Int J Sports Med 2002; 23(6): 408-414
DOI: 10.1055/s-2002-33734
Training & Testing
© Georg Thieme Verlag Stuttgart · New York

Muscular Efficiency During Arm Cranking and Wheelchair Exercise: A Comparison

F.  Hintzy1 , N.  Tordi2 , S.  Perrey2
  • 1Laboratoire de Modélisation des Activités Sportives (LMAS), Le Bourget du lac, France
  • 2Laboratoire des Sciences du Sport, Besançon, France
Further Information

Publication History

Publication Date:
05 September 2002 (online)

Abstract

The present study was performed to compare various individual muscular efficiency indices, i. e., gross (GE), net (NE), work (WE), and delta (DE), during arm cranking ergometer (ACE) and wheelchair ergometer (WERG) exercise at the same relative exercise intensities. Following a maximal test on both the ACE and WERG, 15 able-bodied subjects completed 4 submaximal bouts at 0, 40, 55 and 70 % of the mode-specific V˙O2peak. The peak power output and V˙O2 values were significantly higher with ACE than WERG maximal exercise. As a consequence, the power output imposed during WERG submaximal bouts was significantly lower compared to ACE submaximal bouts. ACE exercise was found to elicit a significantly higher (p < 0.001) V˙O2 (16 to 28 vs 14 to 23 ml × min-1 × kg-1), GE (9 to 11 vs 6 to 9 %) and NE (14 to 13 vs 10 to 11 %) compared to WERG exercise at power output from 40 to 70 % V˙O2peak, respectively. However, WE (17 to 15 vs 17 to 14 % at 40 to 55 % V˙O2peak) and DE (12 to 13 vs 12 to 12 % at Δ40 - 55 % to Δ55 - 70 % V˙O2peak) values were similar between ACE and WERG exercise. The lower GE and NE observed during WERG compared to ACE exercise could be explained by the biomechanical disadvantages of the hand-rim WERG pattern movement. These findings also supported that the different indices of efficiency influenced the interpretation of the comparison between ACE and WERG propulsion.

