Klin Monbl Augenheilkd 2001; 218(2): 89-94
DOI: 10.1055/s-2001-12251
KLINISCHE STUDIE

Georg Thieme Verlag Stuttgart · New York

Einfluss des retinalen Koagulationsstatus auf oxidative Metabolite und VEGF bei 208 Patienten mit proliferativer diabetischer Retinopathie[1] [2]

Influence of retinal coagulation status on retinal oxidative metabolites and VEGF level in 208 patients suffering from proliferative diabetic retinopathyAlbert  J. Augustin1 , A. Keller1 , F. Koch2 , B. Jurklies3 , B. Dick1
  • 1 Universitäts-Augenklinik, Langenbeckstraße 1, 55131 Mainz (Direktor: N. Pfeiffer), E-Mail: 106020.560@compuserve.com
  • 2 Universitäts-Augenklinik Frankfurt
  • 3 Universitäts-Augenklinik Essen
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Zusammenfassung

Hintergrund Oxidative Metabolite und Zytokine sollen an der Pathogenese der (proliferativen) diabetischen Retinopathie beteiligt sein. Ziel dieser Studie war es, bei Diabetikern gewonnene Glaskörperproben und fibrovaskuläre Proliferationen auf ihren Gehalt an oxidativen Metaboliten und VEGF zu untersuchen und diese Werte mit dem Koagulationsstatus der Netzhaut zu korrelieren.

Patienten und Methoden Die Studie wurde an 208 vitrektomierten Patienten mit Diabetes mellitus (Typ I: 114, Typ II: 94) durchgeführt. Die Patienten wurden in drei Gruppen eingeteilt: (1) Keine bzw. minimale präoperative Koagulation [mittlere Behandlungsfläche, BF: 156 mm2], (2) Koagulation (Laserflächenkoagulation und/oder Kryokoagulation) kürzer als 3 Monate vor der Operation [BF: 589 mm2]. (3) Koagulation länger als 3 Monate vor der Operation [BF: 546 mm2]. Im Glaskörper und, falls vorhanden, in den fibrovaskulären Proliferationen (Typ I: 83; Typ II: 73) wurden der Gehalt an Lipidperoxiden (LPO) mit zwei Methoden und der Gehalt an VEGF gemessen.

Ergebnisse Im Glaskörper waren die Lipidperoxidwerte in Gruppe 1 signifikant (P < 0,01 für Diabetes Typ I und II und beide Messmethoden) höher als in den anderen beiden Gruppen. Eine ebenfalls signifikante Erniedrigung fand sich in Gruppe 3 im Vergleich zu Gruppe 2 (P < 0,01 für Diabetes Typ I und P < 0,05 für Diabetes Typ II). Auch bei den Proliferationen ergaben die Koagulation und der Zeitfaktor signifikante Unterschiede. Nur bei Typ-I-Diabetikern waren die VEGF-Werte im Glaskörper infolge der Koagulation und nach der Wartezeit jeweils signifikant (P < 0,01) reduziert. Bei Diabetes Typ II führte erst die Wartezeit von mehr als 3 Monaten zu einer signifikanten (P < 0,01) Reduktion der Werte. Bei den Proliferationsproben hatten sowohl die alleinige Koagulation als auch die zusätzliche Wartezeit jeweils eine signifikante (P < 0,05 für Diabetes Typ I und II) Reduktion der Werte zur Folge.

Schlussfolgerung Der zeitliche Zusammenhang der LPO- und VEGF-Ergebnisse lässt darauf schließen, dass die bei der diabetischen Retinopathie produzierten oxidativen Metabolite auch an der Unterhaltung der Wachstumsaktivität der Proliferationen über die Induktion von VEGF beteiligt sein können. Ein In-vitro-Beweis bzw. eine prospektive Untersuchung zur Untermauerung dieser These stehen noch aus.

Background Oxidative metabolites and different cytokines are believed to be involved in the pathogenesis of (proliferative) diabetic retinopathy. It was the aim of this study to analyze vitreous body and proliferations of diabetic patients for oxidative metabolites and VEGF und to correlate these values to the retinal coagulation status.

