Plant Biol (Stuttg) 2000; 2(5): 558-570
DOI: 10.1055/s-2000-7498
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Different Tolerance to Light Stress in NO3 -- and NH4 +-Grown Phaseolus vulgaris L.

Z. Zhu 1 , J. Gerendás 2 , R. Bendixen 2,3 , K. Schinner 3 , H. Tabrizi 3 , B. Sattelmacher 2 , U-P. Hansen 3
  • 1 Department of Horticulture, Zhejiang University, Hangzhou, China
  • 2 Institute for Plant Nutrition and Soil Science, University of Kiel, Kiel, Germany
  • 3 Centre for Biochemistry and Molecular Biology, University of Kiel, Kiel, Germany
Further Information

Publication History

March 13, 2000

June 15, 2000

Publication Date:
31 December 2000 (online)

Abstract

NH4 +-grown plants are more sensitive to light stress than NO3 --grown plants, as indicated by reduced growth and intervenal chlorosis of French bean (Phaseolus vulgaris L.). Measuring the time course of Fv/Fm ratios under photoinhibitory light regimes did not reveal any difference in PS II damage between NO3 -- and NH4 +-grown plants, in spite of some indications of higher energy quenching in NO3 --grown plants. Also, a direct action of NH4 + as an uncoupler at the thylakoid membrane could be excluded. Instead, biochemical analysis revealed enhanced lipid peroxidation and higher activity of scavenging enzymes in NH4 +-grown plants indicating that these plants make use of metabolic pathways with stronger radical formation. Evidence for higher rates of photorespiration in NH4 +-grown plants came from experiments showing that electron flux and O2 evolution were decreased by SHAM in NH4 +-grown plants, and by antimycin A in NO3 --grown plants. Further, the comparison of electron flux and of photoacoustic measurements of O2 evolution suggested that in NH4 +-grown plants the Mehler reaction was also increased, at least in the induction phase. However, the major cause of N form-dependent stress sensitivity is assumed to be in the coupling between photosynthesis and respiration, i.e., NO3 --grown plants can utilize the TCA cycle for the generation of C skeletons for amino acid synthesis, thus improving the ATP : reductant balance, whereas NH4 +-grown plants have enhanced rates of photorespiration.