References

  • 1 McArdle W D, Katch F I, Katch V L. Exercise Physiology. Energy, Nutrition, and Human Performance. Philadelphia; Lea and Febiger 1981: 101
  • 2 Brown D D, Knowlton R G, Hamill J, Schneider T L, Hetzler R K. Physiological and biomechanical differences between wheelchair-dependent and able-bodied subjects during wheelchair ergometry.  Eur J Appl Physiol. 1990;  60 179-182
  • 3 Devillards X, Calmels P, Sauvignet B, Belli A, Denis C, Simard C, Gautheron V. Validation of a new ergometer adapted to all types of manual wheelchairs.  Eur J Appl Physiol. 2001;  85 479-485
  • 4 Gaesser G A, Brooks G A. Muscular efficiency during steady-rate exercise: effects of speed and work rate.  J Appl Physiol. 1975;  38 1132-1139
  • 5 Glaser R M, Sawka M N, Brune M F, Wilde S W. Physiological responses to maximal effort wheelchair and arm crank ergometry.  J Appl Physiol. 1980;  48 1060-1064
  • 6 Glaser R M, Sawka M N, Laubach L L, Suryaprasad A. Metabolic and cardiopulmonary responses to wheelchair and bicycle ergometry.  J Appl Physiol. 1979;  46 1066-1070
  • 7 Goosey V L, Campbell I G, Fowler N E. Effect of push frequency on the economy of wheelchair racers.  Med Sci Sports. Exerc 2000;  32 174-181
  • 8 Jones D, Baldini F, Cooper R A, Robertson R, Widman L. Economical aspects of wheelchair propulsion.  Med Sci Sports Exerc . 1992;  24 S32
  • 9 Kang J, Robertson R J, Goss F L, Dasilva S G, Suminski R R, Utter A C, Zoeller R F, Metz K F. Metabolic efficiency during arm and leg exercise at the same relative intensities.  Med Sci Sports Exerc. 1997;  29 377-382
  • 10 Martel G, Noreau L, Jobin J. Physiological responses to maximal exercise on arm cranking and wheelchair ergometer with paraplegics.  Paraplegia. 1991;  29 447-456
  • 11 Mukherjee G, Samanta A. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.  J Rehab Res Dev. 2001;  38 391-399
  • 12 Powers S K, Beadle R E, Mangum M. Exercise efficiency during arm ergometry: effects of speed and work rate.  J Appl Physiol. 1984;  56 495-499
  • 13 Price M J, Campbell I G. Thermoregulatory and physiological responses of wheelchair athletes to prolonged arm crank and wheelchair exercise.  Int J Sports Med. 1999;  20 457-463
  • 14 Roeleveld K, Lute E, Veeger D, Gwinn T, Van der Woude L. Power output and technique of wheelchair athletes.  Adapt Phys Act Quart. 1994;  11 71-85
  • 15 Sawka M. Physiology of upper body exercise.  Exerc Sports Sci Rev. 1986;  14 175-212
  • 16 Sawka M N, Glaser R M, Wilde S W, von Luhrte T C. Metabolic and circulatory responses to wheelchair and arm crank exercise.  J Appl Physiol. 1980;  49 784-788
  • 17 Shephard R J, Allen C, Benade A JS, Davies C TM, Di Prampero P E, Hedman R, Marriman J E, Myhre K, Simmons R. The maximum oxygen intake. An international reference standard of cardiorespiratoy fitness.  Bull WHO. 1968;  38 757-764
  • 18 Simard C, Noreau L, Par G, Pomerleau P. Maximal physiological response during exertion in quadriplegic subjects.  Can J Appl Physiol. 1993;  18 163-174
  • 19 Toner M M, Sawka M N, Levine L, Pandolf K B. Cardiorespiratory responses to exercise distributed between the upper and lower body.  J Appl Physiol. 1983;  54 1403-1407
  • 20 Tropp H, Samulsson K, Jorfeldt L. Power output for wheelchair driving on a treadmill compared with arm crank ergometry.  Br J Sports Med. 1997;  31 41-44
  • 21 Van der Woude L HV, DeGroot G, Hollander A P, Schenau G JV, Rosendal R H. Wheelchair ergonomics and physiological testing of prototypes.  Ergonomics. 1986;  29 1561-1573
  • 22 Van der Woude L HV, Veeger H E J, De Boer Y, Rozendal R H. Physiological evaluation of a newly designed lever mechanism for wheelchairs.  J Med Eng Tech. 1993;  17 232-240
  • 23 Van der Woude L HV, Veeger H E J, Rozendal R E, Sargeant A J. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique.  Eur J Appl Physiol. 1989;  58 625-632
  • 24 Vanlandewijck Y C, Spaepen A J, Lysens R J. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes.  Med Sci Sports Exerc. 1994;  26 1373-1381
  • 25 Veeger H EJ. Biomechanics of manual wheelchair propulsion. In: Van der Woude LHV, Meijs PJM, Van der Gurtes BA, de Boes YA (eds) Ergonomics of Manual Wheelchair Propulsion, State of the Art. Milano; Edizioni pro juventute, IOS 1991: 201-203
  • 26 Veeger H E J, Van der Woude L HV, Rosendal R H. Effect of hand-rim velocity on mechanical efficiency in wheelchair propulsion.  Med Sci Sports Exerc. 1992;  24 100-107
  • 27 Wells R, Morrissey M, Hughson R. Internal work and physiological responses during concentric and eccentric cycle ergometry.  Eur J Appl Physiol. 1986;  55 295-301
  • 28 Whipp B J, Wasserman K. Efficiency of muscular work.  J Appl Physiol. 1969;  26 644-648
  • 29 Wicks J R, Lymbuerner K, Dinsdale S M, Jones N L. The use of multistage exercise testing with wheelchair ergometry and arm cranking in subjects with spinal cord lesions.  Paraplegia. 1977 - 1978;  15 252-261
  • 30 Wicks J R, Oldridge N B, Cameron B J, Jones N L. Arm cranking and wheelchair ergometry in elite spinal cord-injured athletes.  Med Sci Sports Exerc. 1983;  15 224-231
  • 31 Widrick J J, Freedson P S, Hamill J. Effect of internal work on the calculation of optimal pedalling rates.  Med Sci Sports Exerc. 1992;  24 376-382
  • 32 Yamasaki M, Irizawa M, Ishii K, Komura T. Work efficiency of paraplegia during arm cranking.  Ann Physiol Anthrop. 1993;  12 79-82

F. Hintzy, PhD

Laboratoire de Modélisation des Activités Sportives (LMAS) · Département STAPS, UFR CISM

Campus universitaire · 73376 Le Bourget du Lac · France ·

Phone: +33 (479) 758146

Fax: +33 (479) 758148

Email: Frederique.Hintzy@univ-savoie.fr

    >