Anästhesiol Intensivmed Notfallmed Schmerzther 2001; 36(11): 683-692
DOI: 10.1055/s-2001-18048
ORIGINALIA
© Georg Thieme Verlag Stuttgart · New York

Ist es sinnvoll, die Narkosetiefe
zu messen? -
Ein Versuch der Marktübersicht über die kommerziell erhältlichen Geräte zur Messung der
Narkosetiefe

Is Measuring the Depth of Anesthesia Sensible? An Overview on the Currently Available Monitoring SystemsA. Lehmann, E. Thaler, J. Boldt
  • Klinik für Anästhesiologie und operative Intensivmedizin,
    Klinikum der Stadt Ludwigshafen
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
26. Oktober 2001 (online)

Zusammenfassung.

Es besteht zweifelsohne ein großer Bedarf von Seiten der Anästhesisten und auch der Patienten, die Narkosetiefe sicher messen zu können. Der ideale Monitor der Narkosetiefe müsste folgende Anforderungen erfüllen: Das Überwachungsverfahren sollte für alle Arten der Narkoseführung (intravenöse oder inhalative Anästhesie) im gleichen Maße anwendbar sein. Die Bestimmung der Narkosetiefe sollte einfach, zuverlässig und ohne große Fehlerquellen verfügbar sein. Die Narkosetiefe sollte mit extrem hoher Sensitivität überwachbar sein, d. h. jede intraoperative Wachheit müsste von dem Monitoringverfahren auch erkannt werden. Bei mangelhafter Sensitivität könnte eine Überwachung der Narkosetiefe, die wache Patienten nicht sicher erkennt, zu einem vermehrten Auftreten von intraoperativer Wachheit führen [80]: Der Anästhesist wiegt sich in falscher Sicherheit und vertieft nicht die Narkose, obwohl der Patient wach ist. An die Spezifität sind diese hohen Anforderungen nicht zu stellen. Bei der geringen Inzidenz von intraoperativer Wachheit [4] [5] [6] [7] [9] [10] [11] müssen über 750 Patienten überwacht werden, um nur einen Patienten, der intraoperativ wach ist, zu erkennen. Durch die Vielzahl der zu überwachenden Patienten muss ein entsprechendes Verfahren kostengünstig sein, da die Überwachung der Narkosetiefe aufgrund der derzeitigen finanziellen Lage des Gesundheitssytems sonst nur für bestimmte Risikogruppen infrage käme. Sollte die Narkosetiefe einfach, sicher und kostengünstig überwachbar sein, so wäre ein entsprechender Monitor für jeden Anästhesiearbeitsplatz zu fordern - ähnlich wie die Pulsoxymetrie. Die vorliegende Arbeit versucht eine Orientierung über die derzeit angebotenen Geräte zur Narkosetiefenmessung zu geben. Seit der Einführung des BIS hat das Interesse an der Bestimmung der Narkosetiefe erheblich zugenommen. Der Markt für die industriell angebotenen Produkte befindet sich derzeit in einer sehr dynamischen Wachstumsphase, so dass es sehr schwierig ist, eine absolut vollständige Übersicht über alle Geräte zur Narkosetiefenmesung darzustellen. Bislang kann noch keines der dargestellten Verfahren diese hohen Anforderungen erfüllen. Mit Sicherheit werden alle Versuche die Narkosetiefe zu bestimmen, auf eine mathematische Verarbeitung des spontanen EEGs oder seiner evozierten Potentiale hinauslaufen. Welches Verfahren, Entropie, BIS, PSI oder MLAEP sich in der Routine am Markt behauptet, wird die Zukunft zeigen. Alle derzeitig verfügbaren Monitore sind nicht in der Lage vorherzusagen, ob die derzeitige Narkosetiefe für den nächsten schmerzhaften Stimulus ausreicht. Sie können allenfalls die Narkosetiefe zum Messzeitpunkt bestimmen [19]. Eine „goldene Zahl”, die mit absoluter Sicherheit eine adäquate Narkosetiefe anzeigt, wird es in absehbarer Zeit nicht geben. Der klinische Zustand des Patienten muss weiterhin im Gesamtzusammenhang betrachtet werden. Die Messung der Narkosetiefe sollte von den Anästhesisten als weitere sinnvolle Hilfe zur Verbesserung der Beurteilung ihrer Patienten verstanden werden.

