Plant Biol (Stuttg) 2000; 2(2): 243-251
DOI: 10.1055/s-2000-13919
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Hardly Increased Oxidative Stress After Exposure to Low Temperature in Chilling-Acclimated and Non-Acclimated Maize Leaves

J. Leipner, A. Basilidès, P. Stamp, Y. Fracheboud
  • Institute of Plant Sciences, Swiss Federal Institute of Technology, Zürich, SwitzerlandReceived: July 15, 1999; Accepted: January 11, 2000
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Abstract:

Seedlings of Zea mays L. were grown at optimal (25 °C) and suboptimal (15 °C) temperature and then exposed to severe chilling temperature (6 °C) at their growth light intensity (450 ìmol quanta m−2 s−1) for 4 d. Photosynthetic parameters, hydrogen peroxide, antioxidant contents, and activity of scavenging enzymes were investigated before, during, and after chilling stress. This stress caused a stronger reduction in photosynthetic activity, maximum quantum efficiency of photosystem II primary photochemistry (F v/F m), and catalase activity in plants which had been grown at 25 °C rather than at 15 °C. Maize plants grown at suboptimal temperature de-epoxidized their xanthophyll cycle pool to a greater extent and exhibited a faster recovery from chilling stress than plants which had not been acclimated to chilling. Antioxidant content, activity of scavenging enzymes, with the exception of catalase, hydrogen peroxide formation, and the size of the xanthophyll cycle pool were hardly affected by chilling stress. However, chilling induced a temporary increase in the glutathione content and triggered the synthesis of á-tocopherol during the phase of recovery at 25 °C. The results indicate that leaves respond to chilling stress by down-regulation of photosystem II accompanied by de-epoxidation of the xanthophyll cycle pool, probably to prevent enhanced formation of superoxide radicals at photosystem I and, consequently, other reactive oxygen species.

Key words:

Antioxidants, chilling stress, photosynthesis, scavenging enzymes, xanthophyll cycle, Zea mays.

Abbreviations:

