.de