Semin Reprod Med 2001; 19(1): 087-096
DOI: 10.1055/s-2001-13915
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Functional Importance of Bovine Myometrial and Vascular LH Receptors and Cervical FSH Receptors

Mordechai Shemesh1 , Dario Mizrachi1 , Michael Gurevich1 , Yehuda Stram2 , Laurence S. Shore1 , Michael J. Fields3
  • 1Hormone Research, Kimron Veterinary Institute, Bet Dagan, Israel and
  • 2Virology, Kimron Veterinary Institute, Bet Dagan, Israel and
  • 3Animal Science Department, University of Florida, Gainesville, Florida
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

Bovine myometrium and cervix contain luteinizing hormone/human chorionic gonadotropin (LH/hCG) binding sites, LH receptor (LH-R) messenger RNA (mRNA), and LH-R protein. Expression of LH-R is dependent on the stage of the cycle. LH-R expression is high during the luteal phase but weak during the follicular phase. In both myometrium and cervix, LH activates both the adenylate cyclase and phospholipase C pathways, and the effect of LH on both pathways at each stage of the cycle is correlated with the amount of LH-R present in the tissue. Because activation of cyclic AMP (cAMP) is associated with myometrial quiescence, we suggest that LH activation of uterine cAMP could serve to keep the uterus quiescent during the luteal phase. On the other hand, in the uterine vein LH-R mRNA and LH-R are maximal during preestrus/estrus as opposed to the luteal phase. In the uterine vein, LH increases the expression of cyclooxygenase and production of both prostaglandin E2 (PGE2) and PGF. Because PGF is the physiological luteolytic signal in the cow, we suggest that this increase in prostaglandin production by the uterine vein is part of the physiological events leading to luteolysis. In addition to uterine LH-R, the bovine cervix at preestrus/estrus has high levels of follicle-stimulating hormone receptor (FSH-R) and its corresponding mRNA. As with LH-R, activation of FSH-R by FSH is associated with activation of a G protein-coupled receptor family that mediates the cAMP and inositol phosphate signaling pathways. Activation of these signaling pathways is associated with an increase in the expression of cyclooxygenase and production of PGE2. Because expression of the FSH receptor was maximal at the time of the FSH peak in the blood, we suggest a physiological role for FSH in the cervix relaxation and opening at estrus.

REFERENCES

  • 1 Reshef E, Lei Z M, Rao C V, Pridham D D, Chegini N, Luborsky J L. The presence of gonadotropin receptors in nonpregnant human uterus, human placenta, fetal membranes, and decidua.  J Clin Endocrinol Metab . 1990;  70 421-430
  • 2 Bonnamy P J, Benhaim A, Leymarie P. Estrous cycle related change of high affinity luteinizing hormone/human chorionic gonadotropin binding sites in the rat uterus.  Endocrinology . 1990;  126 1264-1269
  • 3 Jensen J D, Odell W D. Identification of LH/hCG receptors in rabbit uterus.  Proc Soc Exp Biol Med . 1988;  189 28-30
  • 4 Ziecik A J, Stanchev P D, Tilton J E. Evidence for the presence of luteinizing hormone/human chorionic gonadotropin-binding sites in the porcine uterus.  Endocrinology . 1986;  119 1159-1163
  • 5 Ziecik A J, Jedlinska M, Rzucidlo J S. Effect of estradiol and progesterone on myometrial LH/hCG receptors in pigs.  Acta Endocrinol . 1992;  127 185-188
  • 6 Lei Z M, Reshef E, Rao C V. Novel co-expression of human chorionic gonadotropin (hCG)/human luteinizing hormone receptors and their ligand, hCG, in human fallopian tubes.  J Clin Endocrinol Metab . 1992;  75 651-659
  • 7 Salamonsen L A, Findlay J K. Regulation of endometrial prostaglandin during the menstrual cycle and early pregnancy.  Reprod Fertil Dev . 1990;  2 311-319
  • 8 Mizrachi D, Shemesh M. Expression of functional luteinising hormone receptor and its messenger ribonucleic acid in bovine cervix: luteinising hormone augmentation of intracellular cAMP, phosphate inositol and cyclooxygenase.  Mol Cell Endocrinol . 1999;  157 191-200
