Plant Biol (Stuttg) 2001; 3(5): 569-576
DOI: 10.1055/s-2001-17748
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Carbon-Isotope Ratios and Photosynthetic Pathways in the Neotropical Family Rapateaceae

D. M. Crayn 1, 3 , J. A. C. Smith 2 , K. Winter 1
  • 1 Smithsonian Tropical Research Institute, P.O. Box 2072, Balboa, Ancon, Republic of Panama
  • 2 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
  • 3 Present address: School of Biological Science, University of New South Wales, UNSW, NSW 2052, Australia
Further Information

Publication History

September 9, 2000

May 8, 2001

Publication Date:
11 October 2001 (online)

Preview

Abstract

The Rapateaceae is a small, mainly Neotropical family of terrestrial or occasionally epiphytic herbs that grow on mesic, nutrient-poor sites. Some recent studies suggest that the Rapateaceae may be closely related to the Bromeliaceae, one of the major families containing CAM plants. To investigate the photosynthetic pathway in Rapateaceae, the plant carbon-isotope ratio (δ13C) was determined for samples from dried herbarium specimens for 85 of the approximately 100 species in the family. The δ13C values ranged from - 37.7 to - 19.8 ‰. Most Rapateaceae showed δ13C values typical of C3 plants. However, six species (Kunhardtia rhodantha Maguire, Marahuacaea schomburgkii (Maguire) Maguire, Saxofridericia compressa Maguire, Stegolepis grandis Maguire, St. guianensis Klotzsch ex Körn. and St. squarrosa Maguire) showed δ13C values less negative than - 23 ‰, i.e., at the higher end of the range for C3 plants and at the lower end of the distribution for plants exhibiting CAM. The δ13C values became significantly less negative with increasing altitude (regression analysis indicating a change from about - 30.7 ‰ at sea level to - 22.5 ‰ at 2500 m). Although other environmental factors and the type of tissue analysed may also influence δ13C values, these results suggest that some Rapateaceae may be capable of performing CAM. Further studies, including measurements of diel gas exchange patterns and leaf organic-acid fluctuations, would be needed to demonstrate CAM in Rapateaceae unequivocally, but living material of many of these enigmatic plants is difficult to obtain.

