Aktuelle Neurologie 2001; 28(7): 326-332
DOI: 10.1055/s-2001-16869
ÜBERSICHT
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Neuroprotektion: Eine neue therapeutische Option in der Epilepsietherapie?

Neuroprotection: A New Therapeutic Option in the Treatment of Epilepsy?M. Schürks1 , F. Wiegand2 , H.-C. Diener1
  • 1Klinik und Poliklinik für Neurologie, Universitätsklinikum Essen
  • 2Janssen-Cilag, Neuss
Further Information

Publication History

Publication Date:
31 August 2001 (online)

Zusammenfassung

Primäres Ziel bei der Behandlung von Epilepsiepatienten ist die Anfallsfreiheit. Neben diesem palliativ symptomatischen Therapieansatz gibt es im klinischen Alltag bisher keine Möglichkeit auf medikamentösem Wege den Verlauf der Erkrankung zu beeinflussen oder diese gar zu heilen („Disease Modification”). Evidenzen aus klinischen und präklinischen Studien belegen, dass es im Verlauf der Erkrankung häufig zu einem neuronalen Zellverlust und einer Einschränkung der kognitiven Funktion kommt. Vor diesem Hintergrund erhält der Aspekt der Neuroprotektion, d. h. der Schutz vor einer zunehmenden Degeneration des neuronalen Gewebes durch den zugrunde liegenden Krankheitsprozess oder wiederkehrender epileptischer Anfälle bei nicht erreichter Anfallsfreiheit einen besonderen Stellenwert. Daten bezüglich der neuroprotektiven Wirkung von Antikonvulsiva gibt es bisher fast ausschließlich auf tierexperimenteller Basis. Die vier wesentlichen Mechanismen, die bei der Schädigung des Nervengewebes eine Rolle spielen sind (1) vermehrter Na+-Einstrom in die Zelle, (2) exzessiver Ca2+-Influx, (3) Verminderung der GABAergen Inhibition und (4) eine verstärkte glutamaterge Exzitotoxizität durch die massive Stimulation von ionotropen Glutamat-Rezeptoren (insbesondere des non-NMDA-Rezeptors). Diese Übersichtsarbeit stellt den derzeitigen Forschungsstand bezüglich einer schützenden Wirkung der in Deutschland zugelassenen Antiepileptika dar und beurteilt das Potenzial ihrer neuroprotektiven Eigenschaften.

Neuroprotection: A New Therapeutic Option in the Treatment of Epilepsy?

The primary aim in treating patients with epilepsy is the suppression of seizures. Apart from this symptomatic treatment so far no pharmacological approach exists to alter the natural course of the disease („disease modification”). There is clinical, as well as pre-clinical evidence that neuronal damage and an impairment of cognitive function frequently occurs during the course of epilepsy. It seems logical to investigate the feasibility of new therapeutic approaches in which neuroprotection plays a major role. The prevention of neuronal damage induced either by the pathophysiological cellular alterations generated by the disease itself, by repetetive seizures, or a status epilepticus is of major interest. Unfortunately so far data concerning the neuroprotective potential of anticonvulsive drugs is only available in preclinical studies. The four basic mechanisms by which neuronal damage usually occurs are (1) increased Na+-influx, (2) increased Ca2+-influx, (3) diminished GABA-ergic activity and (4) increased glutamatergic excitotoxicity through massive stimulation of ionotropic Glutamat-receptors (especially non-NMDA-receptors). This review reflects the current literature regarding the protective effects of anticonvulsive drugs.