Is Measuring the Depth of Anesthesia Sensible? An Overview on the Currently Available Monitoring Systems.

Without any doubt there is an increasing need for accurately measuring depth of anesthesia - from the viewpoint of the anesthesiologist and also of the patient. The ideal monitoring should fulfill the following criteria: It should be applicable for any type of anesthesia (intravenous as well as inhalative anesthesia); the monitor must have an extremely high sensitivity (each patient being awake must be recognized by the device). If the monitor does not have a high sensitivity, the monitor itself might lead to an increasing number of patients being awake during anesthesia [80], because the anesthesiologist might rely to the monitor and does not deepen anesthesia while the patient is awake. Specificity is not as important as sensitivity. As incidence of intraoperative awareness is low [4] [5] [6] [7] [9] [10] [11], one must monitor more than 750 patients to recognize only one patient who is awake. Finally, the monitoring device must be economic. If costs are considerably increased by measuring depth of anesthesia in today's climate of cost consciousness, the monitoring has to be restricted to special high risk groups of patients. If monitoring depth of anesthesia will become simple, safe, and economic, each anesthesia should be monitored for its depth, as today each patient needs pulseoxymetry. We try to give an orientation about the available devices for monitoring depth of anesthesia. Since the introduction of BIS interest in measuring depth of anesthesia increased markedly. The market for commercially available monitors for depth of anesthesia is growing very dynamically. Due to this dynamic growth we hope that we were able to present an actual and complete overview about the monitoring systems for measuring depth of anesthesia. Until today no monitoring system has proven to fulfill the mentioned criteria. Monitoring of the depth of anesthesia will be based on any processing of the spontaneous EEG or its evoked potentials. Which type of monitoring, entropy, BIS, PSI, or MLAEP will be used in clinical routine will be shown in the future. All available monitors are no predictors, whether depth of anesthesia is sufficient for the next painful surgical stimulus. They can only monitor the anesthetic state at the time of measurement [19]. There is no “golden number” predicting absolutely safely that the patient is in adequate anesthesia. The anesthetist must consider any technique for monitoring of the depth of anesthesia as an additional help in improving care for his patient.

Literatur

  • 1 Guedel A E. Third stage of anesthesia: a sub-classification regarding the significance of the position and movements of the eyeball.  Am J Surg (Anesth Suppl). 1920;  34 53-57
  • 2 Snow J. On the inhalation of the vapour of ether. Churchill, London 1847
  • 3 Jones J G. Perception and memory during general anaesthesia.  Br J Anaesth. 1994;  73 31-37
  • 4 Sandin R H, Enlund G, Samuelsson P, Lennmarken C. Awareness during anesthesia: a prospective case study.  Lancet. 2000;  355 672-674
  • 5 Liu W HD, Thorp T A, Graham S G, Aitkenhead A R. Incidence of awareness with recall during general anaesthesia.  Anaesthesia. 1991;  46 435-437
  • 6 Ranta S O, Laurila R, Saario J, Ali-Melkkila T, Hynynen M. Awareness with recall during general anesthesia: incidence and risk factors.  Anesth Analg. 1998;  86 1084-1089