References

  • 01 Asada,  K., and Takahashi,  M.. (1987) Production and scavenging of active oxygen in photosynthesis. Photoinhibition. Klye, D. J., Osmond, C. B., and Arntzen, C. J., eds. Amsterdam; Elsevier pp. 227-287
  • 02 Baroli,  I., and Melis,  A.. (1996);  Photoinhibition and repair in Dunaliella salina acclimated to different growth irradiances.  Planta. 198 640-646
  • 03 Bendixen,  R.,, Sattelmacher,  B.,, and Hansen,  U. P.. (1997) The effect of nitrogen nutrition on the resistance of tobacco to light stress. Developments in Plant and Soil Science. Ando, T., Fujita, K., Mae, T., Matsumoto, H., Mori, S., and Sekiya, J., eds. Dordrecht; Kluwer Academic Publishers pp. 841-842
  • 04 Blackwell,  R. D.,, Murray,  A. J. S.,, Lea,  P. J.,, and Joy,  K. W.. (1988);  Photorespiratory amino donors, sucrose synthesis and the induction of CO2 fixation in barley leaves deficient in glutamine synthetase and/or glutamate synthase.  J. Exp. Bot.. 39 845-858
  • 05 Bradford,  M. M.. (1976);  A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal. Biochem.. 72 248-254
  • 06 Burke,  J. J.,, Gamble,  P. E.,, Hatfield,  J. L.,, and Quisenberry,  J. E.. (1985);  Plant morphological and biochemical responses to field water deficits. I. Responses of glutathione reductase activity and paraquat sensitivity.  Plant Physiol.. 79 415-419
  • 07 Cakmak,  I.. (1994);  Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium- and potassium-deficient leaves, but not in phosphorus-deficient leaves.  J. Exp. Bot.. 45 1259-1266
  • 08 Cakmak,  I.,, Atli,  M.,, Kaya,  R.,, Evliya,  H.,, and Marschner,  H.. (1995);  Association of high light and zinc deficiency in cold-induced leaf chlorosis in grapefruit and mandarin trees.  J. Plant Physiol.. 146 355-360
  • 09 Cakmak,  I., and Marschner,  H.. (1992);  Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves.  Plant Physiol.. 98 1222-1227
  • 10 Cakmak,  I.,, Strbac,  D.,, and Marschner,  H.. (1993);  Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds.  J. Exp. Bot.. 44 127-132
  • 11 Champigny,  M.-L.. (1995);  Integration of photosynthetic carbon and nitrogen metabolism in higher plants.  Photosynth. Res.. 46 117-127
  • 12 Conklin,  P. L., and Last,  R. L.. (1995);  Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone.  Plant Physiol.. 109 203-212
  • 13 Dau,  H.. (1994 a);  Short-term adaptation of plants to changing light intensities and its relation to photosystem II photochemistry and fluorescence emission.  J. Photochem. Photobiol. B: Biol.. 26 3-28
  • 14 Dau,  H.. (1994 b);  Molecular mechanisms and quantitative models of variable photosystem II fluorescence.  Photochem. Photobiol.. 60 1-23
  • 15 Dau,  H., and Hansen,  U. P.. (1990);  A study of the energy dependent quenching of chlorophyll fluorescence by means of photoacoustic measurements.  Photosynth. Res.. 25 269-278
  • 16 Demmig,  B.,, Winter,  K.,, Krüger,  A.,, and Czygan,  F. C.. (1988);  Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress.  Plant Physiol.. 87 17-24
  • 17 De la Torre,  A.,, Delgado,  B.,, and Lara,  C.. (1991);  Nitrate-dependent O2 evolution in intact leaves.  Plant Physiol.. 96 898-901
  • 18 Foyer,  C. H., and Halliwell,  B.. (1976);  The presence of glutathione and glutathione reductase in chloroplasts. A proposed role in ascorbic acid metabolism.  Planta. 133 21-25
  • 19 Furbank,  R. T., and Horton,  P.. (1987);  Regulation of photosynthesis in isolated barley protoplasts: the contribution of cyclic photophosphorylation.  Biochim. Biophys. Acta. 894 332-338
