Semin Respir Crit Care Med 2000; 21(4): 331-340
DOI: 10.1055/s-2000-9861
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Problem Pulmonary Pathogens: Pseudomonas Aeruinosa

Ruba Odeh, John P. Quinn
  • Department of Medicine, University of Illinois, Chicago
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

Pseudomonas aeruginosa is a common and highly lethal agent of nosocomial pneumonia, especially among patients receiving mechanical ventilation. It is widespread in the environment and commonly recovered from water in nature and in hospital settings. P. aeruginosa is endowed with a formidable array of virulence factors that facilitate attachment to host cells, tissue invasion, and systemic disease. It is intrinsically resistant to many commonly used antibiotics due to a complex variety of mechanisms that we will briefly review. Recent advances in the understanding of the molecular biology of this organism have shed considerable light on its ability to form biofilms, which facilitate adherence especially in cystic fibrosis patients, and confer resistance to clearance by host immune mechanisms and antimicrobial killing. Treatment studies have demonstrated a significant risk of emergence of resistance during therapy with a variety of agents. Several studies suggest that two drugs are better than one for therapy of serious infections, although dual therapy does not always prevent emergence of resistant strains.

REFERENCES

  • 1 Koneman E W, Allen S D, Janda W M. Color atlas and textbook of diagnostic microbiology, 5th ed. Lippincott 1997: 257-269
  • 2 Forkner C E. Pseudomonas aeruginosa infections. In: Wright IS, ed. Modern Medical Monographs No.22 New York: Grune and Stratton 1960: 1-5
  • 3 Stratton C W. Pseudomonas aeruginosa revisited.  Infect Control Hosp Epidemiol . 1990;  11 101-104
  • 4 Mandell G L, Bennett J E, Dolin R. Principles and practice of infectious diseases, 4th ed. Churchill Livingstone Inc 1995: 1980-2003
  • 5 Neu H C. The role of Pseudomonas aeruginosa in infections.  J Antimicrob Chemother . 1983;  11 1-13
  • 6 Rello J, Jubert P. Evaluation of outcome for intubated patients with pneumonia due to Pseudomonas aeruginosa Clin Infect Dis .  1996;  23 973-978
  • 7 Kush B J, Hoadley A W. A preliminary survey of the association of Pseudomonas aeruginosa with commercial whirlpool bath waters.  AJPH . 1980;  70 279-281
  • 8 Gould I M, Wise R. Pseudomonas aeruginosa: Clinical manifestation and management.  Lancet . 1985;  1224-1227
  • 9 Olson B, Weinstein R A, Nathan C. Epidemiology of endemic Pseudomonas aeruginosa: Why infection control efforts have failed. J Infect Dis .  1984;  150 808-816
  • 10 Richards M J, Edwards J R, Culver D H. Nosocomial infections in medical intensive care units in the United States.  Crit Care Med . 1999;  27 887-893
  • 11 Doig P, Todd T. Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells.  Infect Immun . 1988;  56 1641-1646
  • 12 Baker N R, Minor V, Deal C. Pseudomonas aeruginosa exoenzyme S is an adhesin.  Infect Immun . 1991;  59 2859-2863
  • 13 Cross A S, Sadoff J C, Iglewski B H, Sokol P A. Evidence of the role of toxin A in the pathogenesis of infection with Pseudomonas aeruginosa in humans.  J Infect Dis . 1980;  142 538-546
  • 14 Nicas T I, Bradley J, Lochner J E, Iglewski B H. The role of exoenzyme S in infections with Pseudomonas aeruginosa J Infect Dis .  1985;  152 716-721
  • 15 Govan J RW, Deretic V. Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia Microbiol Rev .  1996;  60 539-574
  • 16 Wilson R, Dowling R B. Pseudomonas aeruginosa and other related species.  Thorax . 1998;  53 213-219
  • 17 Costerton J W, Stewart P S, Greenberg E P. Bacterial biofilms: A common cause of persistent infections.  Science . 1999;  284 1318-1322