  • 9 Shemesh M, Gurevich M, Mizrachi D. Expression of functional luteinizing hormone receptor and its mRNA in bovine uterine veins; luteinizing hormone induction of PGHS and augmentation of prostaglandin production in bovine uterine veins.  Endocrinology . 1997;  138 4844-4851
  • 10 Rosemblit N, Ascoli M, Segaloff D L. Characterization of an antiserum to the rat luteal luteinizing hormone/chorionic gonadotropin receptor.  Endocrinology . 1998;  123 2284-2290
  • 11 Rodriguez M C, Segaloff D L. The orientation of the lutropin/choriogonadotropin receptor in rat luteal cells as revealed by site-specific antibodies.  Endocrinology . 1990;  127 674-681
  • 12 LaPolt P S, Oikawa M, Jia X, Dargan C, Hsueh A J. Gonadotropin-induced up-and-down regulation of rat ovarian LH receptor message levels during growth, ovulation and luteinization.  Endocrinology . 1990;  126 3277-3279
  • 13 Izhar M, Pasmanik M, Marcus S, Shemesh M. Dexamethasone inhibition of cyclooxygenase expression in bovine term placenta.  Prostaglandins . 1992;  43 239-254
  • 14 Marsh J M. The role of cyclic AMP in gonadal function. In: Greengard P, Robinson GA Cyclic Nucleotide Research. Vol 6. New York: Raven Press 1975: 137-199
  • 15 Davis J S. Stimulation of intracellular free Ca2+ by luteinizing hormone in isolated bovine luteal cells.  Adv Exp Med Biol . 1987;  219 671-675
  • 16 Davis R J. The mitogen-activated protein kinase signal transduction pathway.  J Biol Chem . 1993;  268 14553-14556
  • 17 Kisielewska J, Flint A PF, Ziecik A J. Phospholipase C and adenylate cyclase signalling systems in the action of hCG on porcine myometrial smooth muscle cells.  J Endocrinol . 1996;  148 175-180
  • 18 Rahe C H, Owens R E, Fleeger J L, Newton H J, Harms P G. Pattern of plasma luteinizing hormone in the cyclic cow: dependence on the period of the cycle.  Endocrinology . 1980;  107 498-503
  • 19 Flowers B, Ziecik A J, Caruolo E V. Effects of human chorionic gonadotropin on contractile activity of steroid-primed pig myometrium in vitro.  J Reprod Fertil . 1991;  92 425-432
  • 20 Gawronska B, Paukku T, Huhtaniemi I, Wasowicz G, Ziecik A J. Oestrogen-dependent expression of LH/hCG receptors in pig fallopian tube and their role in relaxation of the oviduct.  J Reprod Fertil . 1999;  115 293-301
  • 21 Jen C J, Huang T Y, Chen H I. Regional differences in prostaglandin production rates among porcine intrathoracic vessels.  Prostaglandins . 1994;  47 109-122
  • 22 Lacroix M C, Kann G. Discriminating analysis of ``in vitro'' prostaglandin release by myometrial and luminal sides of the ewe endometrium.  Prostaglandins . 1983;  25 853-869
  • 23 Shemesh M, Hansel W. Stimulation of PG synthesis in bovine ovarian tissues by arachidonic acid and luteinizing hormone.  Proc Soc Exp Biol . 1975;  148 123-126
  • 24 Friedman S, Gurevich M, Shemesh M. Bovine cyclic endometrium contains affinity luteinizing hormone/human chorionic gonadotropin.  Biol Reprod . 1995;  52 1020-1026
  • 25 Shemesh M, Freidman S, Gurevich M, Stram Y, Fields M, Shore L S. Luteinizing hormone receptors and its mRNA in the bovine endometrium.  Physiol Pharmacol . 1996;  47(suppl 1) 15-27
  • 26 Basu S, Kindahl H. Prostaglandin biosynthesis and its regulation in the bovine endometrium: a comparison between nonpregnant and pregnant status.  Theriogenology . 1987;  28 175-193
  • 27 Toth P, Li X, Rao C V. Expression of functional human chorionic gonadotropin/human luteinizing hormone receptor gene in human uterine arteries.  J Clin Endocrinol Metab . 1994;  79 307-315
  • 28 Ziecik A J, Ostrowska G, Kisielewska J, Zezula-Szpyra A. Distribution and cycle phase dependency of gonadotropin receptors in musculature and blood vessels of the porcine broad ligament.  Exp Clin Endocrinol Diabetes . 1995;  44 44-51
  • 29 Chegini N, Lei Z M, Rao C V, Hansel W. Cellular distribution and cycle phase dependency of gonadotropin and eicosanoid binding sites in bovine corpora lutea.  Biol Reprod . 1991;  45 506-513