  • 20 Ganmore-Neumann,  R., and Kafkafi,  U.. (1983);  The effect of root temperature and NO3/NH4 ratio on strawberry plants. I. Growth, flowering, and root development.  Agron. J.. 75 941-947
  • 21 Geannopolitis,  C. N., and Ries,  S. K.. (1977);  Superoxide dismutase. I. Occurrence in higher plants.  Plant Physiol.. 59 309-314
  • 22 Gerendás,  J.,, Ratcliffe,  R. G.,, and Sattelmacher,  B.. (1990);  31P nuclear magnetic resonance evidence for differences in intracellular pH in the roots of maize seedlings grown with nitrate or ammonium.  J. Plant Physiol.. 137 125-128
  • 23 Gerendás,  J.,, Ratcliffe,  R. G.,, and Sattelmacher,  B.. (1995);  The influence of nitrogen and potassium supply on the ammonium content of maize (Zea mays L.) leaves including a comparison of measurements made in vivo and in vitro. .  Plant Soil. 173 11-20
  • 24 Gerendás,  J.,, Zhu,  Z.,, Bendixen,  R.,, Ratcliffe,  R. G.,, and Sattelmacher,  B.. (1997);  Physiological and biochemical processes related to ammonium toxicity in higher plants.  Z. Pflanzenern. Bodenkunde. 160 239-251
  • 25 Gemel,  J., and Randall,  D. D.. (1992);  Light regulation of leaf mitochrondrial pyruvate dehydrogenase complex.  Plant Physiol.. 100 908-914
  • 26 Givan,  C. V.. (1979);  Metabolic detoxification of ammonia in tissues of higher plants.  Phytochem.. 18 375-382
  • 27 Goss,  R.,, Richter,  M.,, and Wild,  A.. (1995);  Role of ΔpH in the mechanism of zeaxanthin-dependent amplification of qE.  J. Photochem. Photobiol. B: Biol.. 27 147-152
  • 28 Halliwell,  B.. (1981) Free radicals, oxygen toxicity and ageing. Age Pigments. Shal, R. S., ed. Amsterdam; Elsevier pp. 1-62
  • 29 Hansen,  U. P.,, Moldaenke,  C.,, Tabrizi,  H.,, and Ramm,  D.. (1993);  The effect of transthylakoid proton uptake on cytosolic pH and the imbalance of ATP and NAPDH/H+ production as measured by CO2- and light-induced depolarisation of the plasmalemma.  Plant Cell Physiol.. 34 681-695
  • 30 Harbinson,  J., and Foyer,  C.. (1991);  Relationships between the efficiencies of photosystem I and II and stromal redox state in CO2 free air.  Plant Physiol.. 97 44-47
  • 31 Harbinson,  J.,, Genty,  B.,, and Baker,  N. R.. (1989);  Relationship between the quantum efficiencies of photosystem I and II in pea leaves.  Plant Physiol.. 90 1029-1034
  • 32 Heber,  U.,, Bligny,  R.,, Streb,  P.,, and Douce,  R.. (1996);  Photorespiration is essential for the protection of the photosynthetic apparatus of C3 plants against photoinactivation under sunlight.  Bot. Acta. 109 307-315
  • 33 Heber,  U.,, Gerst,  U.,, Krieger,  A.,, Neimanis,  S.,, and Kobayashi,  Y.. (1995);  Coupled cyclic electron transport in intact chloroplasts and leaves of C3 plants: Does it exist? If so, what is its function?.  Photosynth. Res.. 46 269-275
  • 34 Heineke,  D.,, Riens,  B.,, Grosse,  H.,, Hoferichter,  P.,, Peter,  U.,, Flügge,  U.-I.,, and Heldt,  H.. (1991);  Redox transfer across the inner chloroplast envelope membrane.  Plant Physiol.. 95 1131-1137
  • 35 Hille,  B.. (1992) Ionic Channels of Excitable Membranes. Sunderland MA; Sinauer Associates Inc.
  • 36 Hodge,  A.,, Paterson,  E.,, Thornton,  B.,, Millard,  P.,, and Killham,  K.. (1997);  Effects of photon flux density on carbon partitioning and rhizosphere carbon flow of Lolium perenne. .  J. Exp. Bot.. 48 1797-1805
  • 37 Hormann,  H.,, Neubauer,  C.,, Asada,  K.,, and Schreiber,  U.. (1993);  Intact chloroplasts display pH 5 optimum of O2-reduction in the absence of methyl viologen: Indirect evidence for a regulatory role of superoxide protonation.  Photosynth. Res.. 37 69-80