  • 7 Phillips A A, McLean R F, Devitt J H, Harrington E M. Recall of intraoperative events after general anaesthesia and cardiopulmonary bypass.  Can J Anaesth. 1993;  40 922-926
  • 8 Ranta S, Jusssila J, Hynynen M. Recall of awareness during cardiac anesthesia: Influence of feedback information to the anaesthesiologists.  Acta Anaesthesiol Scand. 1996;  40 554-560
  • 9 Dowd N P, Cheng D C, Karski J M, Wong D T, Munro J A, Sandler A N. Intraoperative awareness in fast-track cardiac anesthesia.  Anesthesiology. 1998;  89 1068-1073
  • 10 Bogetz M S, Katz J A. Recall of surgery for major trauma.  Anesthesiology. 1984;  61 6-9
  • 11 Lyons G, Macdonald R. Awareness during cesarean sectio.  Anaesth. 1991;  46 62-64
  • 12 Osterman J E, van der Kolk B A. Awareness during anesthesia and posttraumatic stress disorder.  Gen Hosp Psychiatry. 1998;  20 274-281
  • 13 Domino K B, Posner K L, Caplan R A, Cheney F W. Awareness during anesthesia: a closed claims analysis.  Anesthesiology. 1999;  90 1053-1061
  • 14 Ranta S, Ranta V, Aromaa U. The claims of compensation for awareness with recall during general anaesthesia in Finland.  Acta Anaesthesiol Scand. 1997;  41 356-359
  • 15 Myles P S, Wiliams D L, Hendrata M, Anderson H, Weeks A M. Patient satisfaction after anaesthesia and surgery: results of a prospective survey of 10,811 patients.  Br J Anaesth. 2000;  84 6-10
  • 16 Schwender D, Kunze-Kronawitter H, Dietrich P, Forst H, Madler C. Conscious awareness during general anaesthesia: patients' perceptions, emotions, cognition and reactions.  Br J Anaesth. 1998;  80 133-139
  • 17 Tempe D K. In search of a reliable awareness monitor.  Anesth Analg. 2001;  92 801-804
  • 18 Prys-Roberts C. Anaesthesia.  A practical or impractical construct? Br J Anaesth. 1987;  59 1341-1345
  • 19 Sebel P S. Can we monitor depth of anesthesia?.  Anesth Analg.. 2001;  92 (Suppl) 94-98
  • 20 Moerman N, Bonke B, Oosting J. Awareness and recall during general anesthesia.  Anesthesiology. 1993;  79 454-464
  • 21 Evans J M. Patients experiences of awareness during general anaesthesia. In: Rosen M, Lunn JN (Hrsg) Consciousness, awareness and pain in general anaesthesia. Butterworth, London 1987: 18-34
  • 22 Schwender D, Daunderer M, Klasing S, Mulzer S, Finsterer U, Peter K. Monitoring intraoperativer Wachzustände. Vegetative Zeichen, isolierte Unterarmtechnik, Elektroenzephalogramm und akustisch evozierte Potentiale.  Anästhesist. 1996;  45 708-721
  • 23 Rampil I J. Anesthetic potency is not altered after hypothermic spinal cord transection in rats.  Anesthesiology. 1994;  80 606-610
  • 24 Antognini J F, Schwartz K. Exaggerated anesthetic requirements in the preferentially anesthetized brain.  Anesthesiology. 1993;  79 1244-1249
  • 25 Singh H, Sakai T, Matsuki A. Movement response to skin incision: analgesia versus bispectral index and 95 % spectral edge frequency.  Eur J Anaesthesiol. 1999;  16 610-614
  • 26 Tunstall M E. Detecting wakefulness during general anaesthesia for Cesarean section.  BMJ. 1977;  1 1321
  • 27 Jessop J, Jones J G. Conscious awareness during general anaesthesia - What are we attempting to monitor?.  Br J Anaesth.. 1991;  66 635-637
  • 28 Russell I F. Auditory perception under anaesthesia.  Anaesthesia. 1979;  34 211
