Am J Perinatol 2001; 18(3): 141-146
DOI: 10.1055/s-2001-14524
ORIGINAL ARTICLE

Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Antifungal Susceptibility Testing and the Correlation with Clinical Outcome in Neonatal Candidemia

Yhu-Chering Huang1 , Hsiu-Tsun Kao1 , Tzou-Yien Lin1 , An-Jin Kuo2
  • 1Division of Pediatric Infectious Disease, Chang Gung Children's Hospital, Chang Gung University and
  • 2Department of Clinical Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

The objective of this article is to assess the distribution of minimal inhibition concentrations (MIC) for candidal isolates from bloodstreams in neonates and to assess the correlation of clinical outcome with antifungal susceptibility testing. Of the 62 episodes of neonatal candidemia in a Children's Hospital between January 1994 and July 1998, 38 stocked isolates from 38 infants' bloodstreams were available and underwent antifungal susceptibility test according to National Committee for Clinical Laboratory Standards M27-A document. Correlation of clinical response with in vitro results was assessed in 37 patient-episode-isolate events. No less than 90% of these isolates tested were susceptible to amphotericin B, flucytosin, and fluconazole. The ranges of amphotericin B MICs and flucytosin MICs were narrow, ranging from 0.25 to 2 μg/mL, respectively. The range of fluconazole MICs was broad, ranging from 0.25 to >64 μg/mL. Successful therapy was achieved in 18 (62%) of 29 amphotericin B-treated patient-episode-susceptible isolate (MIC ≤1 μg/mL) events and 9 (64%) of 14 fluconazole-treated patient-episode-susceptible isolate events, respectively. Most isolates from the bloodstreams of neonates with candidemia were susceptible to antifungal agents tested but a low MIC of the antifungal agent did not predict successful therapy in this study. Correlating MICs with clinical outcome in neonatal candidemia requires complex evaluation of other factors.

REFERENCES

  • 1 Baley J E. Neonatal candidiasis: the current challenge.  Clin Perinat . 1991;  18 263-280
  • 2 Butler K M, Baker C J. Candida: an increasingly important pathogen in the nursery.  Pediatr Clin North Am . 1988;  35 543-563
  • 3 Ng P C. Systemic fungal infections in neonates.  Arch Dis Child . 1994;  71 F130-135
  • 4 Kossoff E H, Buescher E S, Karlowicz M G. Candidemia in a neonatal intensive care unit: trends during fifteen years and clinical features of 111 cases.  Pediatr Infect Dis J . 1998;  17 504-508
  • 5 Butter K M, Rench M A, Baker C J. Amphotericin B as a single agent in the treatment of systemic candidiasis in neonates.  Pediatr Infect Dis J . 1990;  9 51-56
  • 6 Baley J E, Meyers C, Kliegman R M, Jacobs M R, Blumer J L. Pharmacokinetics, outcome of treatment, and toxic effects of amphotericin B and 5-fluorocytosine in neonates.  J Pediatr . 1990;  116 791-797
  • 7 Fasano C, O'Keeffe J, Gibbs D. Fluconazole treatment of neonates and infants with severe fungal infections not treatable with conventional agents.  Eur J Clin Microbiol Infect Dis . 1994;  13 351-354
  • 8 Driessen M, Ellis J B, Cooper P A. Fluconazole vs amphotericin B for the treatment of neonatal fungal septicemia: a prospective randomized trial.  Pediatr Infect Dis J . 1996;  15 1107-1112
  • 9 Wainer S, Coopet P A, Gouws H. A prospective study of fluconazole therapy in systemic neonatal fungal infection.  Pediatr Infect Dis J . 1997;  16 763-767
  • 10 Huttova M, Hartmanova I, Kralinsky K. Candida fungemia in neonates treated with fluconazole: report of forty cases, including eight with meningitis.  Pediatr Infect Dis J . 1998;  17 1012-1015
  • 11 Huang Y C, Lin T Y, Lien R I. Fluconazole therapy in neonatal candidemia.  Am J Perinatol . 2000;  17 411-416
  • 12 National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard NCCLS document M27-A. Wayne, PA: NCCLS; 1997
  • 13 Rex J H, Pfaller M A, Galgiani J N. Development of interpretative breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and candida infections.  Clin Infect Dis . 1997;  24 235-247
  • 14 Ghannoum M A, Rex J H, Galgiani J N. Susceptibility testing of fungi: current status of correlation of in vitro data with clinical outcome.  J Clin Microbiol . 1996;  34 489-495
  • 15 Rex J H, Pfaller M A, Barry A L, Nelson P W, Webb C D, and the NIAID Mycoses study Group and the Candidemia study Group. Antifungal susceptibility testing of isolates from a randomized, multicenter trial of fluconazole versus amphotericin B as treatment of nonneutropenic patients with candidemia.  Antimicrob Agents Chemother . 1995;  39 40-44
  • 16 Pfaller M A, Messer S A, Houston A, and the NEMIS Study Group. National Epidemiology of Mycoses Survey: a multicenter study of strain variation and antifungal susceptiblity among isolates of Candida species.  Diagn Microbiol Infect Dis . 1998;  31 289-296
  • 17 Rowen J L, Tate J M, Nordoff N, Passarell L, MaGinnis M R. Candida isolates from neonates: frequency of misidentification and reduced fluconazole susceptibility.  J Clin Microbiol . 1999;  37 3735-3737
  • 18 Saiman L, Ludington E, Pfaller M A. Risk factors for candidemia in neonatal intensive care unit patients.  Pediatr Infect Dis J . 2000;  19 319-324
  • 19 Pfaller M A, Rex J H, Rinaldi M G. Antifungal susceptibility testing: technical advances and potential clinical applications.  Clin Infect Dis . 1997;  24 776-784
  • 20 Arikan S, Akova M, Hayran M. Correlation of in vitro fluconazole susceptibility with clinical outcome for severely ill patients with oropharyngeal candidiasis.  Clin Infect Dis . 1998;  26 903-908
  • 21 Voss A, de Pauw E B. High-dose fluconazole therapy in patients with severe fungal infections.  Eur J Clin Microbiol Infect Dis . 1999;  18 165-174
    >