  • 38 Hossain,  M. A.,, Nakano,  Y.,, and Asada,  K.. (1984);  Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide.  Plant Cell Physiol.. 25 385-395
  • 39 Igamberdiev,  A. U.,, Bykova,  N. V.,, and Gardeström,  P.. (1997);  Involvement of cyanide-resistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants.  FEBS Lett.. 412 265-269
  • 40 Igamberdiev,  A. U.,, Bykova,  N. V.,, and Gardeström,  P.. (1998) Operation of coupled and non-coupled pathways of mitochondrial electron transport in photosynthetic plant cell. Photosynthesis: Mechanisms and Effects, Vol. V. Garab, G., ed. Dordrecht; Kluwer Academic Publishers pp. 3665-3670
  • 41 Ivanov,  B., and Edwards,  G. E.. (1997);  Electron flow accompanying the ascorbate peroxidase cycle in maize mesophyll chloroplasts and its cooperation with linear electron flow to NADP+ and cyclic electron flow in thylakoid membrane energization.  Photosynth. Res.. 52 187-198
  • 42 Kendall,  A. C.,, Wallsgrove,  R. M.,, Hall,  N. P.,, Turner,  J. C.,, and Lea,  P. J.. (1986);  Carbon and nitrogen metabolism in barley (Hordeum vulgare L.) mutants lacking ferredoxin-dependent glutamate synthase.  Planta. 168 316-323
  • 43 Kolbowski,  J.,, Reising,  H.,, and Schreiber,  U.. (1990);  Computer controlled pulse modulation system for analysis of photo-acoustic signals in the time domain.  Photosynth. Res.. 25 309-316
  • 44 Kooten,  O. v., and Snel,  J. F. H.. (1990);  The use of chlorophyll fluorescence in plant stress physiology.  Photosynth. Res.. 25 147-150
  • 45 Krause,  G. H.,, Vernotte,  C.,, and Briantais,  J. M.. (1982);  Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae.  Biochim. Biophys. Acta. 679 116-124
  • 46 Magalhaes,  J. R., and Huber,  D. M.. (1989);  Ammonium assimilation in different plant species as affected by nitrogen form and pH control in solution culture.  Fert. Res.. 21 1-6
  • 47 Magalhaes,  J. S., and Wilcox,  G. E.. (1983);  Tomato growth and mineral composition as influenced by nitrogen form and light intensity.  J. Plant Nutr.. 6 847-862
  • 48 Magalhaes,  J. S., and Wilcox,  G. E.. (1984);  Ammonium toxicity development in tomato plants relative to nitrogen form and light intensity.  J. Plant Nutr.. 7 1477-1496
  • 49 Marschner,  H.. (1995) Mineral Nutrition of Higher Plants. London; Academic Press
  • 50 Marschner,  H., and Cakmak,  I.. (1989);  High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium and magnesium deficient bean (Phaseolus vulgaris) plants.  J. Plant Physiol.. 134 308-314
  • 51 Morales,  F.,, Abadía,  A.,, Belkhodja,  R.,, and Abadía,  J.. (1994);  Iron deficiency-induced changes in photosynthetic pigment composition of field-grown pear (Pyrus communis L.) leaves.  Plant Cell Environ.. 17 1153-1160
  • 52 Nakano,  Y., and Asada,  K.. (1981);  Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.  Plant Cell Physiol.. 22 867-880
  • 53 Neubauer,  C., and Yamamoto,  H. Y.. (1994);  Membrane barriers and Mehler-peroxidase reaction limit the ascorbate available for violaxanthin de-epoxidase activity in intact chloroplasts.  Photosynth. Res.. 39 137-147
  • 54 Noctor,  G., and Foyer,  C. H.. (1998);  A re-evaluation of the ATP: NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity?.  J. Exp. Bot.. 49 1895-1908
  • 55 Polle,  A.,, Chakrabarti,  K.,, Chakrabarti,  S.,, Seifert,  F.,, Schramel,  P.,, and Rennenberg,  H.. (1992);  Antioxidants and manganese deficiency in needles of Norway spruce (Picea abies L.) trees.  Plant Physiol.. 99 1084-1089
  • 56 Prasil,  O.,, Kolber,  Z.,, Berry,  J. A.,, and Falkowski,  P. G.. (1996);  Cyclic electron flow around photosystem II in vivo. .  Photosynth. Res.. 48 395-410
