Subscribe to RSS
DOI: 10.1055/s-2001-18537
Colonic fermentation as affected by antibiotics and acidic pH: Application of an in vitro model
Beeinflussung des mikrobiellen Dickdarmstoffwechsels durch Antibiotika und sauren pH-Wert: Untersuchung in einem In-vitro-ModellPublication History
11.5.2001
3.7.2001
Publication Date:
21 November 2001 (online)

Summary: Antimicrobial substances such as vancomycin or metronidazole suppress normal gut flora, thereby preventing physiological fermentation of colonic substrates that may promote mucosal inflammation. This study was designed to establish an in vitro model of microbial metabolism in the colon under control and disturbed conditions (acidic pH) to investigate specific effects of vancomycin and metronidazole on the production of short chain fatty acids (SCFA), which play a pivotal role in maintaining homeostasis in the colon. The experiments were carried out with the colon simulation technique (Cositec) representing an in vitro model for the semi-continuous incubation of defined colon contents. Inocula and fermentable substrates were sampled from cecal contents of fistulated pigs. Disturbed microbial metabolism was generated by reduction of pH in the fermentation vessels from 6.7 to 5.8 and 5.1. In general, application of either vancomycin or metronidazole resulted in a significant decrease of SCFA production rates indicating substantial disturbance of the homeostasis of microbial metabolism. With low doses of vancomycin acetate and butyrate production rates were reduced and with high doses of the antibiotic propionate production was inhibited to a greater extent. Treatment with metronidazole inhibited butyrate production almost completely. Similarly, low pH caused a reduction in total SCFA production, which was mainly due to respective decrease of acetate synthesis. Metronidazole effects were not consistently changed at low pH. The Cositec system provides an excellent facility to test the effects of different antibiotics under defined conditions. In this study, both vancomycin and metronidazole affected microbial metabolism to a considerable extent. Both substances may thus be responsible for disturbances of colon function in vivo.
Beeinflussung des mikrobiellen Dickdarmstoffwechsels durch Antibiotika und sauren pH-Wert: Untersuchung in einem In-vitro-Modell
Mithilfe der Kolon-Simulationstechnik (Cositec), einer semikontinuierlichen In-vitro-Inkubationsmethode, wurden die Auswirkungen des Antibiotikums Vancomycin und des Chemotherapeutikums Metronidazol auf den Stoffwechsel der Dickdarmflora des Schweines untersucht. Als Spendertiere für die Inokula und fermentierbaren Substrate dienten Mastschweine, die mit einer Zökumkanüle versehen waren. Des Weiteren wurde ein Modell zur Störung des mikrobiellen Stoffwechsels im Cositec-System ohne Zusatz von Antibiotika etabliert. Dazu wurde der pH-Wert im Cositec-System von pH 6,7 auf 5,8 bzw. 5,1 erniedrigt. Schließlich wurde die gleichzeitige Wirkung von saurem pH und Metronidazol auf den Dickdarmstoffwechsel geprüft. Beide antimikrobiellen Wirkstoffe verursachten eine signifikante Störung des mikrobiellen Stoffwechsels, die sich vor allem in einer Abnahme der Produktion kurzkettiger Fettsäuren (SCFA) manifestierte. Bei niedrigen Vancomycin-Konzentrationen waren die Produktionsraten von Acetat und Butyrat erniedrigt, während die Propionat-Produktionsrate bei höheren Dosen vermindert war. Bei Metronidazol-Gabe war die Butyratbildung fast vollständig unterbunden. In ähnlicher Weise wurde die SCFA-Produktion durch die alleinige pH-Absenkung vermindert, wobei dies insbesondere mit einer Hemmung der Azetatbildung einherging. Bei saurem pH war der Metronidazol-Effekt nicht wesentlich verändert. Das Cositec-System stellt eine gut geeignete Technik zur Untersuchung von Antibiotikaeffekten auf den Dickdarmstoffwechsel unter definierten Bedingungen dar. Die Ergebnisse zeigen, dass Vancomycin und Metronidazol den mikrobiellen Dickdarmstoffwechsel in erheblichem Maße beeinträchtigen. Eine Übertragung dieser In-vitro-Ergebnisse auf In-vivo-Verhältnisse könnte zu einem größeren Verständnis der unter Vancomycin- und Metronidazol-Anwendung beobachteten Störungen der Dickdarmfunktion beitragen.
Key words
Vancomycin - Metronidazole - Colon - Colon Simulation Technique - Short Chain Fatty Acids
Schlüsselwörter
Vancomycin - Metronidazol - Kolon - Cositec - kurzkettige Fettsäuren
References
- 1
Cleary R K.
Clostridium difficile-associated diarrhea and colitis.
Clinical manifestations, diagnosis, and treatment.
Dis Colon
Rectum.
1998;
41
1435-1449
MissingFormLabel
- 2
Hove H, Tvede M, Mortensen P B.