  • 30 Pexton J E, Weems C W, Inskeep E K. Prostaglandins F in uterine venous plasma, ovarian arterial and venous plasma and in ovarian and luteal tissue of pregnant and nonpregnant ewes.  J Anim Sci . 1975;  41 154-159
  • 31 Lewis G S, Wilson J R, Wilks J W. PGF and its metabolites in uterine and jugular venous plasma and endometrium of ewes during early pregnancy.  J Anim Sci . 1977;  45 320-327
  • 32 Mori Y, Kano Y. Changes in plasma concentrations of LH, progesterone and oestradiol in relation to the occurrence of luteolysis, oestrus and the time of ovulation in the Shiba goat (Capra hircus).  J Reprod Fertil . 1984;  72 223-230
  • 33 Houde A, Lambert A, Saumande J, Silversides D W, Lussier J G. Structure of bovine follicle-stimulating hormone receptor complementary DNA and expression in bovine tissues.  Mol Reprod Dev . 1994;  39 127-135
  • 34 Heckert L L, Griswold M D. Expression of follicle-stimulating hormone receptor mRNA in rat testes and sertoli cells.  Mol Endocrinol . 1991;  5 670-677
  • 35 LaPolt P S, Tilly J L, Aihara T, Nishimori K, Hsueh A JW. Gonadotropin-induced up-and-down regulation of rat ovarian LH receptor message levels during growth, ovulation and luteinization.  Endocrinology . 1992;  130 1289-1295
  • 36 Tilly J L, Aihara T, Nishimori K. Hormonal regulation of follicle-stimulating hormone receptor messenger ribonucleic acid levels in cultured granulosa cells.  Endocrinology . 1992;  1131 799-806
  • 37 Kornyei J L, Li X, Lei Z M, Rao C V. Restoration of human chorionic gonadotropin response in human myometrial smooth muscle cells by treatment with follicle-stimulating hormone (FSH): evidence for the presence of FSH receptors in human myometrium.  Eur J Endocrinol . 1996;  134 225-231
  • 38 Khan H, Yarney T A, Sairam M R. Cloning of alternately spliced mRNA transcripts coding for variants of ovine testicular follitropin receptor lacking the G protein coupling domains.  Biochem Biophys Res Commun . 1993;  190 888-894
  • 39 Liu X, DePasquale, J A, Griswold M D, Dias J A. Accessibility of rat and human follitropin receptor primary sequence (R265-S296) in situ.  Endocrinology . 1994;  135 682-691
  • 40 Fuchs A-R, Goeschen J, Rasmussen A B, Rehnström J V. Cervical ripening by endocervical and extra-amniotic PGE2 .  Prostaglandins . 1984;  28 217-227
  • 41 Ellwood D A, Mitchell M D, Anderson A BM, Turnbull A C. Specific changes in the in vitro production of prostanoids by the ovine cervix at parturition.  Prostaglandins . 1980;  39 675-684
  • 42 Hiller K, Coad N. Synthesis of prostaglandins by the human uterine cervix in vitro during passive mechanical stretch.  J Pharm Pharmacol . 1982;  34 262-263
  • 43 Stys S J, Dresser B L, Ott T E, Clark K E. Effects of prostaglandin E2 on cervical compliance in pregnant ewes.  Am J Obstet Gynecol . 1981;  140 415-419
  • 44 Ledger W L, Ellwood D A, Taylor M J. Cervical softening in late pregnant sheep by infusion of prostaglandin E2 into cervical artery.  J Reprod Fertil . 1983;  69 511-515
  • 45 Khalifa R ME, Sayre B L, Lewis G S. Exogenous oxytocin dilates the cervix in the ewes.  J Anim Sci . 1992;  70 38-42
  • 46 Duchens M, Fredriksson G, Kindahl H, Aiumlamai S. Effect of intracervical administration of a prostaglandin E2 gel in pregnant and non-pregnant heifers.  Vet Rec . 1993;  133 546-549
  • 47 Grady L, Fields M, Kowalski A, Chang S-M, Fuchs A-R. Effects of oxytocin and PGE1 on bovine cervix at estrus.  Biol Reprod . 1998;  58(suppl)1 174(abstract 327)
  • 48 Shemesh M, Dombrovski L, Gurevich M. Regulation of bovine cervical secretion of prostaglandins and synthesis of cyclooxygenase by oxytocin.  Reprod Fertil Dev . 1997;  9 525-530
  • 49 Schams D. Oxytocin determination by radioimmunoassay: III. Improvement to subpicogram sensitivity and application to blood levels in cyclic cattle.  Acta Endocrinol . 1983;  103 180-183
  • 50 Ohtani M, Kobayashi S-I, Miyamoto A, Hayashi K, Yutaka F. Real-time relationships between intraluteal and plasma concentrations of endothelin, oxytocin and progesterone during prostaglandin F-induced luteolysis in the cow.  Biol Reprod . 1998;  58 103-108
    >