Patients and Methods The study was performed in 208 patients vitrectomized for diabetic retinopathy (Type I: n = 114, Type II: n = 94). Grouping of patients was performed according to retinal coagulations status: (1) no or minimal preoperative coagulation [mean coagulation area, CA: 156 mm2], (2) coagulation (scatter laser coagulation und/oder cryopexy) < 3 months before surgery [CA: 589 mm2]. (3) coagulation > 3 months before surgery [CA: 546 mm2]. In the vitreous body and, if present, in the fibrovascular proliferations (Type I: n = 83; Type II: n = 73) the level of lipid peroxides (LPO, measured with two methods) and VEGF was determined.

Results In the vitreous body LPO in group 1 were significantly (P < 0,01 (Type I und II)) higher as compared to other groups. In group 3 LPO were significantly lower as compared to group 2 (P < 0.01 (Typ I) and P < 0.05 (Typ II)). Similiar results were observed in the proliferations. In Type I patients VEGF values were significantly (P < 0.01 for group 1 vs. 2 and groups 1/2 vs. 3) reduced following coagulation and coagulation + 3 months. In Type II patients only group 3 was significantly (P < 0.01) different from group 1. In proliferations groups 2 and 3 were signifcantly different from group 1 (P < 0.05 for Typ I and Type II patients).

Conclusions The time course of the values leads to the conclusion that oxidative metabolites are able to directly modulate growth activity and to exert this effect via induction of VEGF. This hypothesis has to be confirmed in vitro and by means of a prospective study.