Antibiotic-associated diarrhoea, Clostridium difficile and
short chain fatty acids.
Scand J
Gastroenterol.
1996;
31
688-693
MissingFormLabel
- 3
Bartlett J G.
Antimicrobial agents implicated in Clostridium difficile
toxin-associated diarrhea or colitis.
J Hopkins Med
J.
1981;
149
6-9
MissingFormLabel
- 4
Aronsson B, Möllby R, Nord C E.
Antimicrobial agents and Clostridium difficile in acute
enteric disease: Epidemiological data from Sweden, 1980-1982.
J
Infect
Dis.
1985;
151
476-481
MissingFormLabel
- 5
Nord C E, Edlund C.
Impact of antimicrobial agents on human intestinal
microflora.
J
Chemother.
1990;
2
218-237
MissingFormLabel
- 6
Gerding D N.
Treatment of Clostridium difficile-associated diarrhea and
colitis.
Curr Top Microbiol
Immunol.
2000;
250
127-139
MissingFormLabel
- 7
Andréjak M, Schmit J L, Tondriaux A.
The clinical significance of antibiotic-associated
pseudomembranous colitis in the 1990 s.
Drug
Safety.
1991;
6
339-349
MissingFormLabel
- 8
Aronsson B, Möllby R, Nord C E.
Occurence of toxin-producing Clostridium difficile in
antibiotic-associated diarrhea in Sweden.
Med Microbiol
Immunol.
1981;
170
27-35
MissingFormLabel
- 9
Devenyi A G.
Antibiotic-induced colitis.
Semin Pediatr
Surg.
1995;
4
215-220
MissingFormLabel
- 10
Mortensen P B, Clausen M R.
short chain fatty acids in the human colon: Relation to
gastrointestinal health and disease.
Scand J
Gastroenterol.
1996;
216
(Suppl.)
132-148
MissingFormLabel
- 11
Surawicz C M, Elmer G W, Speelman P. et al .
Prevention of antibiotic-associated diarrhea by Saccharomyces
boulardii: A prospective
study.
Gastroenterology.
1989;
96
981-989
MissingFormLabel
- 12
Edwards C A, Duerden B I, Read N W.
Effect of clindamycin on the ability of a continous culture
of colonic bacteria to ferment
carbohydrate.
Gut.
1986;
27
411-417
MissingFormLabel
- 13
Bartlett J G.
Clostridium difficile: History of it’s role as an
enteric pathogen and the current state of knowledge about the
organism.
Clin Infect Dis.
1994;
18
(Suppl. 4)
265-272
MissingFormLabel
- 14
Cherry R D, Portnoy D, Jabbari M.
Metronidazole: An alternate therapy for antibiotic-associated
colitis.
Gastroenterology.
1982;
82
849-851
MissingFormLabel
- 15
Teasley D G, Gerding D N, Olson M M. et al .
Prospective randomised trial of metronidazole versus
vancomycin for Clostridium-difficile-associated diarrhoea and
colitis.
Lancet.
1983;
2
1043-1046
MissingFormLabel
- 16
Cleary R K, Grossmann R, Fernandez F B. et al .
Metronidazole may inhibit intestinal colonization with
Clostridium difficile.
Dis Colon
Rectum.
1998;
41
464-467
MissingFormLabel
- 17
Fekety R, Silva J, Toshniwal R, Allo M. et al .
Antibiotic-associated colitis: Effects of antibiotics on
Clostridium difficile and the disease in hamsters.
Rev Infect
Diseases.
1979;
1
386-397
MissingFormLabel
- 18
Thomson G, Clark A, Hare K. et al .
Pseudomembranous colitis after treatment with
metronidazole.
BMJ.
1981;
282
864-865
MissingFormLabel
- 19
Bingley P J, Harding G M.
Clostridium difficile colitis following treatment with
metronidazole and vancomycin.
Postgrad Med
J.
1987;
63
993-994
MissingFormLabel
- 20
Edwards D I, Knight R C, Zahoor A.
DNA damage induced by reductively activated nitroimidazoles
- pH effects.
Int J Radiat Oncol Biol
Phys.
1986;
12
1207-1209
MissingFormLabel
- 21
Breves G, Dreyer J, Oslage H J.
In vitro-studies on microbial hindgut metabolism in
pigs.
Anim Physiol Anim Nutr.
1991;
22
(Suppl.)
89-92
MissingFormLabel
- 22
Czerkawski J W, Breckenridge G.
Design and development of a long-term rumen simulation
technique (Rusitec).
Br J
Nutr.
1977;
38
371-384
MissingFormLabel
- 23
Stück K, Faul K, Hylla S. et al .
The application of a semi-continuous colon simulation
technique (Cositec) for studying the effects of clindamycin on microbial
hindgut
metabolism.
Z Gastroenterol.