AZ : VAZ: De-epoxidation state of the xanthophyll cycle pool

APX: Ascorbate peroxidase

CAT: Catalase

DAB: 3,3′-Diaminobenzidine tetrahydrochloride

DHAR: Dehydroascorbate reductase

F v/F m: Maximum quantum efficiency of photosystem II primary photochemistry

GR: Glutathione reductase

HFA cycle: Halliwell-Foyer-Asada cycle

MAP reaction: Mehler ascorbate reductase reaction

MDAR: Monodehydroascorbate reductase

ROS: Reactive oxygen species

SOD: Superoxide dismutase

References

  • 01 Adams III,  W. W., and Demmig-Adams,  B.,. (1995);  The xanthophyll cycle and sustained thermal energy dissipation activity in Vinca minor and Euonymus kiautschovicus in winter.  Plant Cell Environ.. 18 117-127
  • 02 Adams III,  W. W.,, Demmig-Adams,  B.,, Verhoeven,  A. S.,, and Barker,  D. H.. (1995);  “Photoinhibition” during winter stress: involvement of sustained xanthophyll cycle-dependent energy dissipation.  Aust. J. Plant Physiol.. 22 261-276
  • 03 Aebi,  H.. (1984);  Catalase in vitro. .  Meth. Enzymol.. 105 121-126
  • 04 Ahmad,  S.. (1995) Antioxidant mechanisms of enzymes and proteins. Oxidative Stress and Antioxidant Defense in Biology. Ahmad, S., ed. New York; Chapman and Hall 238-272
  • 05 Alberda,  T.. (1969);  The effect of low temperature on dry matter production, chlorophyll concentration and photosynthesis of maize plants of different ages.  Acta Bot. Neerl.. 18 39-49
  • 06 Badiani,  M.,, Paolacci,  A. R.,, Fusari,  A.,, D'Ovidio,  R.,, Scandalios,  J. G.,, Porceddu,  E.,, and Sermanni,  G. G.. (1997);  Non-optimal growth temperatures and antioxidants in the leaves of Sorghum bicolor (L.) Moench. II. Short-term acclimation.  J. Plant Physiol.. 151 409-421
  • 07 Baker,  N. R.,, Farage,  P. K.,, Stirling,  C. M.,, and Long,  S. P.. (1994) Photoinhibition of crop photosynthesis in the field at low temperature. Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Baker, N. R. and Bowyer, J. R., eds. Oxford; Bios Scientific Publishers 349-363
  • 08 Beauchamp,  C., and Fridovich,  I.. (1971);  Superoxide dismutase: improved assays and an assay applicable to acrylamide gels.  Anal. Biochem.. 44 276-287
  • 09 Bredenkamp,  G. J., and Baker,  N. R.. (1994);  Temperature-sensitivity of D1 protein metabolism in isolated Zea mays chloroplasts.  Plant Cell Environ.. 17 205-210
  • 10 Dalton,  D. A.. (1995) Antioxidant defenses of plants and fungi. Oxidative Stress and Antioxidant Defense in Biology. Ahmad, S., ed. New York; Chapman and Hall 298-355
  • 11 Demmig-Adams,  B., and Adams III,  W. W.. (1996);  Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species.  Planta. 198 460-470
  • 12 Feierabend,  J., and Engel,  S.. (1986);  Photoinactivation of catalase in vitro and in leaves.  Arch. Biochem. Biophys.. 251 567-576
  • 13 Foyer,  C. H.,, Souriau,  N.,, Perret,  S.,, Lelandais,  M.,, Kunert,  K.-J.,, Pruvost,  C.,, and Jouanin,  L.. (1995);  Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.  Plant Physiol.. 109 1047-1057
  • 14 Franke,  W.. (1955) Ascorbinsäure. Moderne Methoden der Pflanzenanalyse, Vol. II. Paech, K. K. and Tracey, M. V., eds. Berlin; Springer 95-112
  • 15 Fryer,  M. J.,, Andrews,  J. R.,, Oxborough,  K.,, Blowers,  D. A.,, and Baker,  N. R.. (1998);  Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature.  Plant Physiol.. 116 571-580
  • 16 Gilmore,  A. M., and Yamamoto,  H. Y.. (1991);  Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column.  J. Chromatogr.. 543 137-145
  • 17 Griffith,  O. W.. (1980);  Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine.  Anal. Biochem.. 106 207-212
  • 18 Gupta,  A. S.,, Webb,  R. P.,, Holaday,  A. S.,, and Allen,  R. D.. (1993);  Overexpression of superoxide dismutase protects plants from oxidative stress.  Plant Physiol.. 103 1067-1073
  • 19 Haldimann,  P.. (1996);  Effects of changes in growth temperature on photosynthesis and carotenoid composition in Zea mays leaves.  Physiol. Plantarum. 97 554-562
  • 20 Haldimann,  P.,, Fracheboud,  Y.,, and Stamp,  P.. (1995);  Carotenoid composition in Zea mays developed at sub-optimal temperature and different light intensities.  Physiol. Plantarum. 95 409-414
  • 21 Haldimann,  P.,, Fracheboud,  Y.,, and Stamp,  P.. (1996);  Photosynthetic performance and resistance to photoinhibition of Zea mays L. leaves grown at sub-optimal temperature.  Plant Cell Environ.. 19 85-92
  • 22 Hodges,  D. M.,, Andrews,  C. J.,, Johnson,  D. A.,, and Hamilton,  R. I.. (1996);  Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines.  Physiol. Plantarum. 98 685-692
  • 23 Hodges,  D. M.,, Andrews,  C. J.,, Johnson,  D. A.,, and Hamilton,  R. I.. (1997);  Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines.  J. Exp. Bot.. 48 1105-1113
