Abstract
Purpose: A new magnetic resonance imaging approach for detection of myocardial late enhancement
during free-breathing was developed. Methods and Results: For suppression of respiratory motion artifacts, a prospective navigator technology
including real-time motion correction and a local navigator restore was implemented.
Subject specific inversion times were defined from images with incrementally increased
inversion times acquired during a single dynamic scout navigator-gated and real-time
motion corrected free-breathing scan. Subsequently, MR-imaging of myocardial late
enhancement was performed with navigator-gated and real-time motion corrected adjacent
short axis and long axis (two, three and four chamber) views. This alternative approach
was investigated in 7 patients with history of myocardial infarction 12 min after
i. v. administration of 0.2 mmol/kg body weight gadolinium-DTPA. Conclusion: With the presented navigator-gated and real-time motion corrected sequence for MR-imaging
of myocardial late enhancement data can be completely acquired during free-breathing.
Time constraints of a breath-hold technique are abolished and optimized patient specific
inversion time is ensured.
Zusammenfassung
Zielsetzung: Das Ziel der Arbeit war die Entwicklung einer MR-Sequenz, welche eine Datenaufnahme
während freier Atmung zur MR-Vitalitätsdiagnostik erlaubt. Methoden und Ergebnisse: Zur Eliminierung der Atemartefakten bei einer Datenaufnahme während freier Atmung
wurde eine prospektive Navigator-Technologie mit Echtzeit-Schichtnachführung und ein
lokaler Navigator-Rückstellpuls in eine MR-Sequenz zur Diagnostik der myokardialen
Spätanreicherung implementiert. Patientenspezifische Inversions-Zeiten wurden mit
einer vorgeschalteten Inversionszeit-Bestimmungssequenz mit variablen Inversionszeiten
ermittelt. Diese Sequenz wurde ebenfalls während freier Atmung angefertigt. Die Diagnostik
der myokardialen Spätanreicherung erfolgte mit der patientenspezifischen Inversionszeit
und einer Schichtführung im Zwei-, Drei- und Vierkammerblick sowie in der kurzen Achse.
7 Patienten mit Myokardinfarkt wurden 12 Minuten nach Applikation von 0,2 mmol/kg
Körpergewicht Gd-DTPA i. v. untersucht. Schlussfolgerung: Die neue MR-Sequenz mit Navigator-Technologie und Echtzeit-Schichtnachführung erlaubt
die Datenakquisition zu Diagnostik der myokardialen Spätanreicherung einschließlich
der Bestimmung der patientenspezifischen Inversionszeit während freier Atmung. Die
Limitationen einer Atemanhalte-Technik werden durch diese neue Technik behoben.
Key words
Magnetic Resonance Imaging - Myocardial Viability - Contrast enhancement - Navigator
technology
Schlüsselwörter
Magnetic Resonance Imaging - Myocardial Viability - Contrast enhancement - Navigator
technology
Literatur
1
Kim R J, Wu E, Rafael A. et al .
The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial
dysfunction.
N Engl J Med.
2000;
343
1445-1453
2
Simonetti O P, Kim R J, Fieno D S. et al .
An improved MR imaging technique for the visualization of myocardial infarction.
Radiology.
2001;
218
215-223
3
Pereira R S, Prato F S, Lekx K S, Sykes J, Wisenberg G.
Contrast-enhanced MRI for the assessment of myocardial viability after permanent coronary
artery occlusion.
Magn Reson med.
2000;
44
309-316
4
Judd R M, Lugo-Olivieri C H, Arai M. et al .
Physiological basis of myocardial contrast enhancement in fast magnetic resonance
images of 2-day-old reperfused canine infarcts.
Circulation.
1995;
92
1902-1910
5
Kim R J, Fieno D S, Parrish T B. et al .
Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age,
and contractile function.
Circulation.
1999;
100
1992-2002
6
Kim R J, Hillenbrand H B, Judd R M.
Evaluation of myocardial viability by MRI.
Herz.
2000;
25
417-430
7
Sandstede J J, Lipke C, Beer M. et al .
Analysis of first-pass and delayed contrast-enhancement patterns of dysfunctional
myocardium on MR imaging: use in the prediction of myocardial viability.
Am J Roentgenol.
2000;
174
1737-1740
8
Flacke S J, Fischer S E, Lorenz C H.
Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium
in vivo: normal distribution and elevation in acute and chronic infarction.
Radiology.
2001;
218
703-710
9
Taylor A M, Keegan J, Jhooti P, Gatehouse P D, Firmin D N, Pennell D J.
Differences between normal subjects and patients with coronary artery disease for
three different MR coronary angiography suppression techniques.
J Magn Reson Imaging.
1999;
9
786-793
10
Stuber M, Botnar R M, Danias P G, Kissinger K V, Manning W J.
Submillimeter three-dimensional coronary MR angiography with real-time navigator correction:
comparison of navigator locations.
Radiology.
1999;
212
579-587
11
McConnell M V, Khasgiwala V C, Savord B J. et al .
Prospective adaptive navigator correction for breath-hold MR coronary angiography.
Magn Reson Med.
1997;
37
148-152
12
Stuber M, Botnar R M, Spuentrup E, Kissinger K V, Manning W J.
Three-dimensional high-resolution fast spin echo coronary magnetic resonance angiography.
Magn Reson med.
2001;
45
206-211
13
Ehman R L, Felmlee J P.
Adaptive technique for high-definition MR imaging of moving structures.
Radiology.
1989;
173
255-263
14
Nehrke K, Bornert P, Groen J, Smink J, Bock J C.
On the performance and accuracy of 2D navigator pulses.
Magn Reson Imaging.
1999;
17
1173-1181
15
Wang Y, Riederer S J, Ehman R L.
Respiratory motion of the heart: kinematics and the implications for the spatial resolution
in coronary imaging.
Magn Reson Med.
1995;
33
713-719
16
Spuentrup E, Stuber M, Botnar R M, Manning W J.
The impact of navigator timing parameters and navigator spatial resolution on 3D coronary
magnetic resonance angiography.
J Magn Reson Imaging.
2001;
14
311-318
Dr. med. Elmar Spuentrup
Department of Diagnostic Radiology, University Hospital, Technical University of Aachen
Pauwelsstraße 30
52057 Aachen
Germany
Phone: + 49-241-8088332
Fax: + 49-241-8082411
Email: spuenti@rad.rwth-aachen.de