  • 18 Marshall W F, Blair J E. The cephalosporins.  Mayo Clin Proc . 1999;  74 187-195
  • 19 Morihara K. Production of elastase and proteinase by Pseudomonas aeruginosa J Bacteriol .  1964;  88 745-757
  • 20 Parmely M, Gale A, Clabaugh M. Proteolytic inactivation of cytokines by Pseudomonas aeruginosa Infect Immun .  1990;  58 3009-3014
  • 21 Bishop M B, Baltch A L, Hill L A. The effect of Pseudomonas aeruginosa cytotoxin and toxin A on human polymorphonuclear leukocytes.  J Med Microbiol . 1987;  24 315-324
  • 22 Berka R M, Vasil M L. Phospholipase c (heat-labile hemolysin) of Pseudomonas aeruginosa: Purification and preliminary characterization.  J Bacteriol . 1981;  152 239-245
  • 23 Johnson M K, Boese-Marrazzo D. Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa Infect Immun .  1980;  29 1028-1033
  • 24 Pollack M, Young L S. Protective activity of antibodies to exotoxin A and lipopolysaccharide at the onset of Pseudomonas aeruginosa septicemia in man.  J Clin Invest . 1979;  63 276-285
  • 25 Itokazu G S, Quinn J P, Bell-Dixon C, Kahan F M, Weinstein R A. Antimicrobial resistance rates among aerobic gram-negative bacilli recovered from patients in intensive-care units: Evaluation of a national postmarketing surveillance program.  Clin Infect Dis . 1996;  23 779-784
  • 26 Burwen D R, Banerjee S N, Gaynes R P. Ceftazidime resistance among selected gram-negative bacilli in the United States. National Nosocomial Infections Surveillance System.  J Infect Dis . 1994;  170 1622-1625
  • 27 Jacobsen K L, Cohen S H, Inciardi J F. The relationship between antecedent antibiotic use and resistance to extended-spectrum cephalosporins in group I Beta-lactamase-producing organisms.  Clin Infect Dis . 1995;  21 1107-1113
  • 28 Manian F A, Meyer L, Jenne J, Owen A, Taff T. Loss of antimicrobial susceptibility in aerobic gram-negative bacilli repeatedly isolated from patients in intensive-care-units.  Infect Control Hosp Epidemiol . 1996;  17 222-226
  • 29 Harris A. Epidemiology and clinical outcomes of patients with multiresistant Pseudomonas aeruginosa Clin Infect Dis .  1999;  28 1128-1133
  • 30 Fink M P, Torres-Viera C, Venkataraman L. Treatment of severe pneumonia in hospitalized patients: Results of a multicenter, randomized, double-blind trial comparing intravenous ciprofloxacin with imipenem-cilastin.  Antimicrob Agents Chemother . 1994;  38 547-557
  • 31 Zabner R, Quinn J P. Antimicrobials in cystic fibrosis: Emergence of resistance and implications for treatment.  Semin Respir Infect . 1992;  7 210-217
  • 32 Hitt C M, Nightingale C H, Quintiliani R, Nicolau D P. Streamling antimicrobial therapy for lower respiratory tract infections.  Clin Infect Dis . 1997;  24(suppl 2) S231-S237
  • 33 Consensus statement. Hospital-acquired pneumonia in adults: Diagnosis, assessment of severity, initial antimicrobial therapy, and preventative strategies.  Am J Respir Crit Care Med . 1996;  153 1713-1723
  • 34 Hilf M, Yu V L, Sharp J. Antibiotic therapy for Pseudomonas aeruginosa bacteremia outcome correlations in a prospective study of 200 patients.  Am J Med . 1989;  87 540-546
  • 35 Leibovici L, Paul M, Poznanski O. Monotherapy versus beta-lactam-aminoglycoside combination treatment for gram-negative bacteremia: A prospective, observational study.  Antimicrob Agents Chemother . 1997;  41 1127-1133
  • 36 Isenberg H D, Alperstein P, France K. In vitro activity of ciprofloxacin, levofloxacin, and trovafloxacin, alone and in combination with β-lactams, against clinical isolates of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Burkholderia cepacia Diagn Microbiol Infect Dis .  1999;  33 81-86
  • 37 Iaconis J P, Pitkin D H, Sheikh W, Nadler H L. Comparison of antibacterial activities of meropenem and six other antimicrobials against Pseudomonas aeruginosa isolates from north american studies and clinical trials.  Clin Infect Dis . 1997;  24(suppl 2) S191-S196
