Zusammenfassung
Hintergrund: Gap-junction-Kanäle (Nexus) bestehen aus unterschiedlichen Connexin-Proteinen und
spielen im Innenohr eine wichtige Rolle für die Physiologie des Hörens. Connexin26
und Connexin30 wurden in der Cochlea durch Immunhistochemie und Northern-Blot-Analyse
nachgewiesen. Mutationen in den Genen von Connexin26 und Connexin30 wurden als Ursache
nicht-syndromaler erblicher Innenohrschwerhörigkeit beschrieben. Methode: Die Häufigkeit von Mutationen im Connexin26- und Connexin30-Gen wurde durch SSCP-Analyse
und Sequenzierung bei hochgradig schwerhörigen bis tauben Patienten untersucht. Ergebnisse: Bei 134 hochgradig schwerhörigen bis tauben Patienten konnten 30 Connexin26-Mutationen
(22 %) nachgewiesen werden. In 25 Fällen (19 %) wurde die häufigste Connexin26-Mutation
30delG identifiziert, in 5 Fällen seltenere Connexin26-Mutationen. Eine Connexin30-Mutation
konnte bei keinem Patienten nachgewiesen werden. Schlussfolgerung: Somit haben Connexin26-Mutationen auch in Deutschland eine große Bedeutung bei nicht-syndromaler
Innenohrschwerhörigkeit und sollten bei Patienten mit Verdacht auf hereditäre Schwerhörigkeit
ausgeschlossen werden.
Connexin26 and -30 in the Cochlea and their Clinical Relevance
Introduction: Gap junction channels consist of different connexin proteins and play an important
role in the physiology of hearing. Connexin26 and connexin30 have been demonstrated
in the inner ear by immunohistochemistry and Northern Blot analysis. Mutations in
the genes for connexin26 and connexin30 have been described to be responsible for
non-syndromic hearing loss. Methods: We investigated the prevalence of connexin26 and connexin30 mutations in patients
with profound hearing loss or deafness by SSCP-analysis and sequencing. Results: 30 connexin26 mutations (22 %) were detected among 134 patients with profound hearing
loss or deafness. The most frequent connexin26 mutation 30delG was found in 25 patients.
In 5 patients other connexin26 mutations were identified. No connexin30 mutation was
found. Conclusion: Therefore connexin26 mutations also play an important role for non-syndromic hearing
loss in Germany. We propose that every patient with suspected hereditary hearing loss
should be screened for a connexin26 mutation.
Schlüsselwörter:
Connexine - Gap-junctions - Hörverlust
Key words:
Connexins - Gap junctions - Hearing loss
Literatur
- 1
Dermietzel R, Hwang T K, Spray D S.
The gap junction family: structure, function, chemistry.
Anat Embryol.
1990;
182
517-528
- 2
Kumar N M, Gilula N B.
The gap junction communication channel.
Cell.
1996;
884
381-388
- 3
Jahnke K.
The fine structure of freeze-fractured intercellular junctions in the guinea pig inner
ear.
Acta Otolaryngol (Stockh).
1975;
336
1-40
- 4
Jahnke K.
Die Feinstruktur gefriergeätzter Zellmembran-Haftstellen der Stria vascularis.
Anat Embryol.
1975;
147
189-201
- 5
Iurato S, Franke K, Luciano L, Wermbter G, Pannese E, Reale E.
Intercellular junctions in the organ of Corti as revealed by freeze fracturing.
Acta Otolaryngol (Stockh).
1976;
82
57-69
- 6
Kikuchi T, Kimura R S, Paul D L, Adams J C.
Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis.
Anat Embryol.
1995;
191
101-118
- 7
Spicer S S, Schulte B A.
Evidence for a medial K+ recycling pathway from inner hair cells.
Hear Res.
1998;
118
1-12
- 8
Kikuchi T, Kimura R S, Paul D L, Takasaka T, Adams J C.
Gap junction systems in the mammalian cochlea.
Brain Research Reviews.
2000;
32
163-166
- 9
Xia J, Liu C, Tang B, Pan Q, Huang L, Dai H, Zhang B, Xie W, Hu D, Zheng D, Shi X,
Wang D, Xia K, Yu K, Liao X, Feng Y, Yang Y, Xiao J, Xie D, Huang J.
Mutations in the gene encoding gap junction protein β-3 associated with autosomal
dominant hearing impairment.
Nature Genet.
1998;
20
370-373
- 10
Lautermann J, ten Cate W JF, Altenhoff P, Grümmer R, Traub O, Frank H G, Jahnke K,
Winterhager E.
Expression of the gap-junction connexins 26 and 30 in the rat cochlea.
Cell Tissue Res.
1998;
294
415-420
- 11
Kelsell D P, Dunlop J, Stevens H P, Lench N J, Liang J N, Parry G, Mueller R F, Leigh I M.
Connexin 26 mutations in hereditary non-syndromic sensorineural deafness.
Nature.