Abbreviation

CAM: crassulacean acid metabolism

References

  • 01 Broadmeadow,  M. S. J., and Griffiths,  H.. (1993) Carbon isotope discrimination and the coupling of CO2 fluxes within forest canopies. Stable Isotopes and Plant Carbon - Water Relations. Ehleringer, J. R., Hall, A. E., and Farquhar, G. D., eds. San Diego; Academic Press pp. 109-129
  • 02 Buchmann,  N.,, Brooks,  J. R.,, Flanagan,  L. B.,, and Ehleringer,  J. R.. (1998) Carbon isotope discrimination of terrestrial ecosystems. Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. Griffiths, H., ed. Oxford; BIOS Scientific Publishers pp. 203-221
  • 03 Carlquist,  S.. (1969) Rapateaceae. Anatomy of the Monocotyledons. III. Commelinales - Zingiberales. Tomlinson, P. B., ed. Oxford; Clarendon Press pp. 128-145
  • 04 Cerling,  T. E.. (1999) Paleorecords of C4 plants and ecosystems. C4 Plant Biology. Sage, R. and Monson, R., eds. San Diego; Academic Press pp. 445-469
  • 05 Chase,  M. W.,, Soltis,  D. E.,, Olmstead,  R. G.,, and 39 others. (1993);  Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL.  Ann. Missouri Bot. Gard.. 80 528-580
  • 06 Chase,  M. W.,, Duvall,  M. R.,, Hills,  H. G.,, Conron,  J. G.,, Cox,  A. V.,, Eguiarte,  L. E.,, Hartwell,  J.,, Fay,  M. F.,, Caddick,  L. R.,, Cameron,  K. M.,, and Hoot,  S.. (1995) Molecular phylogenetics of Lilianae. Monocotyledons: Systematics and Evolution. Rudall, P. J., Cribb, P. J., Cutler, D. F., and Humphries, C. J., eds. Kew; Royal Botanic Gardens pp. 109-137
  • 07 Chase,  M. W.,, Soltis,  D. E.,, Soltis,  P. S.,, Rudall,  P. J.,, Fay,  M. F.,, Hahn,  W. H.,, Sullivan,  S.,, Joseph,  J.,, Molvray,  M.,, Kores,  P. J.,, Givnish,  T. J.,, Sytsma,  K. J.,, and Pires,  J. C.. (2000) Higher-level systematics of the monocotyledons:an assessment of current knowledge and a new classification. Monocots: Systematics and Evolution. Wilson, K. L. and Morrison, D. A., eds. Melbourne; CSIRO pp. 3-16
  • 08 Cordell,  S.,, Goldstein,  G.,, Meinzer,  F. C.,, and Handley,  L. L.. (1999);  Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient.  Funct. Ecol.. 13 811-818
  • 09 Craig,  H.. (1957);  Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide.  Geochim. Cosmochim. Acta. 12 133-149
  • 10 Cronquist,  A.. (1981) An Integrated System of Classification of Flowering Plants. New York; Columbia University Press
  • 11 Dahlgren,  R. M. T.,, Clifford,  H. T.,, and Yeo,  P. F.. (1985) The Families of the Monocotyledons. Structure, Evolution and Taxonomy. Berlin; Springer-Verlag
  • 12 Diaz,  M.,, Haag,  K. A.,, Wingfield,  R.,, Ball,  E.,, Olivares,  E.,, Grams,  T. E. E.,, Ziegler,  H.,, and Lüttge,  U.. (1996);  Relationships between carbon and hydrogen isotope ratios and nitrogen levels in leaves of Clusia species and two other Clusiaceae genera at various sites and different altitudes in Venezuela.  Trees. 10 351-358
  • 13 Duvall,  M. R.,, Clegg,  M. T.,, Chase,  M. W.,, Clark,  W. D.,, Kress,  W. J.,, Hills,  H. G.,, Eguiarte,  L. E.,, Smith,  J. F.,, Gaut,  B. S.,, Zimmer,  E. A.,, and Learn,  G. H. Jr. (1993);  Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data.  Ann. Missouri Bot. Gard.. 80 607-619
  • 14 Earnshaw,  M. J.,, Winter,  K.,, Ziegler,  H.,, Stichler,  W.,, Cruttwell,  N. E. G.,, Kerenga,  K.,, Cribb,  P. J.,, Wood,  J.,, Croft,  J. R.,, Carver,  K. A.,, and Gunn,  T. C.. (1987);  Altitudinal changes in the incidence of crassulacean acid metabolism in vascular epiphytes and related life forms in Papua New Guinea.  Oecologia. 73 566-572
  • 15 Farquhar,  G. D.,, Ball,  M. C.,, von Caemmerer,  S.,, and Roksandic,  Z.. (1982);  Effect of salinity and humidity on δ13C value of halophytes - evidence for diffusional isotope fractionation determined by the ratio of intercellular/atmospheric partial pressure of CO2 under different environmental conditions.  Oecologia. 52 121-124
  • 16 Farquhar,  G. D.,, Ehleringer,  J. R.,, and Hubick,  K. T.. (1989);  Carbon isotope discrimination and photosynthesis.  Annu. Rev. Plant Physiol. Mol. Biol.. 40 503-537
  • 17 Flanagan,  L. B.,, Cook,  C. S.,, and Ehleringer,  J. R.. (1997);  Unusually low carbon isotope ratios in plants from hanging gardens in southern Utah.  Oecologia. 111 481-489
  • 18 Gibson,  A. C., and Nobel,  P. S.. (1986) The Cactus Primer. Cambridge, Massachusetts; Harvard University Press
  • 19 Givnish,  T. J.,, Evans,  T. M.,, Pires,  J. C.,, and Sytsma,  K. J.. (1999);  Polyphyly and convergent morphological evolution in Commelinales and Commelinidae: evidence from rbcL sequence data.  Mol. Phyl. Evol.. 12 360-385
  • 20 Givnish,  T. J.,, Evans,  T. M.,, Zjhra,  M. L.,, Patterson,  T. B.,, Berry,  P. E.,, and Sytsma,  K. J.. (2000);  Molecular evolution, adaptive radiation, and geographic diversification in the amphiatlantic family Rapateaceae: evidence from ndhF sequences and morphology.  Evolution. 54 1915-1937