  • 29 Sessler D I, Stoen R, Olofsson C I, Chow F. Lower esophageal contractility predicts movement during skin incision in patients anesthetized with halothane, but not with nitrous oxide and alfentanil.  Anesthesiology. 1989;  70 42-46
  • 30 Schwieger I M, Hug C C, Hall R I, Szlam F. Is lower esophageal cotractility a reliable indicator of the adequacy of opioid anesthesia?.  J Clin Monit. 1989;  5 164-169
  • 31 Schwieger I M, Hall R I, Hug C C. Assesing the adequacy of fentanyl anaesthesia: Plasma concentrations and lower esophageal contractility.  Acta Anaesthesiol Scand. 1991;  35 227-234
  • 32 Rampil I J. A primer for EEG signal processing in anesthesia.  Anesthesiology. 1998;  89 980-1002
  • 33 Clark D L, Rosner B S. Neurophysiologic effects of general anesthetics: I. The electroencephalogram and sensory evoked responses in man.  Anesthesiology. 1973;  38 564-580
  • 34 Kochs E. Kann das EEG einen Beitrag zur Narkosetiefenbestimmung leisten? .  Anästhesiol Intensivmed Notfallmed Schmerzther. 1994;  29 319-321
  • 35 Drummond J C, Brann C A, Perkins D E, Wolfe D E. A comparison of median frequency, spectral edge frequency, a frequency band power ratio, total power, and dominance shift in the determination of depth of anaesthesia.  Acta Anaesthesiol Scand. 1991;  35 693-699
  • 36 Kochs E, Bischoff P, Pichlmeier U, Schulte am Esch J. Surgical stimulation induced changes in brain electrical activity during isoflurane/nitrous oxide anesthesia: a topographical electroencephalographic analysis.  Anesthesiology. 1994;  80 1026-1034
  • 37 Schwender D, Daunderer M, Klasing S, Finsterer U, Peter K. Power spectral analysis of the electroencephalogram during increasing end-expiratory concentrations of isoflurane, desflurane, and sevoflurane.  Anaesthesia. 1998;  53 335-342
  • 38 Schwilden H, Stoeckel H, Schüttler J. Closed-loop feedback control of propofol anaesthesia by quantitative EEG analysis in humans.  Br J Anaesth. 1989;  62 295-296
  • 39 Schwilden H, Stoeckel H. Effective therapeutic infusions produced by closed-loop feedback control of methohexital administration during total intravenous anesthesia with fentanyl.  Anesthesiology. 1990;  73 225-229
  • 40 Struys M, Versichelen L, Mortier E, Ryckaert D, De Mey J C, De Deyne C, Rolly G. Comparison of spontaneous frontal EMG, EEG power spectrum and bispectral index to monitor propofol drug effect and emergence.  Acta Anaesthesiol Scand. 1998;  42 628-636
  • 41 Arndt V M, Hofmockel R, Benad G. EEG Veränderungen unter Propofol-Alfentanil-Lachgas-Narkose.  Anaesthesiol Reanim. 1995;  20 126-133
  • 42 Olthoff D, Rohrbach A. Sevofluran in der geburtshilflichen Anästhesie.  Anästhesist. 1998;  47 (Suppl 1) S63-S69
  • 43 Hahnenkamp K, Goldmann K, Thomas O, Braun U. Kann Sevofluran im klinischen Alltag den zeitlichen Ablauf beschleunigen? Ein Vergleich mit Halothan bei Kinderanästhesien.  Anästhesist. 1998;  47 335-338
  • 44 Frank T, Thieme V, Olthoff D. Clonidine within the scope of balanced anesthesia with sevoflurane - effects on pEEG parameters.  Anaesthesiol Reanim. 2000;  25 32-36
  • 45 Kiyama S, Tsuzaki K. Processed eletroencephalogram during combined extradural and general anaesthesia.  Br J Anaesth. 1997;  78 751-753
  • 46 Kiyama S, Takeda J. Effect of extradural analgesia on the paradoxical arousal response of the electroencephalogram.  Br J Anaesth. 1997;  79 750-753
