Minim Invasive Neurosurg 2001; 44(1): 50-57
DOI: 10.1055/s-2001-13583
ORIGINAL PAPER
Georg Thieme Verlag Stuttgart · New York

Effects of Electrical Stimulation of the Gasserian Ganglion on Regional Cerebral Blood Flow after Induced Subarachnoid Hemorrhage in Pigs Evaluated by 99mTc-HMPAO-SPECT

H. Ebel1 , G. Semmelmann1 , M. Friese6 , M. Volz1 , J. Y. Lee1 , M. Dück2,, K. Schomäcker3 , J. Varga4 , I. Furka5 , R. Schröder6 , N. Klug1
  • 1Department of Neurosurgery, University of Cologne, Germany
  • 2Department of Anesthesiology and Intensive Care, University of Cologne, Germany
  • 3Department of Nuclear Medicine, University of Cologne, Germany
  • 4Department of Nuclear Medicine, University of Debrecen, Hungary
  • 5Department of Experimental Surgery, University of Debrecen, Hungary
  • 6Department of Pathology, University of Cologne, Germany
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
31. Dezember 2001 (online)

It could be demonstrated that cervical spinal cord stimulation increases cerebral blood flow. The effects of electrical stimulation of the trigeminal ganglion in the acute phase of SAH in pigs were investigated. The experiments were carried out on 11 domestic pigs divided in two groups (group I: SAH [n = 5]; group II: SAH and trigeminal stimulation [n = 6]). In all animals a native SPECT was performed. The Gasserian ganglion was exposed for inserting the stimulation electrode. SAH was induced by injecting 10 ml autologous blood through a catheter placed in the suprasellar cistern. 30 minutes after SAH-induction electrical stimulation was started for two hours in group II (2.8 - 4.5 V, 50 Hz, 300 μs). 99mTc-HMPAO (400 - 540 MBq) was injected intravenousely 110 minutes later. In group I 99mTc-HMPAO was applied after the same time interval. 80 minutes later SPECT was performed. Data were processed to calculate the uptake of radioactivity (%/kg tissue weight). The mean values were calculated for the different groups: native animal examination (%/kg tissue weight): 0.6343; group I: 0.468; group II: 0.6533. Comparing the mean values a highly significant difference between group I and group II (p < 0.01) and between native examination and group I (p < 0.01) could be found. No statistical significance could be detected on comparing the left/right-ratio in any ROI. The electrical stimulation of the Gasserian ganglion leads to a significantly increased uptake of 99mTc-HMPAO after induced SAH. Maybe the stimulation of the Gasserian ganglion constitutes a new therapeutic modality treating disturbed rCBF after SAH.