  • 21 Griffiths,  H., and Smith,  J. A. C.. (1983);  Photosynthetic pathways in the Bromeliaceae of Trinidad: relations beween life-forms, habitat preference and the occurrence of CAM.  Oecologia. 60 176-184
  • 22 Holmgren,  P. K.,, Holmgren,  N. H.,, and Barnett,  L. C.. (1990) Index Herbariorum. Part 1 - The Herbaria of the World, 8th Edition. Bronx; New York Botanical Garden
  • 23 Holtum,  J. A. M., and Winter,  K.. (1999);  Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns.  Aust. J. Plant Physiol.. 26 749-757
  • 24 Horres,  R.,, Zizka,  G.,, Kahl,  G.,, and Weising,  K.. (2000);  Molecular phylogenetics of Bromeliaceae: evidence from trnL (UAA) intron sequences of the chloroplast genome.  Plant Biol.. 2 306-315
  • 25 Huber,  O.. (1988);  Guayana highlands versus Guayana lowlands, a reappraisal.  Taxon. 37 595-614
  • 26 Huber,  O.. (1995) Vegetation. Flora of the Venezuelan Guayana, Vol. 1. Introduction. Berry, P. E., Holst, B. K., and Yatskievych, K., eds. St. Louis; Missouri Botanical Garden pp. 97-160
  • 27 Keeling,  C. D.. (1958);  The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas.  Geochim. Cosmochim. Acta. 13 322-334
  • 28 Keeling,  C. D.. (1961);  The concentration and isotopic abundances of carbon dioxide in rural and marine air.  Geochim. Cosmochim. Acta. 24 277-298
  • 29 Keeling,  C. D.,, Mook,  W. M.,, and Tans,  P.. (1979);  Recent trends in the 13C/12C ratio of atmospheric carbon dioxide.  Nature. 277 121-123
  • 30 Keeling,  C. D.,, Bacastow,  R. B.,, Carter,  A. F.,, Piper,  S. C.,, Whorf,  T. P.,, Heimann,  M.,, Mook,  W. G.,, and Roeloffzen,  H.. (1989) A three dimensional model of atmospheric CO2 transport based on observed winds. 1. Analysis of observed data. Aspects of Climate Variability in the Pacific and the Western Americas. Peterson, D. H., ed. Washington; American Geophysical Union pp. 165-236
  • 31 Körner,  C.,, Farquhar,  G. D.,, and Roksandic,  Z.. (1988);  A global survey of carbon isotope discrimination in plants from high altitude.  Oecologia. 74 623-632
  • 32 Lüttge,  U.. (1997) Physiological Ecology of Tropical Plants. Berlin; Springer-Verlag
  • 33 Maguire,  B.. (1982) Rapateaceae. Flora de Venezuela, Vol. 11. Luces de Febres, Z., and Steyermark, J. A., eds. Caracas; Ediciónes Fundación, Educación Ambiental pp. 85-203
  • 34 Marshall,  J. , and Zhang,  J.. (1993) Altitudinal variation in carbon isotope discrimination by conifers. Stable Isotopes and Plant Carbon - Water Relations. Ehleringer, J. R., Hall, A. E., and Farquhar, G. D., eds. San Diego; Academic Press pp. 187-199
  • 35 Medina,  E., and Minchin,  P.. (1980);  Stratification of δ13C values of leaves in Amazonian rainforests.  Oecologia. 45 377-378
  • 36 Mez,  C.. (1896) Bromeliaceae. Monographie Phanerogamarum. de Candolle, A. L. P. P., ed. Paris; Masson & Co., Vol. IX
  • 37 Michelangeli,  F. A.. (2000);  Species composition and species-area relationships in vegetation isolates on the summit of a sandstone mountain in southern Venezuela.  J. Trop. Ecol.. 16 69-82
  • 38 Mook,  W. G.,, Koopmans,  M.,, Carter,  A. F.,, and Keeling,  C. D.. (1983);  Seasonal, latitudinal, and secular variations in the abundance of isotopic ratios of atmospheric carbon dioxide. 1. Results from land stations.  J. Geophys. Res.. 88 10915-10933
  • 39 Osmond,  C. B.,, Allaway,  W. G.,, Sutton,  B. G.,, Troughton,  J. H.,, Queiroz,  O.,, Lüttge,  U.,, and Winter,  K.. (1973);  Carbon isotope discrimination in photosynthesis of CAM plants.  Nature. 246 41-42
  • 40 Smith,  L. B.. (1934);  Geographical evidence on the lines of evolution in the Bromeliaceae.  Bot. Jahrb.. 66 446-468
  • 41 Stevenson,  D. W.,, Colella,  M.,, and Boom,  B.. (1998) Rapateaceae. The Families and Genera of Vascular Plants, Vol. 4. Kubitzki, K., ed. Berlin; Springer-Verlag pp. 415-424
  • 42 Venturelli,  M., and Bouman,  F.. (1988);  Development of ovule and seed in Rapateaceae.  Bot. J. Linn. Soc.. 97 267-294
  • 43 Winter,  K.. (1979);  δ13C values of some succulent plants from Madagascar.  Oecologia. 40 103-112
  • 44 Winter,  K., and Smith,  J. A. C.. (1996) An introduction to crassulacean acid metabolism. Biochemical principles and ecological diversity. Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution. Winter, K. and Smith, J. A. C., eds. Berlin; Springer-Verlag pp. 1-13
  • 45 Winter,  K.,, Wallace,  B. J.,, Stocker,  G. C.,, and Roksandic,  Z.. (1983);  Crassulacean acid metabolism in Australian vascular epiphytes and some related species.  Oecologia. 57 129-141
  • 46 Ziegler,  H.. (1996) Carbon- and hydrogen-isotope discrimination in crassulacean acid metabolism. Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution. Winter, K. and Smith, J. A. C., eds. Berlin; Springer-Verlag pp. 336-348

K. Winter

Smithsonian Tropical Research Institute
Unit 0948

APO AA 34002-0948
U.S.A.

Email: winterk@tivoli.si.edu

Section Editor: C. B. Osmond