  • 24 Hossain,  M. A.,, Nakano,  Y.,, and Asada,  K.. (1984);  Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide.  Plant Cell Physiol.. 25 385-395
  • 25 Hull,  M. R.,, Long,  S. P.,, and Jahnke,  L. S.. (1997);  Instantaneous and developmental effects of low temperature on the catalytic properties of antioxidant enzymes in two Zea species.  Aust. J. Plant Physiol.. 24 337-343
  • 26 Jahnke,  L. S.,, Hull,  M. R.,, and Long,  S. P.. (1991);  Chilling stress and oxygen metabolizing enzymes in Zea mays and Zea diploperennis. .  Plant Cell Environ.. 14 97-104
  • 27 Jung,  S., and Steffen,  K. L.. (1997);  Influence of photosynthetic photon flux densities before and during long-term chilling on xanthophyll cycle and chlorophyll fluorescence quenching in leaves of tomato (Lycopersicon hirsutum).  Physiol. Plantarum. 100 958-966
  • 28 Karpinski,  S.,, Escobar,  C.,, Karpinska,  B.,, Creissen,  G.,, and Mullineaux,  P. M.. (1997);  Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress.  Plant Cell. 9 627-640
  • 29 Kocsy,  G.,, Brunner,  M.,, Rüegsegger,  A.,, Stamp,  P.,, and Brunhold,  C.. (1996);  Glutathione synthesis in maize genotypes with different sensitivities to chilling.  Planta. 198 365-370
  • 30 Krivosheeva,  A.,, Tao,  D.-L.,, Ottander,  C.,, Wingsle,  G.,, Dube,  S. L.,, and Öquist,  G.. (1996);  Cold acclimation and photoinhibition of photosynthesis in Scots pine.  Planta. 200 296-305
  • 31 Leipner,  J.,, Fracheboud,  Y.,, and Stamp,  P.. (1997);  Acclimation by suboptimal growth temperature diminishes photooxidative damage in maize leaves.  Plant Cell Environ.. 20 366-372
  • 32 Massacci,  A.,, Iannelli,  M. A.,, Pietrini,  F.,, and Loreto,  F.. (1995);  The effect of growth at low temperature on photosynthetic characteristics and mechanism of photoprotection of maize leaves.  J. Exp. Bot.. 46 119-127
  • 33 Nakano,  Y., and Asada,  K.. (1981);  Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.  Plant Cell Physiol.. 22 867-880
  • 34 Nie,  G.-Y.,, Long,  S. P.,, and Baker,  N. R.. (1992);  The effects of development at sub-optimal growth temperature on photosynthetic capacity and susceptibility to chilling-dependent photoinhibition in Zea mays. .  Physiol. Plantarum. 85 554-560
  • 35 Nie,  G.-Y.,, Robertson,  E. J.,, Fryer,  M. J.,, Leech,  R. M.,, and Baker,  N. R.. (1995);  Response of the photosynthetic apparatus in maize leaves grown at low temperature on transfer to normal growth temperature.  Plant Cell Environ.. 18 1-12
  • 36 Ortiz-Lopez,  A.,, Nie,  G.-Y.,, Ort,  D. R.,, and Baker,  N. R.. (1990);  The involvement of the photoinhibition of photosystem II and impaired membrane energization in the reduced quantum yield of carbon assimilation in chilled maize.  Planta. 181 78-84
  • 37 Pfündel,  E., and Bilger,  W.. (1994);  Regulation and possible function of the violaxanthin cycle.  Photosynth. Res.. 42 89-109
  • 38 Schöner,  S., and Krause,  G. H.. (1990);  Protective systems against active oxygen species in spinach: response to cold acclimation in excess light.  Planta. 180 383-389
  • 39 Streb,  P.. (1994) Lichtschäden und Stresswirkung in Blättern und antioxidative Schutzmechanismen. University of Frankfurt am Main; Ph. D. thesis 1-215
  • 40 Streb,  P.,, Shang,  W.,, and Feierabend,  J.. (1999);  Resistance of cold-hardened winter rye leaves (Secale cereale L.) to photo-oxidative stress.  Plant Cell Environ.. 22 1211-1223
  • 41 Terashima,  I.,, Noguchi,  K.,, Itoh-Nemoto,  T.,, Park,  Y.-M.,, Kubo,  A.,, and Tanaka,  K.. (1998);  The cause of PSI photoinhibition at low temperatures in leaves of Cucumis sativus, a chilling-sensitive plant.  Physiol. Plant. 103 295-303
  • 42 Thiele,  A.,, Schirwitz,  K.,, Winter,  K.,, and Krause,  G. H.. (1996);  Increased xanthophyll cycle activity and reduced D1 protein inactivation related to photoinhibition in two plant systems acclimated to excess light.  Plant Science. 115 237-250
  • 43 Thordal-Christensen,  H.,, Zhang,  Z.,, Wie,  Y.,, and Collinge,  D. B.. (1997);  Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction.  The Plant J.. 11 1187-1194
  • 44 Wise,  R. R.. (1995);  Chilling-enhanced photooxidation: the production, action and study of reactive oxygen species produced during chilling in the light.  Photosynth. Res.. 45 79-97
  • 45 Wise,  R. R., and Naylor,  A. W.. (1987);  Chilling-enhanced photooxidation.  Plant Physiol.. 83 278-282

J. Leipner

Institute of Plant Sciences

Swiss Federal Institute of Technology

Universitätstrasse 2

8092 Zürich

Switzerland

joerg.leipner@ipw.agrl.ethz.ch

Section Editor: H. Lambers

    >