References

  • 1 Hardebo J E, Suzuki N, Owman C. Origins of substance P-period and calcitonin gene-related peptide-containing nerves in the internal carotid artery of rat.  Neurosci Lett. 1989;  101 39-45
  • 2 Hardebo J E, Arbab M, Suzuki N, Svendgaard N A. Pathways of parasympathetic and sensory cerebrovascular nerves in monkeys.  Stroke. 1991;  22 331-342
  • 3 Suzuki N, Hardebo J E, Owman C. Trigeminal fibre collaterals storing substance P and calcitonin gene-related peptide associate with ganglion cells containing choline acetyl-transferase and vasoactive intestinal polypeptide in the sphenopalatine ganglion of the rat. An axon reflex modulating parasympathetic ganglion activity?.  Neuroscience. 1989;  30 595-604
  • 4 Juul R, Hara H, Gisvold S E, Brubakk A O, Frederiksen T A, Waldemar G, Schmidt J F, Ekman R, Edvinsson L. Alterations in perivascular dilatory neuropeptides (CGRP, SP, VIP) in the external jugular vein and in the cerebrospinal fluid following subarachnoid haemorrhage in man.  Acta Neurochir. 1995;  132 32-41
  • 5 Uddman R, Edvinsson L. Neuropeptides in the cerebral circulation.  Cerebrovasc Brain Metab Rev. 1989;  1 230-252
  • 6 Augustinsson L E, Holm J, Carlsson C A, Jivergard L. Epidural electrical stimulation in severe limb ischemia. Evidence of pain relief, increased blood flow and a possible limb saving effect.  Ann Surg. 1985;  202 104-111
  • 7 Sandrio S, Meglio M, Bellocci F, Montenero A S, Scabbia E, D'Annunzio V. Clinical and electrocardiographic improvement of ischemic heart disease after spinal cord stimulation.  Acta Neurochir Suppl. 1984;  33 543-546
  • 8 Hosobuchi Y. Electrical stimulation of the cervical spinal cord increases cerebral blood flow in humans.  Appl Neurophysiol. 1985;  48 372-376
  • 9 Robaina F, García-March G, Diaz Sainz F, Diaz de Durana J I, Sánchez-Ledesma M J, Broseta J. Modification of regional cerebral blood flow and metabolism detected by single photon emission computed tomography following cervical spinal cord stimulation in humans.  Stereotact Funct Neurosurg. 1989;  54/55 239
  • 10 Goadsby P J. Sphenopalatine ganglion stimulation increases regional cerebral blood flow independent of glucose utilization in the cat.  Brain Res. 1990;  506 145-148
  • 11 Ohkuma H, Itoh K, Shibata S, Suzuki S. Morphological changes of intraparenchymal arterioles after experimental subarachnoid hemorrhage in dogs.  Neurosurgery. 1997;  41 230-236
  • 12 Satoh S, Suzuki Y, Ikegaki I, Asano T, Shibuya M, Sugita K, Hidaka H. The effects of HA1077 on the cerebral circulation after subarachnoid hemorrhage in dogs.  Acta Neurochir (Wien). 1991;  110 185-188
  • 13 Steiner L, Lofgren J, Zwetnow N N. Characteristics and limits of tolerance in repeated subarachnoid hemorrhage in dogs.  Acta Neurol Scand. 1975;  52 241-341
  • 14 Brinker T, Seifert V, Stolke D. Acute changes in the dynamics of the cerebrospinal fluid system during experimental subarachnoid hemorrhage.  Neurosurgery. 1990;  27 369-372
  • 15 Brinker T, Seifert V, Dietz H. Cerebral blood flow and intracranial pressure during experimental subarachnoid haemorrhage.  Acta Neurochir (Wien). 1992;  115 47-52
  • 16 Findlay J M, Macdonald R L, Weir B KA, Grace M GA. Surgical manipulation of primate cerebral arteries in established vasospasm.  J Neurosurg. 1991;  75 425-432
  • 17 Salar G, Ori C, Iob I, Costella G B, Battaggia C, Peserico L. Cerebral blood flow changes induced by electrical stimulation of the Gasserian ganglion after experimentally induced subarachnoid haemorrhage in pigs.  Acta Neurochir (Wien). 1992;  119 115-120
  • 18 Nihei H, Kassell N F, Dougherty D A, Sasaki T. Does vasospasm occur in small pial arteries and arterioles of rabbits?.  Stroke. 1991;  22 1419-1425
  • 19 Ryba M, Iwanska K, Walski M, Pastuszko M. Immunomodulators interfere with angiopathy but not vasospasm after subarachnoid haemorrhage in rabbits.  Acta Neurochir (Wien). 1991;  108 81-84
  • 20 Ram Z, Sahar H, Hadani M. Vasospasm due to massive subarachnoid haemorrhage: a rat model.  Acta Neurochir (Wien). 1991;  110 181-184
  • 21 Solomon R A, Antunes J L, Chen R YZ. Decrease in cerebral blood flow in rats after experimental subarachnoid haemorrhage: a new model.  Stroke. 1985;  16 58-64
  • 22 McCormick J M, McCormick P W, Zabramski J M, Spetzler R F. Intracranial pressure reduction by a central α-2 adrenoreceptor agonist after subarachnoid hemorrhage.  Neurosurgery. 1993;  32 974-979
  • 23 Mori T, Asano T, Nagata K, Ishida T, Abe T. An improved model of subarachnoid hemorrhage using intrathecal indwelling catheters.  J Vet Med Sci. 1997;  59 825-828
  • 24 Edvinsson L, Hara H, Uddman R. Retrograde tracing of nerve fibers to the rat middle cerebral artery with true blue: Colocalization with different peptides.  J Cereb Blood Flow Metab. 1989;  9 212-218