1995;
33
241-246
MissingFormLabel
- 24
Fekety R, Silva J, Kaufmann C. et al .
Treatment of antibiotic-associated Clostridium difficile
colitis with oral vancomycin: Comparison of two dosage regimens.
Am J
Med.
1989;
86
15-19
MissingFormLabel
- 25
Delmée M, Warny M.
Clostridium difficile colitis: Recent therapeutical and
immunological considerations.
Acta Gastroenterol
Belg.
1995;
58
313-317
MissingFormLabel
- 26
Casetta A, Bingen E, Lambert-Zechovsky N.
La vancomycine en 1991: Actualité et
perspectives.
Path
Biol.
1991;
39
700-708
MissingFormLabel
- 27
Wilhelm M P.
Vancomycin.
Mayo Clin
Proc.
1991;
1165-1170
MissingFormLabel
- 28
Watanakunakorn C.
Mode of action and in-vitro activity of
vancomycin.
J Antimicrob
Chemother.
1984;
14 (Suppl.
D)
7-18
MissingFormLabel
- 29
Dion Y M, Richards G K, Prentis J J. et al .
The influence of oral versus parenteral properative
metronidazole on sepsis following colon surgery.
Ann
Surg.
1980;
192
221-226
MissingFormLabel
- 30
Krook A, Lindström B, Kjellander J.
Relation between concentrations of metronidazole and
Bacteroides spp. in faeces of patients with Crohn’s disease and healthy
individuals.
J Clin
Pathol.
1981;
34
645-650
MissingFormLabel
- 31 Dixon W J. BMDP Statistical Software Manual. Los
Angeles; University Press of
California 1992
MissingFormLabel
- 32
Mortensen P B, Hove H, Clausen M R. et al .
Fermentation to short chain fatty acids and lactate in human
faecal batch cultures. Intra- and inter-individual variations versus variations
caused by changes in fermented saccharides.
Scand J
Gastroenterol.
1991;
26
1285-1294
MissingFormLabel
- 33
Gorbach S L.
Intestinal
microflora.
Gastroenterology.
1971;
60
1110-1129
MissingFormLabel
- 34
Lundstrom T S, Sobel J D.
Vancomycin, trimethoprim-sulfamethoxazole, and
rifampin.
Infect Dis Clin North
Am.
1995;
9
747-767
MissingFormLabel
- 35 Mendelin K. In vitro investigations on the effects of ampicillin and
cephalexin on colonic fermentation. Thesis, University of
Gießen, Germany; 1998
MissingFormLabel
- 36
Roediger W EW.
Role of anaerobic bacteria in the metabolic welfare of the
colonic mucosa in
man.
Gut.
1980;
21
793-798
MissingFormLabel
- 37
Cummings J H, Englyst H N.
Fermentation in the human large intestine and the available
substrates.
Am J Clin
Nutr.
1987;
45
1243-1255
MissingFormLabel
- 38
Scheppach W, Sommer H, Kirchner T. et al .
Effect of butyrate enemas on the colonic mucosa in distal
ulcerative
colitis.
Gastroenterology.
1992;
103
51-56
MissingFormLabel
- 39
Stein J, Zores M, Schroder O.
Short chain fatty acid (SCFA) uptake into Caco-2 cells by a
pH dependent and carrier mediated transport mechanism.
Eur J
Nutr.
2000;
39
121-125
MissingFormLabel
- 40
Roediger W EW.
Bacterial short chain fatty acids and mucosal diseases of the
colon.
Br J
Surg.
1988;
75
346-348
MissingFormLabel
- 41
Scheppach W, Christl S U, Bartram H -P. et al .
Effects of short chain fatty acids on the inflamed colonic
mucosa.
Scand J Gastroenterol.
1997;
32
(Suppl. 222)
53-57
MissingFormLabel
- 42
Russell J B, Sharp W M, Baldwin R L.
The effect of pH on maximum bacterial growth rate and its
possible role as a determinant of bacterial competition in the
rumen.
J Anim
Sci.
1979;
48
251-255
MissingFormLabel
- 43
Perman J A, Modler S, Olson A C.
Role of pH in production of hydrogen from carbohydrates by
colonic bacterial flora.
J Clin
Invest.
1981;
67
643-650
MissingFormLabel
- 44
Edwards C A, Duerden B I, Read N W.
The effects of pH on colonic bacteria grown in continuous
culture.
J Med
Microbiol.
1985;
19
169-180
MissingFormLabel
- 45
Mallett A K, Bearne C A, Rowland I R.
The influence of incubation pH on the activity of rat and
human gut flora enzymes.
J Appl
Bacteriol.
1989;
66
433-437
MissingFormLabel
Address for correspondence
Prof. Dr. Gerhard Breves
Department of Physiology
School of Veterinary
Medicine
Bischofsholer Damm 15/102
30173 Hannover
Germany
Email: gerhard.breves@tiho-hannover.de