  • 47 Entholzner E, Schneck H J, Hargasser S, Hipp R, Tempel G. Elektroenzephalographische Darstellung der zentralen Auswirkungen verschiedener Prämedikationsregimes.  Anästhesist. 1994;  43 431-440
  • 48 Bischoff P, Kochs E, Droese D, Meyer-Moldenhauer W H, Schulte am Esch J. Topographisch-quantitative EEG-Analyse der paradoxen Arousalreaktion. EEG-Veränderungen bei urologischen Eingriffen unter Isofluran/N2O Narkose.  Anästhesist. 1993;  42 142-148
  • 49 Zickmann B, Boldt J, Schindler E, Wulf K, Dapper F, Hempelmann G. Topographische Elektroenzephalometrie während Narkoseinduktion mit Ketamin-Midazolam.  Anästhesist. 1994;  43 (Suppl 2) S59-S67
  • 50 Bischoff P, Drogemeier K, Scholz J, Nahm W, von Knobelsdorff G, Schulte am Esch J. Elektrophysiologische Arousalreaktion während Sufentanil-/Isofluran-Anästhesien.  Anästhesiol Intensivmed Notfallmed Schmerzther. 1998;  33 88-95
  • 51 Wozniak G, Dapper F, Schindler E, Akinturk H, Zickmann B, Gehron J, Hehrlein F W. An assessment of selective cerebral perfusion via the innominate artery in aortic arch replacement.  Thorac Cardiovasc Surg. 1998;  46 7-11
  • 52 Dimpfel W, Hofmann H C, Schober F, Todorova A. Validation of an EEG-derived spectral frequency index (SFx) for continous monitoring of sleep depth in humans.  Eur J Med Res. 1998;  3 453-460
  • 53 Renz D, Dimpfel W, Schober F, Karliczek G F. Bedeutung des spektralen Frequenzindex (SFx) zur Quantifizierung der Schlaftiefe während der Narkoseeinleitung.  Acta Anaesthesiol Helvet. 1999;  6 9-11
  • 54 Kugler J. Elektroenzephalographie in Klinik und Praxis. Thieme, Stuttgart, New York 1981
  • 55 Gebert J. Frequenzbandeinteilung und Stadienklassifikation des Narkose-EEG mit Hilfe multivarianter Verfahren. Dissertation, Hannover 1989
  • 56 Suttmann H, Juhl G, Baur B, Morgenstern W, Doenicke A. Visuelle EEG-Analyse zur Steuerung intravenöser Narkosen mit Propofol.  Anästhesist. 1989;  38 180-188
  • 57 Schlutz B, Schultz A, Grouven U, Zander I, Pichlmayr I. Veränderungen des Narkose-EEG mit dem Lebensalter.  Anästhesist. 1995;  44 467-472
  • 58 Werry C, Neulinger A, Eckert P, Lehmkuhl P, Pichlmayr I. Altersabhängige Korrelation zwischen EEG-Parametern und zunehmender Narkosetiefe unter Propofol. Effekte von Fentanyl.  Anästhesist. 1996;  45 722-730
  • 59 Bruhn J, Roepcke H, Hoeft A. Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia.  Anesthesiology. 2000;  92 715-726
  • 60 Bruhn J, Lehmann L E, Roepcke H, Bouillon T W, Hoeft A. Shannon entropy applied to the measurement of the EEG effects of desflurane. Anesthesiology, ASA Annual Meeting, October 14 - 18, 2000 San Francisco A265 2000
  • 61 Vierto-Oja H, Sarkela M, Talja P, Tolvanen-Laakso H, Yli-Hankala A. Entropy of the EEG signal is a robust index for depth of hypnosis. Anesthesiology, ASA Annual Meeting, October 14-18, 2000 San Francisco A1369 2000
  • 62 Viertiö-Oja H E, Drachman-Mertsalmi R, Jäntti V, Merläinen P T, Remes R, Seljänpera A, Särkelä M, Talja P, Tolvanen-Laakso H, Tuukkanen J, Yli-Hankala A. New method to determine depth of anesthesia from EEG measurements. Abstract for STA Meeting: www.gasnet.org./societies/sta. 2000
  • 63 Johansen J W, Sebel P S. Development and clinical application of elctroencephalographic bispectrum monitoring.  Anesthesiology. 2000;  93 1336-1344