  • 57 Purvis,  A. C.. (1997);  Role of the alternative oxidase in limiting superoxide production by plant mitochondria.  Physiol. Plant.. 100 165-170
  • 58 Reising,  H., and Schreiber,  U.. (1994);  Inhibition by ethoxyzolamide of a photoacoustic uptake signal in leaves: Evidence for carbonic anhydrase catalyzed CO2 solubilisation.  Photosynth. Res.. 41 65-73
  • 59 Salsac,  L.,, Chaillou,  S.,, Morot-Gaudry,  J. F.,, Lesaint,  C.,, and Jolivet,  E.. (1987);  Nitrate and ammonium nutrition in plants.  Plant. Physiol. Biochem.. 25 805-812
  • 60 Sakaki,  T.,, Kondo,  N.,, and Sugahara,  K.. (1983);  Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: Role of active oxygens.  Physiol. Plant.. 59 28-34
  • 61 Schinner,  K.,, Tabrizi,  H.,, and Hansen,  U. P.. (1999) Indication for the Mehler reaction obtained from comparing photoacoustic and fluorescence-clamp measurements. Photosynthesis: Mechanisms and Effects, Vol. III. Garab, G., ed. Dordrecht, Boston, London; Kluwer Academics Publishers pp. 1759-1762
  • 62 Schoener,  S., and Krause,  G. H.. (1990);  Protective systems against active oxygen species in spinach. Response to cold acclimation in excess light.  Planta. 180 383-389
  • 63 Schreiber,  U., and Bilger,  W.. (1987) Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. NATO ASI Series. Plant Response to Stress. Vol. G 15. Tehunen, J. D., ed. Berlin; Springer-Verlag pp. 27-53
  • 64 Schreiber,  U., and Krieger,  A.. (1998);  Two fundamentally different types of variable chlorophyll fluorescence in vivo. .  FEBS Letters. 397 131-135
  • 65 Siedow,  J. N., and Umbach,  A. L.. (1995);  Plant mitochondrial electron transfer and molecular biology.  The Plant Cell. 7 821-831
  • 66 Smirnoff,  N., and Colombe,  S. V.. (1988);  Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system.  J. Exp. Bot.. 39 1097-1108
  • 67 Sundby,  C.,, Chow,  W. S.,, and Anderson,  J. M.. (1993);  Effects on photosystem II, photoinhibition, and plant performance of the spontaneous mutation of serine-264 in the photosystem II reaction center D1 protein in triazine-resistant Brassica napus L.  Plant Physiol.. 103 105-113
  • 68 Tabrizi,  H.,, Schinner,  K.,, Spors,  J.,, and Hansen,  U. P.. (1998);  Deconvolution of the three components of the photoacoustic signal by curve fitting and the relationship of CO2 uptake to proton fluxes.  Photosynth. Res.. 57 101-115
  • 69 Tasaka,  Y.,, Gombos,  Z.,, Nishiyama,  Y.,, Mohanty,  P.,, Ohba,  T.,, Ohki,  K.,, and Murata,  N.. (1996);  Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosythesis.  EMBO J.. 15 6416-6425
  • 70 Vanselow,  K. H.. (1993);  The effect of N-nutrients on the acceptor pool of PS I and thylakoid energization as measured by chlorophyll fluorescence of Dunaliella salina. .  J. Exp. Bot.. 44 1331-1340
  • 71 Verhoeven,  A. S.,, Adams III,  W. W.,, and Demmig-Adams,  B.. (1996);  Close relationship between the state of the xanthophyll cycle pigments and photosystem II efficiency during recovery from winter stress.  Physiol. Plant.. 96 567-576
  • 72 Verhoeven,  A. S.,, Demmig-Adams,  B.,, and Adams III,  W. W.. (1997);  Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress.  Plant Physiol.. 113 817-824
  • 73 Zornoza,  P.,, Caselles,  J.,, and Carpena,  O.. (1987);  Response of pepper plants to NO3 : NH4 ratio and light intensity.  J. Plant Nutr.. 10 773-783

B. Sattelmacher

Institut für Pflanzenernährung und Bodenkunde Christian-Albrechts-Universität

Hermann-Rodewald-Str. 2 24098 Kiel Germany

Email: bsattelmacher@plantnutrition.uni-kiel.de

Section Editor: H. Rennenberg

    >