  • 38 Hellinger W C, Brewer N S. Carbapenems and monobactams: Imipenem, meropenem, and aztreonam.  Mayo Clin Proc . 1999;  74 420-434
  • 39 Carmeli Y, Troillet N, Eliopoulos G M, Samore M H. Emergence of antibiotic resistant Pseudomonas aeruginosa: Comparison of risks associated with different antipseudomonal agents.  Antimicrob Agents Chemother . 1999;  43 1379-1382
  • 40 Rubin B K. Emerging therapies for cystic fibrosis lung disease.  Chest . 1999;  115 1120-1126
  • 41 Edson R S, Terell C L. The aminoglycosides.  Mayo Clin Proc . 1999;  74 519-528
  • 42 Levin A S, Barone A A, Penco J. Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii Clin Infect Dis .  1999;  28 1008-1011
  • 43 Hancock R EW. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria.  Clin Infect Dis . 1998;  27(suppl 1) S93-S99
  • 44 Hancock R EW, Bellido F. Antibacterial in vitro activity of fourth generation cephalosporins.  J Chemother . 1995;  7(suppl 5) 29-34
  • 45 Fung-Tomc J C, Gradelski E, Huczko E. Differences in the resistant variants of Enterobacter cloacae selected by extended-spectrum cephalosporins.  Antimicrob Agents Chemother . 1996;  40 1289-1293
  • 46 Quinn J P, Studemeister A E, DiVincenzo C A, Lerver S A. Resistance to imipenem in Pseudomonas aeruginosa: Clinical experience and biochemical mechanisms.  Rev Infect Dis . 1988;  10 892-898
  • 47 Masuda N, Sakagawa E, Ohya S. Outer membrane proteins responsible for multiple drug resistance I Pseudomonas aeruginosa Antimicrob Agents Chemother .  1995;  39 645-649
  • 48 Kohler T, Michea-Hamzehpour M, Epp S F, Pechere J C. Carbapenem activities against Pseudomonas aeruginosa: Respective contributions of OprD and efflux systems.  Antimicrob Agents Chemother . 1999;  43 424-427
  • 49 Bryan L E, O-Hara K, Wong S. Lipopolysaccharide changes in impermeability-type aminoglycoside resistance in Pseudomonas aeruginosa.  Antimicrob Agents Chemother . 1984;  26 250-255
  • 50 Yoshida H, Nakamura M, Bogaki M, Nakamura S. Proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa.  Antimicrob Agents Chemother . 1990;  34 1273-1275
  • 51 Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance I Pseudomonas aeruginosa: Evidence for involvement of an efflux operon.  J Bacteriol . 1993;  175 7363-7372
  • 52 Ma D, Cook D N, Hearst J E, Nikaido H. Efflux pumps and drug resistance in Gram-negative bacteria.  Trends Microbiol . 1994;  2 489-493
  • 53 McCall C Y, Spruill W J. The use of aerosolized tobramycin in the treatment of a resistant pseudomonal pneumonitis.  Ther Drug Monit . 1989;  11 692-695
  • 54 McCarthy M. Inhaled antibiotics effective for cystic fibrosis.  Lancet . 1999;  353 215
  • 55 McCall C Y, Spruill W J. The use of aerosolized tobramycin in the treatment of a resistant pseudomonal pneumonitis.  Ther Drug Monit . 1989;  11 692-695
  • 56 Ramsey B W, Dorkin H L. Efficacy of aerosolized tobramycin in patients with cystic fibrosis.  N Engl J Med . 1993;  328 1740-1746
  • 57 Ramsey B W, Pepe M S, Quan J M. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis.  N Engl J Med . 1999;  340 23-30
  • 58 Nelson S, Belknap S M. A randomized controlled trial of filgastim as an adunct to antibiotics for treatment of hospitalized patients with community-acquired pneumonia.  J Infect Dis . 1998;  178 1075-1080
  • 59 Knapp B, Hundt E, Lenz U. A recombinant hybrid outer membrane protein for vaccination against Pseudomonas aeruginosa Vaccine .  1999;  17 1663-1666
  • 60 Mansouri E, Gabelsberger J, Knapp B. Safety and immunogenicity of a Pseudomonas aeruginosa hybrid outer membrane protein F-1 vaccine in human volunteers.  Infect Immun . 1999;  67 1461-1470
    >