Neuropediatrics 2002; 33(2): 105-108
DOI: 10.1055/s-2002-32373
Short Communication

Georg Thieme Verlag Stuttgart · New York

Altered Methylation Pattern of the G6 PD Promoter in Rett Syndrome

P. Huppke1 [*] , S. Bohlander3 [*] , N. Krämer1 , F. Laccone2 , F. Hanefeld1
  • 1 Neuropediatric Department, Georg-August-Universität Göttingen, Göttingen, Germany
  • 2 Institute of Human Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
  • 3 Department of Medicine III, Großhadern, Ludwig-Maximilians Universität, München, Germany
Further Information

Publication History

Publication Date:
20 June 2002 (online)

Abstract

Rett syndrome (RTT) is a neurodevelopmental disorder that almost exclusively affects girls. Recently mutations in MECP2, that encodes the methyl CpG binding protein 2 (MeCP2), have been found to cause RTT. MeCP2 has a role in gene silencing. It binds to methylated cytosine in the DNA and recruits histone deacetylases. We studied the methylation pattern of the promoters of two X chromosomal genes, G6 PD and SYBL1, in patients with RTT and in a control group. Both genes undergo X inactivation which correlates with promoter methylation. A 1 : 1 ratio of methylated versus non-methylated alleles was expected. In the control group a median ratio of 47 : 53 of methylated to non-methylated alleles was found at the G6 PD promoter locus. In 22 patients with RTT the median ratio was significantly different, 33 : 67 (p < 0.0001). Analysis of the SYBL1 promoter revealed an almost identical median ratio of methylated versus non-methylated alleles (RTT 47 : 53; control 49 : 51), however, the range was wider in the RTT group (RTT 23 : 77 to 56 : 44; control 43 : 57 to 55 : 45). There was no apparent correlation between G6 PD promoter methylation status and mutations in the MeCP2 gene or the severity of the clinical phenotype in our patient group. The finding of reduced methylation at the G6 PD promoter is an interesting finding and suggests that there could be widespread dysregulation of X chromosomal genes in Rett syndrome.

References

  • 1 Amir R E, Van den Veyver I B, Wan M, Tran C Q, Francke U, Zoghbi H Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.  Nat Genet. 1999;  23 185-188
  • 2 Anvret M, Wahlstrom J. Rett syndrome: random X chromosome inactivation [letter].  Clin Genet. 1994;  45 274-275
  • 3 Bhattacharya S K, Ramchandani S, Cervoni N, Szyf M. A mammalian protein with specific demethylase activity for mCpG DNA.  Nature. 1999;  397 579-583
  • 4 D'Esposito M, Ciccodicola A, Gianfrancesco F, Esposito T, Flagiello L, Mazzarella R, Schlessinger D, D'Urso M. A synaptobrevin-like gene in the Xq28 pseudoautosomal region undergoes X inactivation.  Nat Genet. 1996;  13 227-229
  • 5 Hagberg B, Aicardi J, Dias K, Ramos O. A progressive syndrome of autism, dementia, ataxia and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases.  Ann Neurol. 1983;  14 405-408
  • 6 Hagberg B, Goutières F, Hanefeld F, Rett A, Wilson J. Rett syndrome: criteria for inclusion and exclusion.  Brain Dev. 1985;  7 372-373
  • 7 Huppke P, Laccone F, Kramer N, Engel W, Hanefeld F. Rett syndrome: analysis of MECP2 and clinical characterization of 31 patients.  Hum Mol Genet. 2000;  9 1369-1375
  • 8 Jones P L, Veenstra G J, Wade P A, Vermaak D, Kass S U, Landsberger N, Strouboulis J, Wolffe A P. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.  Nat Genet. 1998;  19 187-191
  • 9 Lahn B T, Ma N, Breg W R, Stratton R, Surti U, Page D C. Xq-Yq interchange resulting in supernormal X-linked gene expression in severely retarded males with 46, XYq-karyotype.  Nat Genet. 1994;  8 243-250
  • 10 Lewis J D, Meehan R R, Henzel W J, Maurer-Fogy I, Jeppesen P, Klein F, Bird A. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA.  Cell. 1992;  69 905-914
  • 11 Migeon B R, Dunn M A, Thomas G, Schmeckpeper B J, Naidu S. Studies of X inactivation and isodisomy in twins provide further evidence that the X chromosome is not involved in Rett syndrome.  Am J Hum Genet. 1995;  56 647-653
  • 12 Nan X, Ng H H, Johnson C A, Laherty C D, Turner B M, Eisenman R N, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.  Nature. 1998;  393 386-389
  • 13 Ng H H, Zhang Y, Hendrich B, Johnson C A, Turner B M, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex.  Nat Genet. 1999;  23 58-61
  • 14 Ramchandani S, Bhattacharya S K, Cervoni N, Szyf M. DNA methylation is a reversible biological signal.  Proc Natl Acad Sci USA. 1999;  96 6107-6112
  • 15 Rett A. Über ein eigenartiges hirnatrophisches Syndrom bei Hyperamonämie im Kindesalter.  Wien Med Wochenschr. 1966;  116 723-728
  • 16 Toniolo D, Filippi M, Dono R, Lettieri T, Martini G. The CpG island in the 5′region of the G6 PD gene of man and mouse.  Gene. 1991;  102 197-203
  • 17 Vorsanova S G, Yurov Y B, Kolotii A D, Soloviev I V. FISH analysis of replication and transcription of chromosome X loci: new approach for genetic analysis of Rett syndrome.  Brain Dev. 2001;  23 S191-195
  • 18 Wade P A, Gegonne A, Jones P L, Ballestar E, Aubry F, Wolffe A P. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation.  Nat Genet. 1999;  23 62-66
  • 19 Wan M, Zhao K, Lee S S, Francke U. MECP2 truncating mutations cause histone H4 hyperacetylation in Rett syndrome.  Hum Mol Genet. 2001;  15 1085-1092
  • 20 Webb T, Watkiss E. A comparative study of X-inactivation in Rett syndrome probands and control subjects.  Clin Genet. 1996;  49 189-195
  • 21 Zoghbi H Y, Percy A K, Schultz R J, Fill C. Patterns of X chromosome inactivation in the Rett syndrome.  Brain Dev. 1990;  12 131-135

1 * P. Huppke and S. Bohlander contributed equally to this work.

Dr. P. Huppke

Abteilung Kinderheilkunde, Schwerpunkt Neuropädiatrie, Georg-August-Universität Göttingen

Robert Koch Str. 40

37075 Göttingen

Germany

Email: phuppke@med.uni-goettingen.de

    >