  • 64 Sebel P S, Lang E, Rampil I J, White P F, Cork R, Jopling M, Smith N T, Glass P SA, Manberg P. A multicenter study of bispectral electroencephalogram analysis for monitoring anesthetic effect.  Anesth Analg. 1997;  84 891-899
  • 65 Sleigh J W, Donovan J. Comparison of bispectral index, 95% spectral edge frequency and approximate entropy of the EEG, with changes in heart rate variability during induction of general anaesthesia.  Br J Anaesth. 1999;  82 659-662
  • 66 Doi M, Gajraj R J, Mantzaridis H, Kenny G N. Relationship between calculated blood concentration of propofol and electrophysiological variables during emergence from anaesthesia: comparison of bispectral index, spectral edge frequency, median frequency and auditory evoked potential index.  Br J Anaest. 1997;  78 180-184
  • 67 Glass P S, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers.  Anesthesiology. 1997;  86 836-847
  • 68 Struys M, Versichelen L, Byttebier G, Mortier E, Moerman A, Rolly G. Clinical usefulness of the bispectral index for titrating propofol target effect-site concentration.  Anaesthesia. 1998;  53 4-12
  • 69 Manberg P J, Zratek D, Kovitch L, Christman L. Awareness during anesthesia with BIS monitoring. Anesthesiology, ASA Annual Meeting, October 14 - 18, 2000 San Francisco A1371 2000
  • 70 Flaishon R, Windsor A, Sigl J, Sebel P S. Recovery of consciousness after thiopental or propofol. Bispectral index and isolated forearm technique.  Anesthesiology. 1997;  86 613-619
  • 71 Suzuki M, Edmonds H L, Tsueda K, Malkani A L, Roberts C S. Effect of ketamine on bispectral index and levels of sedation.  J Clin Monit. 1998;  14 373
  • 72 Sakai T, Singh W D, Kudo T, Matsuki A. The effect of ketamine on clinical endpoints of hypnosis and EEG variables during propofol infusion.  Acta Anaesth Scand. 1999;  43 212-216
  • 73 Goto T, Nakata Y, Saito H, Ishiguro Y, Niimi Y, Suwa K, Morita S. Bispectral analysis of the electroencephalogram does not predict responsiveness to verbal command in patients emerging from xenon anaesthesia.  Br J Anaesth. 2000;  85 359-363
  • 74 Coste C, Guignard B, Menigaux C, Chauvin M. Nitrous oxide prevents movement during orotracheal intubation without affecting BIS value.  Anesth Analg. 2000;  91 130-135
  • 75 Kearse L A, Rosow C E, Zaslacsky A, Connors P, Dershwitz M, Denman W. Bispectral analysis of the electroencephalogram predicts conscious processing of information during propofol sedation and hypnosis.  Anesthesiology. 1998;  88 25-34
  • 76 Puri G D. Paradoxical changes in bispectral index during nitrous oxide stimulation.  Br J Anaesth. 2001;  86 141-142
  • 77 Mychaskiw G, Horowitz M, Sachdev V, Heath B J. Explicit intraoperative recall at a bispectral index of 47.  Anesth Analg. 2001;  92 808-809
  • 78 Gan T J, Glass P S, Windsor A, Payne F, Rosow C, Sebel P, Manberg P. Bispectral index monitoring allows faster emergence and improved recovery from propofol, alfentanil and nitrous oxide anesthesia. BIS Utility Study Group.  Anesthesiology. 1997;  87 808-815
  • 79 Song D, van Vlymen J, White P F. Is the bispectral index useful in predicting fast-track eligibility after ambulatory anesthesia with propofol and desflurane?.  Anesth Analg. 1998;  87 1245-1248
  • 80 Yli-Hankala A, Vakkuri A, Annila P, Korttila K. EEG bispectral index monitoring in sevoflurane or propofol anaesthesia: analysis of direct costs and immediate recovery.  Acta Anaesthesiol Scand. 1999;  43 545-549
