Abstract
Croton pullei (Euphorbiaceae) is a woody climber of the lowland rainforest in French Guyana and
Surinam. During ontogeny, a shift from a juvenile free-standing growth phase to an
older supported growth phase is observed. The following biomechanical parameters were
studied: structural Young's modulus, structural torsional modulus, flexural stiffness
and bend to twist ratios. Changes in anatomical development were also analysed for
different stages of development of C. pullei which differ significantly in their mechanical properties. Free-standing plants show
a nearly constant structural Young's modulus and structural torsional modulus during
ontogeny, with flexural stiffness increasing proportionally with the axial second
moment of area. These patterns are typical for “semi-self-supporting plants”. In contrast,
supported plants show a significant decrease in structural Young's modulus in older
stem parts, as well as a decrease in structural torsional modulus. Due to the decrease
in structural Young's modulus, flexural stiffness does not increase proportionally
with the axial second moment of area. These patterns are typical for non-self-supporting
lianas. In all supported plants, a sudden transition occurs from early dense wood
to a wood type with a much higher proportion of large diameter vessels. In contrast,
only the dense wood type is present in all tested free-standing plants. The data are
compared with results from other climbing species of the same study area and discussed
with reference to observed features characterizing the growth form and life history
of C. pullei.
Key words
Croton pullei
- growth form - liana - ontogenetic stage - semi-self-supporting - structural Young's
modulus - structural torsional modulus
References
- 01 Bodig, J., and Jayne, B. A.. (1982) Mechanics of wood and wood composites. New
York; Van Nostrand Reinhold Co.
- 02 Caballé, G.. (1986)
Les peuplements de lianes ligneuses dans une forêt du nord-est du Gabon. Mémoires du Musée Nationale de l'Histoire Naturelle, Vol. 132. Paris; Editions du
Muséum pp. 91-96
- 03
Caballé, G..
(1993);
Liana structure, function and selection: a comparative study of xylem cylinders of
tropical rainforest species in Africa and America.
Botanical Journal of the Linnean Society.
113
41-60
- 04
Caballé, G..
(1998);
Le port autoportant des lianes tropicales: une synthèse des stratégies de croissance.
Canadian Journal of Botany.
76
1703-1716
- 05
Darwin, C..
(1867);
On the movements and habits of climbing plants.
Journal of the Linnean Society (Botany).
9
1-118
- 06
Ennos, A. R..
(1993);
The mechanics of the flower stem of the sedge Carex acutiformis.
Annals of Botany.
72
123-127
- 07 Ennos, A. R.,, Spatz, H.-Ch.,, and Speck, T.. (2000) The functional morphology
of the petioles of the banana Musa textilis.
. Submitted
- 08
Fisher, J. B., and Ewers, F. W..
(1989);
Wound healing in stems of lianas after twisting and girdling.
Botanical Gazette.
150
251-265
- 09 Fisher, J. B., and Ewers, F. W.. (1991)
Structural responses to stem injury in vines. The Biology of Vines. Putz, F. E. and Mooney H. A., eds. Cambridge University Press
pp. 73-97
- 10
Fisher, J. B., and Ewers, F. W..
(1992);
Xylem pathways in liana stems with variant secondary growth.
Botanical Journal of the Linnean Society.
108
181-202
- 11
Gartner, B. L..
(1991);
Structural stability and architecture of vines vs. shrubs of poison oak, Toxicondendron diversilobum.
.
Ecology.
72
2005-2015
- 12 Gentry, A. B.. (1991)
The distribution and evolution of climbing plants. The Biology of Vines. Putz, F. E. and Mooney H. A., eds. Cambridge University Press
pp. 181-204
- 13 Gerlach, D.. (1984) Botanische Mikrotechnik. 3. Aufl. Stuttgart, New York; Thieme
Verlag pp. 243-244
- 14 Haberlandt, G.. (1924) Physiologische Pflanzenanatomie. 6. Aufl. Leipzig; Engelmann
- 15 Hallé, F.,, Oldeman, R. A. A.,, and Tomlinson, P. B.. (1978) Tropical Trees
and Forests. An Architectural Analysis. Berlin, Heidelberg, New York; Springer Verlag
- 16
Köhler, L.,, Speck, T.,, and Spatz, H.-Ch..
(2000);
Micromechanics and anatomical changes during early ontogeny of two lianescent Aristolochia species.
Planta.
210
691-700
- 17
Niklas, K. J..
(1982);
Computer simulations of early land plant branching morphologies: canalisation of patterns
during evolution?.
Paleobiology.
8
196-210
- 18 Niklas, K. J.. (1992) Plant Biomechanics. An engineering approach to plant form
and function. Chicago; The University of Chicago Press
- 19 Niklas, K. J.. (1994) Plant Allometry. Chicago; The University of Chicago Press
- 20 Niklas, K. J.. (1997) The Evolutionary Biology of Plants. Chicago; The University
of Chicago Press
- 21
Putz, F. E..
(1983);
Liana biomass and leaf area of a “Tierra Firme” forest in the Rio Negro Basin, Venezuela.
Biotropica.
15 (3)
185-189
- 22
Putz, F. E..
(1984);
The natural history of lianas on Barro Colorado Island, Panama.
Ecology.
65 (6)
1713-1724
- 23
Putz, F. E..
(1990);
Liana stem diameter growth and mortality rates on Barro Colorado Island, Panama.
Biotropica.
22 (1)
103-105
- 24
Putz, F. E., and Chai, P..
(1987);
Ecological studies of lianas in Lambir National Park, Sarawak, Malaysia.