  • 25 Liu-Chen L Y, Mayberg M R, Moskowitz M A. Immunohistochemical evidence for a substance P containing trigeminovascular pathway to pial arteries in cats.  Brain Res. 1983;  268 162-166
  • 26 Liu-Chen L Y, Gillespie S A, Norregaart T V, Moskowitz M A. Co-localization of retrogradely transported wheat germ agglutinin and the putative neurotransmitter substance P within trigeminal ganglion cells projecting to cat middle cerebral artery.  J Comp Neurol. 1984;  225 187-192
  • 27 Liu-Chen L Y, Han D H, Moskowitz M A. Pial arachnoidal contains substance P originating from trigeminal neurons.  Neuroscience. 1983;  9 803-838
  • 28 Liu-Chen L Y, Gillespie S A, Norregaart T V, Go V LW, Moskowitz M A. Cholecystokinin-8 (CCK-8) immunoreactivity in cerebral arteries and pial arachnoid and effect of unilateral trigeminal ganglionectomy.  Federations proceedings. 1984;  43 304
  • 29 Edvinsson L. Functional role of perivascular peptides in the control of the cerebral circulation.  Trends Neurosci. 1985;  8 126-131
  • 30 McCulloch J, Uddman R, Kingman T, Edvinsson L. Calcitonin-gene related peptide: Function role in cerebrovascular regulation.  Proc Nat Acad Sci USA. 1986;  1983 5731-5735
  • 31 Saito A, Greenberg S, Moskowitz M A. Trigeminal origin of β-preprotachikinin project in feline pial blood vessels.  Neurosci Lett. 1987;  76 69-73
  • 32 Juul R, Edvinsson L, Frederiksen T A, Ekman R, Brubakk A O, Gisvold S E. Calcitonin gene related peptide-LI in subarachnoid haemorrhage in man. Signs of activation of the trigemino-cerebrovascular system?.  Br J Neurosurg. 1990;  4 171-180
  • 33 Juul R, Aakhus S, Björnstad K, Gisvold S E, Brubakk A O, Edvinsson L. Calcitonin gene-related peptide (human α-CGRP) counteracts vasoconstriction in human subarachnoid hemorrhage.  Neurosci Lett. 1994;  170 67-70
  • 34 Broseta J, Barberá J, De Vera J A, Barcia-Salorio J L, Garcia-March G, Gonzáles-Darder J, Rovaina F, Joanes V. Spinal cord stimulation in arterial disease.  J Neurosurg. 1986;  64 71-80
  • 35 Roldan P, Joanes V, Santamaria J, Barcia-Salorio J L, Casans I, Carbonell C, Tejerina E. Haemodynamic changes from spinal cord stimulation for vascular pain.  Acta Neurochir (Suppl.). 1987;  39 166-169
  • 36 Meglio M, Cioni B, Nobili F, Rodriguez G, Rosadini G. Spinal cord stimulation and peripheral blood flow. Proceedings of the 8th Meeting of the European Society of Stereotactic and Functional Neurosurgery. Budapest 1988
  • 37 Meglio M, Cioni B, Visocchi M, Nobili F, Rodriguez G, Rosadini G, Chiappini F, Sandric S. Spinal cord stimulation and cerebral haemodynamics.  Acta Neurochir (Wien). 1991;  111 43-48
  • 38 Meglio M, Cioni B, Visocchi M. Cerebral hemodynamics during spinal cord stimulation.  Pace. 1991;  14 127-130
  • 39 Matsui T, Hosobuchi Y. The effects of cervical spinal cord stimulation (cSCS) on experimental stroke.  Pace-Pacing-Clin-Electrophysiol. 1989;  12 726-732
  • 40 Broseta J, García-March M J, Sánchez-Ledesma J, Gonçalves J, Silva I, Barcia J A, Llácer J L, Barcia-Salorio J L. High cervical spinal cord electrical stimulation in brain low perfusion syndromes: experimental basis and preliminary clinical report.  Stereotact Funct Neurosurg. 1994;  62 171-178
  • 41 Mazzone P, Pisani R, Pizio N, Arrigo A, Nobili F. Cerebral blood flow and somatosensory evoked response changes induced by spinal cord stimulation: preliminary follow-up observations.  Stereotact Funct Neurosurg. 1994;  62 179-185
  • 42 Visocchi M, Cioni B, Pentimalli L, Meglio M. Increase of cerebral blood flow and improvement of brain motor control following spinal cord stimulation in ischemic spastic hemiparesis.  Stereotact Funct Neurosurg. 1994;  62 103-107
  • 43 Linderoth B, Gheradini G, Ren B, Lundeberg T. Preemptive spinal cord stimulation reduces ischemia in an animal model of vasospasm.  Neurosurgery. 1995;  37 266-272
  • 44 Naderi S, Özgüven M A, Bayhan H, Gökalp H, Erdogan A, Egemen N. Evaluation of cerebral vasospasm in patients with subarachnoid hemorrhage using single photon emission computed tomography.  Neurosurg Res. 1994;  17 261-265
  • 45 Powsner R A, O'Tuama L A, Jabre A, Melhem E R. SPECT imaging in cerebral vasospasm following subarachnoid hemorrhage.  J Nucl Med. 1998;  39 765-769
  • 46 Rosen J, Butala A, Oropello J. Postoperative changes on brain SPECT imaging after aneurysmal subarachnoid hemorrhage.  Clin Nucl Med. 1994;  19 595-597
  • 47 Tranquart F, Ades P E, Groussin P, Rieant J F, Jan M, Baulieu J L. Postoperative assessment of cerebral blood flow in subarachnoid haemorrhage by means of 99mTc-HMPAO tomography.  Eur J Nucl Med. 1993;  20 53-58
  • 48 Masdeu J C, Brass L M. SPECT imaging of stroke.  J Neuroimag. 1995;  5 14-22

Corresponding Author

Dr. med H Ebel

Department of Neurosurgery
University of Cologne

Joseph-Stelzmann-Str. 9
50924 Cologne
Germany

Telefon: Phone:+49-221-4784557

Fax: Fax:+49-221-4785921

eMail: E-mail:Gregor.Semmelmann@t-online.de

    >