  • 81 O'Connor M F, Daves S M, Tung A, Cook R I, Thisted R, Apfelbaum J. BIS monitoring to prevent awareness during general anesthesia.  Anesthesiology. 2001;  94 520-522
  • 82 Perine D L, Fontana J L. Use of the BIS monitor does not decrease wake up or recovery room times. Anesthesiology, ASA Annual Meeting, October 14 - 18, 2000 San Francisco A309 2000
  • 83 Firmeninformation PSA 4000 Patient State Analyzer Physiometrix. N Billerica, MA, USA: www.physiometrix.com/psa4000.html 2001
  • 84 Picton T W, Hillyard S A, Krausz H I, Galambos R. Human auditory evoked potentials. I: Evaluation of components.  Electroencephalogr Clin Neurophysiol. 1974;  36 179-190
  • 85 Thornton C, Heneghan C P, James M F, Jones J G. Effects of halothane or enflurane with controlled ventilation on auditory evoked potentials.  Br J Anaesth. 1984;  56 315-323
  • 86 Thornton C, Heneghan C P, Navaratnarajah M, Bateman P E, Jones J G. Effect of etomidate on the auditory evoked response in man.  Br J Anaesth. 1985;  57 554-561
  • 87 Thornton C, Konieczko K M, Knight A B, Kaul B, Jones J G, Dore C J, White D C. Effect of propofol on the auditory evoked response and oesophageal contractility.  Br J Anaesth. 1989;  63 411-417
  • 88 Thornton C, Heneghan C P, Navaratnarajah M, Jones J G. Selective effect of althesin on the auditory evoked response in man.  Br J Anaesth. 1986;  58 422-427
  • 89 Thornton C, Konieczko K M, Jones J G. Effects of surgical stimulation on the auditory evoked response.  Br J Anaesth. 1988;  60 372-378
  • 90 Plourde G, Picton T W. Human auditory steady-state response during general anesthesia.  Anesth Analg. 1990;  71 460-468
  • 91 Plourde G, Stapells D R, Picton T W. The human auditory steady state evoked potentials.  Acta Otolaryngol. 1991;  491 (Suppl) 153-160
  • 92 Plourde G. Depth of anesthesia. Clinical use of the 40-Hz auditory steady state response.  Int Anesthesiol Clin. 1993;  31 107-120
  • 93 Picton T W, Hillyard S A. Human auditory evoked potentials. II. Effects of attention.  Electroencephalogr Clin Neurophysiol. 1974;  36 191-199
  • 94 Plourde G, Boylan J F. The long-latency auditory evoked potentials as a measure of the level of conciousness during sufentanil anesthesia.  J Cardiothorac Vasc Anesth. 1991;  5 577-583
  • 95 Plourde G, Picton T W. Long-latency auditory evoked potentials during general anesthesia: N1 and P3 components.  Anesth Analg. 1991;  72 342-350
  • 96 Jensen E W, Litvan H, Caminal P, Fernandez J A, Maestre M L. Comparison of BIS and AEP indices for monitoring hypnotic level during sevoflurane anaesthesia.  Eur J Anaesthesiology. 2000;  17 (Suppl 19) A64
  • 97 Jensen E W, Litvan H, Caminal P, Campos J M, Villar-Landeira J. Comparison of the BIS and the auditory evoked potentials index (AAI) during propofol anesthesia for cardiac surgery. Anesthesiology, ASA Annual Meeting, October 14 - 18, 2000 San Francisco A1370 2000
  • 98 Gajraj R J, Doi M, Mantzaridis H, Kenny G NC. Comparison of bispectral EEG analysis and auditory evoked potentials for monitoring depth of anaesthesia during propofol anaesthesia.  Br J Anaesth. 1999;  82 672-678
  • 99 Firmeninformation. A-line AEP monitor key facts. Alaris Medical Systems, San Diego, CA, USA: www.alarismed.com/intproducts/aepfeat.htm 2001

Dr. Andreas Lehmann

Klinik für Anästhesiologie und operative Intensivmedizin
Klinikum der Stadt Ludwigshafen

Postfach 21 73 52

67073 Ludwigshafen