Journal of Ecology.
75
523-531
- 25 Putz, F. E., and Holbrook, N. M.. (1991)
Biomechanical studies of vines. The Biology of Vines. Putz, F. E. and Mooney H. A., eds. Cambridge University Press
pp. 73-97
- 26 Roark, R. J., and Young, W. C.. (1975) Formulas for stress and strain. 5th edn. London;
McGraw-Hill
- 27
Rowe, N. P., and Speck, T..
(1996);
Biomechanical characteristics of the ontogeny and growth habit of the tropical liana
Condylocarpon guianense (Apocynaceae).
International Journal of Plant Science.
157 (4)
406-417
- 28
Rowe, N. P., and Speck, T..
(1998);
Biomechanics of plant growth forms: the trouble with fossil plants.
Revue of Palaeobotany and Palynology.
102
43-62
- 29 Rowe, N. P., and Speck, T.. (2000)
Biomechanical variation of non-self-supporting plant growth habits: a comparison of
herbaceous and large-bodied woody plants. L'Arbre, Biologie et Developpement. Edelin, C., ed. Naturalia Monspeliensia, Numéro
hors série A7
- 30 Schenck, H.. (1892)
Beiträge zur Anatomie der Lianen, im Besonderen der in Brasilien einheimischen Arten.
1. Beiträge zur Biologie der Lianen. Botanische Mitteilungen aus den Tropen 4. Schimper, A. F. W., ed. Jena; Fischer pp.
1-253
- 31 Schenck, H.. (1893)
Beiträge zur Anatomie der Lianen, im Besonderen der in Brasilien einheimischen Arten.
2. Beiträge zur Biologie der Lianen. Botanische Mitteilungen aus den Tropen 5. Schimper, A. F. W., ed. Jena; Fischer pp.
1-271
- 32 Schenck, H.. (1912)
Lianen. Handbuch der Naturwissenschaften, Bd. 6. Jena; Fischer pp. 176-185
- 33
Speck, T..
(1991);
Changes of the bending-mechanics of lianas and self-supporting taxa during ontogeny.
Natural Structures.
Principles, Strategies, and Models in Architecture and Nature, Proceedings of the
II. International Symposium of the Sonderforschungsbereich 230 Part I. Mitteilungen
des SFB.
230 (6)
89-95
- 34
Speck, T..
(1994);
Bending stability of plant stems: ontogenetical, ecological, and phylogenetical aspects.
Biomimetics.
2 (2)
109-128
- 35 Speck, T.. (1997)
Ecobiomechanics: biomechanical analyses help to understand aut- and synecology of
plants. Plant Biomechanics 1997: Conference Proceedings I, Centre for Biomimetics. Jeronomidis,
G. and Vincent, J. F. V., eds. Reading; The University of Reading pp. 9-15
- 36 Speck, T.,, Neinhuis, C.,, Gallenmüller, F.,, and Rowe, N. P.. (1997)
Trees and shrubs in the mainly lianescent genus Aristolochia s.l.: secondary evolution of the self-supporting growth habit?. Plant Biomechanics 1997: Conference Proceedings I, Centre for Biomimetics. Jeronomidis,
G. and Vincent, J. F. V., eds. Reading; The University of Reading pp. 201-207
- 37 Speck, T., and Rowe, N. P.. (1999)
A quantitative approach to analytically defining size, form and habit in living and
fossil plants. The Evolution of Plant Architecture. Hemsley, A. R. and Kurmann, M., eds. Kew; Royal
Botanical Gardens pp. 447-479
- 38 Speck, T.,, Rowe, N. P.,, Brüchert, F.,, Haberer, W.,, Gallenmüller, F.,,
and Spatz, H.-Ch.. (1996)
How plants adjust the “material properties” of their stems according to differing
mechanical constraints during growth - an example of smart design in nature. Bioengineering. PD-Volume 77, Proceedings of the 1996 Engineering Systems Design
and Analysis Conference, Volume 5. Engin, A. E., ed. ASME pp. 233-241
- 39 Vincent, J. F. V.. (1992)
Plants. Biomechanics - Material: A practical approach. Vincent, J. F. V., ed. Oxford; IRL
Press pp. 165-191
- 40
Vogel, S..
(1992);
Twist-to-Bend Ratios and Cross-Sectional Shapes of Petioles and Stems.
Journal of Experimental Botany.
43 (256)
1527-1532
- 41
Vogel, S..
(1995);
Twist-to-bend ratios of woody structures.
Journal of Experimental Botany.
46 (289)
981-985
- 42
Webster, G. L..
(1993);
A provisional synopsis of the sections of the genus Croton (Euphorbiaceae).
Taxon.
42
793-823
- 43
Webster, G. L.,, Del-Arco-Aguilar, M. J.,, and Smith, B. A..
(1996);
Systematic distribution of foliar trichome types in Croton (Euphorbiaceae).
Botanical Journal of the Linnean Society.
121
41-57
- 44
Westermeier, M., and Ambronn, H..
(1881);
Beziehungen zwischen Lebensweise und Struktur der Schling- und Kletterpflanzen.
Flora.
69
417-436
- 45 Zobel, B. J., and van Buijtenen, J. P.. (1989) Wood Variation. Its Causes and
Control. Berlin, Heidelberg, New York; Springer-Verlag pp. 147-148
F. Gallenmüller
Botanical Garden
University of Freiburg
Schänzlestr. 1
79104 Freiburg
Germany
Email: fgallenmueller@hotmail.com
Section Editor: R. Aerts