1997;
387
80-83
- 12
Lautermann J, Frank H G, Jahnke K, Traub O, Winterhager E.
Developmental expression patterns of connexin26 and -30 in the rat cochlea.
Developmental Genetics.
1999;
25
306-311
- 13
Zhao H B, Santos-Sacchi J.
Voltage gating of gap junctions in cochlear supporting cells: evidence for nonhomotypic
channels.
J Membrane Biol.
2000;
175
17-24
- 14
Henley C M, Rybak L P.
Ototoxicity in developing mammals.
Brain Res.
1995;
20
68-90
- 15
Lavigne-Rebillard M, Bagger-Sjöback D.
Development of the human stria vascularis.
Hear Res.
1992;
64
39-51
- 16
Pujol R, Lavigne-Rebillard M, Uziel A.
Development of the human cochlea.
Acta Otolaryngol (Stockh).
1991;
482
7-12
- 17
Cohn E S, Kelley P M.
Clinical phenotype and mutations in connexin26 (DFNB1/GJB2) the most common cause
of childhood hearing loss.
Am J Med Genet.
1999;
24
130-136
- 18
Denoyelle F, Weil D, Maw M A, Wilcox S A, Lench N J, Allen-Powell D R, Osborn A H,
Dahl H H, Middleton A, Houseman M J, Dode C, Marlin S, Boulila-ElGaied A, Grati M,
Ayadi H, BenArab S, Bitoun P, Lina-Granada G, Godet J, Mustapha M, Loiselet J, El-Zir E,
Aubois A, Joannard A, Petit C . et al .
Prelingual deafness: high prevalence of a 30delG mutation in the connexin26 gene.
Hum Mol Genet.
1997;
6
2173-2177
- 19
Kelley P M, Harris D J, Comer B C, Askew J W, Fowler T, Smith S D, Kimberling W J.
Novel mutations in the connexin26 gene (GJB2) that cause autosomal recessive (DFNB1)
hearing loss.
Am J Hum Genet.
1998;
62
792-799
- 20
Denoyelle F, Marlin S, Weil D, Moatti L, Chauvin P, Garabedian E N, Petit C.
Clinical features of the prevalent form of childhood deafness, DFNB1, due to a connexin-26
gene defect: implications for genetic counselling.
Lancet.
1999;
17
1298-1303
- 21
Abe S, Usami S, Shinkawa H, Kelley P M, Kimberling W J.
Prevalent connexin26 gene (GJB2) mutations in Japanese.
J Med Genet.
2000;
37
41-43
- 22
Estvill X, Fortina P, Surrey S, Rabionet R, Melchionda S, D’Agruma L, Mansfield F,
Rappaport E, Govea N, Milà M, Zelante L, Gasparini P.
Connexin-26 mutations in sporadic and inherited sensorineural deafness.
Lancet.
1998;
351
394-398
- 23
Gasparini P, Rabionet R, Barbujani G, Melchionda S, Petersen M, Brondum-Nielsen K,
Metspalu A, Oitmaa E, Pisano M, Fortina P, Zelante L, Estivill X.
High carrier frequency of the 35delG deafness mutation in European populations. Genetic
analysis consortium of GJB2 35delG.
Eur J Hum Genet.
2000;
8
19-23
- 24
Kupka S, Mirghomizadeh F, Haug T, Braun S, Leistenschneider P, Schmitz-Salue C, Arold R,
Blin N, Zenner H P, Pfister M.
Mutationsanalyse des Connexin26-Gens bei sporadischen Fällen mittel- bis hochgradiger
Schwerhörigkeit.
HNO.
2000;
48
671-674
- 25
Kelley P M, Abe S, Askew J W, Smith S D, Usami S, Kimberling W J.
Human connexin30 (GJB6), a candidate gene for nonsyndromic hearing loss: molecular
cloning, tissue-specific expression and assignment to chromosome 13q12.
Genomics.
1999;
1
172-176
- 26
Grifa A, Wagner C A, D’Ambrosio L, Melchionda S, Bernardi F, Lopez-Bigas N, Rabionet R,
Arbones M, Monica M D, Estivill X, Zelante L, Lang F, Gasparini P.
Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus.
Nat Genet.
1999;
23
16-18
- 27
Cohn E S, Kelley P M, Fowler T W, Gorga M P, Lefkowitz D M, Kuehn H J, Schaefer G B,
Gobar L S, Hahn F J, Harris D J, Kimberling W J.
Clinical studies of families with hearing loss attributable to mutations in the connexin26
gene.
Pediatrics.
1999;
103
546-550
- 28
Jun A I, McGuirt W T, Hinojosa R, Green G F, Fischel-Ghodsian N, Smith R JH.
Temporal bone histopathology in Connexin26-related hearing loss.
Laryngoscope.
2000;
110
269-275
Priv.-Doz. Dr. J. Lautermann
Universitäts-Hals-, Nasen-, Ohrenklinik Essen
Hufelandstraße 55
45122 Essen