Literatur

  • 1 Placencia M, Shorvon S D, Paredes V. et al . Epileptic seizures in an Andean region of Ecuador: incidence and prevalence and regional variation.  Brain. 1992;  115 771-782
  • 2 Osuntokun B O, Adeuja A OG, Nottidge V A. et al . Prevalence of the epilepsies in Nigerian africans: a community based study.  Epilepsia. 1987;  28 272-279
  • 3 Niebauer M, Gruenthal M. Topiramate reduces neuronal injury after experimental status epilepticus.  Brain Research. 1999;  837 263-269
  • 4 Briellmann R S, Jackson G D, Kalnins R, Berkovic S F. Hemicranial volume deficits in patients with temporal lobe epilepsy with and without hippocampal sclerosis.  Epilepsia. 1998;  39 1174-1181
  • 5 Shinnar S, Berg A T. Does antiepileptic drug therapy prevent the development of chronic epilepsy?.  Epilepsia. 1996;  37 701-708
  • 6 Cole A J. Is epilepsy a progressive disease? The neurobiological consequences of epilepsy.  Epilepsia. 2000;  41, Suppl 2 S13-S22
  • 7 Cavazos J E, Golarai G, Sutula T P. Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and performance.  J Neurosci. 1991;  11 2795-2803
  • 8 Temkin N R, Dimken S, Anderson G. et al . Valproate for preventing late posttraumatic seizures.  Epilepsia. 1997;  38, Suppl 8 102-103
  • 9 Wada J A. Pharmacological prophylaxis in the kindling model of epilepsy.  Arch Neurol. 1977;  34 389-395
  • 10 Silver J M, Shin C, McNamara J O. Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilepsy.  Ann Neurol. 1991;  29 356-363
  • 11 Clifton G L, Taft W C, Blair R E. et al . Conditions for pharmacological evaluation in the gerbil model of forebrain ischemia.  Stroke. 1989;  20 1545-1552
  • 12 Taft W C, Clifton G L, Blair R E, DeLorenzo R J. Phenytoin protects against ischemia-produced neuronal cell death.  Brain Res. 1989;  483 143-148
  • 13 Kinouchi H, Imaizumi S, Yoshimoto T, Motomiya M. Phenytoin affects metabolism of fatty free acids and nucleotides in rat cerebral ischemia.  Stroke. 1990;  21 1326-1332
  • 14 Imaizumi S, Kurosawa K, Kinouchi H, Yoshimoto T. Effect of phenytoin on cortical Na+/K+-ATPase activity in global ischemic rat brain.  J Neurotrauma. 1995;  12 231-234
  • 15 Chan S A, Reid K H, Schurr A. et al . Fosphenytoin reduces hippocampal neuronal damage in rat following transient global ischemia.  Acta Neurochir. 1998;  140 175-180
  • 16 Boxer P A, Cordon J J, Mann M E. et al . Comparison of phenytoin with noncompetitive N-methyl-D-aspartate antagonists in a model of focal brain ischemia in rat.  Stroke. 1990;  21, Suppl 11 III 47-51
  • 17 Hayakawa T, Hamada Y, Maihara T. et al . Phenytoin reduces neonatal hypoxic-ischemic brain damage in rats.  Life Sci. 1994;  54 387-392
  • 18 Vartanian M G, Cordon J J, Kupina N C. et al . Phenytoin pretreatment prevents hypoxic-ischemic brain damage in neonatal rats.  Brain Res Dev Brain Res. 1996;  95 169-175
  • 19 Wada J A, Sato M, Wake A. et al . Prophylactic effects of phenytoin, phenobarbital and carbamazepine examined in kindling cat preparations.  Arch Neurol. 1976;  33 426-434
  • 20 Weiss S RB, Post R M. Carbamazepine and carbamazepine-10,11-epoxide inhibit amygdala-kindled seizures in the rat but do not block their development.  Clin Neuropharmacol. 1987;  10 272-279
  • 21 Schwartz R D, Yu X, Katzman M R. et al . Diazepam, given postischemia, protects selectively vulnerable neurons in the rat hippocampus and striatum.  J Neurosci. 1995;  15 529-539