01 Manuskript erstmalig eingereicht am 28. 5. 00 und in der vorliegenden Form angenommen.

02 Herrn Prof. Dr. rer. nat. Dr. med. h.c. Otto Hockwin zum 75. Geburtstag gewidmet.

Literatur

01 Manuskript erstmalig eingereicht am 28. 5. 00 und in der vorliegenden Form angenommen.

02 Herrn Prof. Dr. rer. nat. Dr. med. h.c. Otto Hockwin zum 75. Geburtstag gewidmet.

  • 01 Adamis  A P, Miller  J W, Bernal  M T, D'Amico  D J, Folkman  J, Yeo  T K, Yeo  K T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy.  Am J Ophthalmol. 1994;  118 445-450.
  • 02 Adamis  A P, Shima  D T, Tolentino  M J, Gragoudas  E S, Ferrara  N, Folkman  J et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate.  Arch Ophthalmol. 1996;  114 66-71.
  • 03 Aiello  L P, Avery  R L, Arrigg  P G, Keyt  B A, Jampel  H D, Shah  S T et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders.  N Engl J Med. 1994;  331 1480-1487.
  • 04 Aiello  A P, Pierce  A C, Foley  E D, Takagi  H, Chen  H, Riddle  L et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor using soluble VEGF-receptor chimeric proteins.  Proc Natl Acad Sci USA. 1995;  92 10457-10461.
  • 05 Augustin  A J, Winkgen-Böhres  A. Influence of retinal coagulation area and blood glucose control on oxidative metabolites and VEGF in ocular tissues of diabetic patients. In: Denke A et al. (Eds) Different pathways through life.  Lincolm Studies in Biochemistry. 1999;  02 p 111-123.
  • 06 Baynes  J W. Role of oxidative stress in development of complications in diabetes.  Diabetes. 1991;  40 405-412.
  • 07 Brauchle  M, Funk  J O, Kind  P, Werner  S. Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes.  J Biol Chem. 1996;  271 21793-21797.
  • 08 Brownlee  M, Ceramie  A, Vlassara  H. Advanced glycosylation endproducts in tissue and the biochemical basis of diabetic complications.  N Engl J Med. 1988;  318 1315-1321.
  • 09 Ceriello  A, Gugliano  D, Quatraro  A, Donzella  C, Dipalo  G, Lefebvre  P J. Vitamin E reduction of protein glycosylation in diabetes.  Diabetes Care. 1991;  14 68-72.
  • 10  Diabetic Retinopathy Study Group. Photocoagulation treatment of proliferative diabetic retinopathy: the second report from the Diabetic Retinopathy Study findings.  Arch Ophthalmol. 1979;  97 654-655.
  • 11  FASEB Meeting Report. Anti-Oxidants may reduce retinopathy risk for diabetes. Cataract & Refractive Surgery Euro Times May-June; 1998: p 29.
  • 12 Handa  J T, Reiser  K M, Matsunaga  H, Hjelmeland  L M. The advanced glycation endproduct pentosidine induces the expression of PDGF-B in human retinal pigment epithelial cells.  Exp Eye Res. 1998;  66 411-419.
  • 13 Hirata  C, Nakano  K, Nakamura  N, Kitagawa  Y, Shigeta  H, Hasegawa  G et al. Advanced glycation end products induce expression of vascular endothelial growth factor by retinal Muller cells.  Biochem Biophys Res Commun. 1997;  236 712-715.
  • 14 Jain  S K, McVie  R, Duett  J, Herbst  J J. Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes.  Diabetes. 1989;  38 1539-1543.
  • 15 Jennings  P E, Barnett  A H. New approaches to the pathogenesis and treatment of diabetic microangiopathy.  Diabet Med. 1988;  5 111-117.
  • 16 Kim  K J, Li  B, Winer  J, Armanini  M, Gillett  N, Phillips  H S, Ferrara  N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo.  Nature. 1993;  362 841-844.
  • 17 Kuroki  M, Voest  E E, Amano  S, Beerepoot  L V, Takashima  S, Tolentino  M et al. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo.  J Clin Invest. 1996;  98 1667-1675.
  • 18 Malecaze  F, Clamens  S, Simorre-Pinatel  V, Mathis  A, Chollet  P, Favard  C et al. Detection of vascular endothelial growth factor messenger RNA and vascular endothelilal growth factor-like activity in proliferative diabetic retinopathy.  Arch Ophthalmol. 1994;  112 1476-1482.
  • 19 Michelson  I C. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal disease.  Trans Ophthalmol Soc UK. 1948;  68 137-180.
  • 20 Miller  J W, Adamis  A P, Shima  D T, D'Amore  P A, Moulton  R S, O'Reilly  M S. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model.  Am J Pathol. 1994;  145 574-584.
  • 21 Murata  T, Ishibashi  T, Khalil  A, Hata  Y, Yoshikawa  H, Inomata  H. Vascular endothelial growth factor plays a role in hyperpermeability of diabetic retinal vessels.  Ophthalmic Res. 1995;  27 48-52.
  • 22 Ohkawa  H, Ohishi  N, Yagi  K. Assay for lipid peroxides in animal tissues by thiobarbituric acid.  Anal Biochem. 1979;  95 351-358.
  • 23 Reddy  V M, Zamora  R L, Olk  R J. Quantitation of retinal ablation in proliferative diabetic retinopathy.  Am J Ophthalmol. 1985;  119 760-766.
  • 24 Rösen  P, Oestreich  R, Tschöpe  D. Vitamin and Diabetes Fat.  Science and Technology. 1991;  93 425-431.
  • 25 25. Ruef  J, Hu  Z Y, Yin  L Y, Wu  Y, Hanson  S R, Kelly  A B et al. Induction of vascular endothelial growth factor in balloon-injured baboon arteries. A novel role for reactive oxygen species in atherosclerosis.  Circ Res. 1997;  81 24-33.
  • 26 Schacterle  G R, Pollack  R L. A simplified method for the quantitative assay of small amounts of protein in biologic material.  Anal Biochem. 1973;  51 654-655.
  • 27 Thérasse  J, Lemonnier  F. Determination of plasma lipoperoxides by high-performance liquid chromatography.  J Chromatogr. 1987;  413 237-241.
  • 28 Thieme  H, Aiello  L P, Takagi  H, Ferrara  N, King  G L. Comparative analysis of vascular endothelial growth factor receptors on retinal and aortic vascular endothelial cells.  Diabetes. 1995;  44 98-103.
  • 29 Tolentino  M J, Miller  J W, Gragoudas  E S, Chatzistefanou  K, Ferrara  N, Adamis  A P. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a non-human primate.  Arch Ophthalmol. 1995;  114 964-970.
  • 30 Tolentino  M J, Miller  J W, Gragoudas  E S, Jakobiec  F A, Flynn  E, Chatzistefanou  K et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate.  Ophthalmology. 1996;  103 1820-1828.
  • 31 Uzel  N, Sivas  A, Uysal  M, Oz  H. Erythrocyte lipid peroxidation and glutathione peroxidase activities in patients with diabetes mellitus.  Horm Metab Res. 1987;  19 89-90.
  • 32 Wright  P S, Loudy  D E, Cross-Doersen  D E, Montgomery  L R, Sprinkle-Cavallo  J, Miller  J A et al. Quantitation of vascular endothelial growth factor mRNA levels in human breast tumors and metastatic lymph nodes.  Exp Mol Pathol. 1997;  64 41-51.
    >