  • 22 Schwartz-Bloom R D, McDonough K J, Chase P J. et al . Long-term neuroprotection by benzodiazepine full versus partial agonists after transient cerebral ischemia in the gerbil.  J Cereb Blood Flow Metab. 1998;  18 548-558
  • 23 Schwartz-Bloom R D, Miller K A, Evenson D A. et al . Benzodiazepines protect hippocampal neurons from degeneration after transient cerebral ischemia: an ultrastructural study.  Neuroscience. 2000;  98 471-484
  • 24 Dowden J, Reid C, Dooley P, Corbett D. Diazepam-induced neuroprotection: dissociating the effects of hypothermia following global ischemia.  Brain Res. 1999;  829 1-6
  • 25 Postma T, Krupp E, Li X L. et al . Lamotrigine treatment during amygdala-kindled seizure development fails to inhibit seizures and diminishes subsequent anticonvulsant efficacy.  Epilepsia. 2000;  41 1514-1521
  • 26 Smith S E, Meldrum B S. Cerebroprotective effect of lamotrigine after focal ischemia in rats.  Stroke. 1995;  26 117-122
  • 27 Anttila V, Rimpiläinen J, Pokela M. et al . Lamotrigine improves cerebral outcome after hypothermic circulatory arrest: a study in a chronic porcine model.  J Thorac Cardiovasc Surg. 2000;  120 247-255
  • 28 Crumrine R C, Bergstrand K, Cooper A T. et al . Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrest.  Stroke. 1997;  28 2230-2237
  • 29 Shuaib A, Mahmood R H, Wishart T. et al . Neuroprotective effect of lamotrigine in global ischemia in gerbils. A histological, in vivo microdialysis and behavioral study.  Brain Res. 1995;  702 199-206
  • 30 Bonnet U, Leniger T, Wiemann M. Moclobemide reduces intracellular pH and neuronal activity of CA3 neurones in guinea-pig hippocampal slices - implication for its neuroprotective properties.  Neuropharmacology. 2000;  39 2067-2074
  • 31 Shank R P, Gardocki J F, Streeter A J, Maryanoff B E. An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics, and mechanism of action.  Epilepsia. 2000;  41 S3-S9
  • 32 Wauquier A, Zhou S. Topiramate: a potent anticonvulsant in the amygdala-kindled rat.  Epilepsy Res. 1996;  24 73-77
  • 33 Reissmüller E, Ebert U, Löscher W. Anticonvulsant efficacy of topiramate in phenytoin-resistant kindled rats.  Epilepsia. 2000;  41 372-379
  • 34 Reife R, Pledger G, Wu S C. Topiramate as ad-on therapy: pooled analysis of randomized controlled trials in adults.  Epilepsia. 2000;  41 S66-S71
  • 35 Abou-Khalil B,  and the Topiramate YOL Study Group. Topiramate in the long-term management of refractory epilepsy.  Epilepsia. 2000;  41 S72-S76
  • 36 Amano K, Hamada K, Yagi K, Seino M. Antiepileptic effects of topiramate on amygdaloid kindling in rats.  Epilepsy Res. 1998;  31 123-128
  • 37 Lee S R, Kim S P, Kim J E. Protective effect of topiramate against hippocampal neuronal damage after global ischemia in the gerbil.  Neuroscience Letters. 2000;  281 183-186
  • 38 Yang Y, Shuaib A, Li Q, Siddiqui M M. Neuroprotection by delayed administration of topiramate in a rat model of middle cerebral artery embolisation.  Brain Res. 1998;  804 169-176
  • 39 Yang Y, Li Q, Miyashita H. et al . Usefulness of postischemic thrombolysis with or without neuroprotection in a focal embolic model of cerebral ischemia.  J Neurosurg. 2000;  92 841-847
  • 40 Yang Y, Li Q, Shuaib A. Enhanced neuroprotection and reduced hemorrhagic incidence in focal cerebral ischemia of rat by low dose combination therapy of urokinase and topiramate.  Neuropharmacology. 2000;  39 881-888
  • 41 Gower A J, Noyer M, Verloes R. et al . Ucb L059, a novel anti-convulsant drug: pharmacological profile in animals.  Eur J Pharmacol. 1992;  222 193-203
  • 42 Löscher W, Hönack D, Rundfeldt C. Antiepileptogenic effects of the novel anticonvulsant levetiracetam (ucb L059) in the kindling model of temporal lobe epilepsy.  J Pharmacol Exper Therap. 1998;  284 474-479
  • 43 Löscher W, Hönack D. Development of tolerance during chronic treatment of kindled rats with the novel antiepileptic drug levetiracetam.  Epilepsia. 2000;  41 1499-1506
  • 44  UCB Pharma. Neuroprotective effects of Levetiracetam. Informationsmaterial. 2000
  • 45 Morimoto K, Sato H, Yamamoto Y. et al . Antiepileptic effects of tiagabine, a selective GABA uptake inhibitor, in the rat kindling model of temporal lobe epilepsy.  Epilepsia. 1997;  38 966-974
  • 46 Dalby N O, Nielsen E B. Tiagabine exerts an antiepileptogenic effect in amygdala kindling epileptogenesis in the rat.  Neuroscience Letters. 1997;  229 135-137
  • 47 Chen Xu W, Yi Y, Qiu L, Shuaib A. Neuroprotective activity of tiagabine in a focal embolic model of cerebral ischemia.  Brain Res. 2000;  874 75-77
  • 48 Yang Y, Li Q, Wang C. et al . Dose-dependent neuroprotection with tiagabine in a focal cerebral ischemia model in rat.  Neuroreport. 2000;  11 2307-2311
  • 49 Inglefield J R, Perry J M, Schwartz R D. Postischemic inhibition of GABA reuptake by tiagabine slows neuronal death in the gerbil hippocampus.  Hippocampus. 1995;  5 460-468
  • 50 Löscher W, Reissmüller E, Ebert U. Anticonvulsant efficacy of gabapentin and levetiracetam in phenytoin-resistant kindled rats.  Epilepsy Res. 2000;  40 63-77
  • 51 Kanthasamy A G, Vu T Q, Yun R J, Truong D D. Antimyoclonic effect of gabapentin in a posthypoxic animal model of myoclonus.  Eur J Pharmacol. 1996;  297 219-224
  • 52 Jehle T, Lagreze W A, Blauth E. et al . Gabapentin-lactam (8-aza-spiro(5,4)decan-9-on; GBP-L) inhibits oxygen glucose deprivation-induced (3H)glutamate release and is a neuroprotective agent in a model of acute retinal ischemia.  Naunyn Schmiedebergs Arch Pharmacol. 2000;  362 74-81
  • 53 Wallis R A, Panizzon K L. Glycine reversal of felbamate hypoxic protection.  Neuroreport. 1993;  4 951-954
  • 54 Kanthasamy A G, Matsumoto R R, Gunasekar P G, Trunong D D. Excitoprotective effect of felbamate in cultured cortical neurons.  Brain Res. 1995;  705 97-104
  • 55 Wasterlain C G, Adams L M, Schwartz P H. et al . Posthypoxic treatment with felbamate is neuroprotective in a rat model of hypoxia-ischemia.  Neurology. 1993;  43 2303-2310
  • 56 Wasterlain C G, Adams L M, Wichmann J K, Sofia R D. Felbamate protects CA1 neurons from apoptosis in a gerbil model of global ischemia.  Stroke. 1996;  27 1236-1240
  • 57 Shuaib A, Waqaar T, Ijaz M S. et al . Neuroprotection with felbamate: a 7- and 28-day study in transient forebrain ischemia in gerbils.  Brain Res. 1996;  727 65-70
  • 58 Li L M, Dubeau F, Andermann F, Arnold D L. Proton magnetic resonance spectroscopic imaging studies in patients with newly diagnosed partial epilepsy.  Epilepsia. 2000;  41 825-831
  • 59 Temkin N R, Dimken S S, Wilensky A J. et al . A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures.  N Engl J Med. 1990;  323 497-502
  • 60 Temkin N R, Dikmen S, Anderson G. et al . Valproate for preventing late posttraumatic seizures.  Epilepsia. 1997;  38, Suppl 8 102-103

Dr. med. Markus Schürks

Klinik und Poliklinik für Neurologie
Universitätsklinikum Essen

Hufelandstraße 55

45122 Essen

Email: schuerks@hotmail.com

    >