Semin Reprod Med 2000; 18(2): 109-122
DOI: 10.1055/s-2000-12550
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Follicular Development In Vitro

Alison Murray, Norah Spears
  • Department of Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

There has been tremendous interest in recent years in the culture of oocytes and follicles. Although much of the research using follicle culture aims to increase understanding of the regulation of follicle development, an important goal has been to develop a method that will eventually allow maturation of human oocytes from the primordial follicle to the mature Graafian stage. We are still some way from this at present, although it has now been achieved in the mouse. In this article, we consider various methods of follicle culture for primordial, preantral, and antral follicles. In vitro development of primordial follicles has used primarily whole ovaries or ovarian fragments as a source of follicles. Culture of later stages of follicle development uses mainly isolated follicular units, either whole (with an intact basement membrane and, in some cases, attached thecal cells) or nonintact (oocyte-somatic cell complexes, which may or may not have remnants of basement membranes and/or thecal cells attached).

REFERENCES

  • 1 Baker T G. Oogenesis and ovulation. In: Austin CR, Short RV, eds. Reproduction in Mammals 2nd ed. Cambridge: Cambridge University Press 1982: 17-45
  • 2 Eppig J J. Intercommunication between mammalian oocytes and companion somatic cells.  Bioessays . 1991;  13 569-574
  • 3 Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses.  Endocr Rev . 1996;  17 121-155
  • 4 Vendola K, Zhou J, Wang J, Famuyiw O A, Bievre M, Bondy C A. Androgens promote oocyte insulin-like growth factor I expression and initiation of follicle development in the primate ovary.  Biol Reprod . 1999;  61 353-357
  • 5 Hirshfield A N. Thecal cells may be present at the outset of follicular growth.  Biol Reprod . 1991;  44 1157-1162
  • 6 Eppig J J, O'Brien M, Wigglesworth K. Mammalian oocyte growth and development in vitro.  Mol Reprod Dev . 1996;  44 260-273
  • 7 Fortune J E. Ovarian follicular growth and development in mammals.  Biol Reprod . 1994;  50 225-232
  • 8 Gosden R G, Boland N I, Spears N. The biology and technology of follicular oocyte development in vitro.  Reprod Med Rev . 1994;  2 129-152
  • 9 Hirshfield A N. Development of follicles in the mammalian ovary.  Int Rev Cytol . 1991;  24 43-99
  • 10 Hillier S G. Current concepts of the role of FSH and LH in folliculogenesis.  Hum Reprod . 1994;  9 188-191
  • 11 Armstrong D T, Dorrington J H. Estrogen biosynthesis in the ovary and testes. In: Thomas JA, Singhal RL, eds. Regulatory Mechanisms Affecting Gonadal Hormone Action Vol 2. Baltimore: University Park Press 1979: 217-258
  • 12 Udoff L C, Adashi E Y. Autocrine/paracrine regulation of the ovarian follicle.  Endocrinologist . 1999;  9 99-106
  • 13 Armstrong D G, Webb R. Ovarian follicle dominance: the role of intraovarian growth factors and novel proteins.  Rev Reprod . 1997;  2 139-146
  • 14 Norman R J, Brannstrom M. Cytokines in the ovary: pathophysiology and potential for pharmacological intervention.  Pharmacol Ther . 1996;  69 219-236
  • 15 Martinovitch P N. The development in-vitro of the mammalian gonad-ovary and ovogenesis.  Proc R Soc Lond (Biol) . 1938;  125 232-249
  • 16 Gregoraszccuk E L, Stoklosowa S, Wojtusiak A. Organ culture as a model of studying follicular development and function of postnatal mouse ovaries.  Acta Biol Hung . 1997;  48 431-438
  • 17 Ryle M. Morphological responses to pituitary gonadotrophins by mouse ovaries in-vitro.  J Reprod Fertil . 1969;  20 307-312
  • 18 Baker T G, Neal P. Gonadotrophin-induced maturation of mouse Graafian follicles in organ culture. In: Biggars JD, Schuetz AW, eds. Oogenesis Baltimore: University Park Press 1972: 377-396
  • 19 Lambertson C J, Greenbaum D F, Wright K H, Wallach E E. In vitro studies of ovulation in the perfused rabbit ovary.  Fertil Steril . 1976;  27 178-187
  • 20 Channing C P, Tsafriri A. Mechanism of action of luteinizing hormone and follicle-stimulating hormone on the ovary in vitro.  Metabolism . 1977;  26 413-468
  • 21 Bonello N. Inhibition of nitric oxide: effects on IL-1 beta-enhanced ovulation rate, steroid hormones and ovarian leukocyte distribution at ovulation in the rat.  Biol Reprod . 1996;  54 436-445
  • 22 Abir R, Franks S, Mobberley M A, Moore P A, Margara R A, Winston R M. Mechanical isolation and in vitro growth of preantral and small antral human follicles.  Fertil Steril . 1997;  68 682-688
  • 23 Abir R, Roizman P, Fisch B. Pilot study of isolated early human follicles cultured in collagen gels for 24 hours.  Hum Reprod . 1999;  14 1299-1301
  • 24 Fortune J E, Kito S, Byrd D D. Activation of primordial follicles in vitro.  J Reprod Fertil Suppl . 1999;  54 439-448
  • 25 Eppig J J, O'Brien M J. Development in vitro of mouse oocytes from primordial follicles.  Biol Reprod . 1996;  54 197-207
  • 26 Yu N, Roy S K. Development of primordial and prenatal follicles from undifferentiated somatic cells and oocytes in the hamster prenatal ovary in vitro: effect of insulin.  Biol Reprod . 1999;  61 1558-1567
  • 27 Parrott J A, Skinner M K. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis.  Endocrinology . 1999;  140 4262-4271
  • 28 Blandeau R, Warrick E, Runery R E. In vitro cultivation of fetal mouse ovaries.  Fertil Steril . 1965;  16 705-715
  • 29 Hartshorne G M. Fetal ovarian tissue in vitro.  Assist Reprod Rev . 1996;  6 72-82
  • 30 Hovatta O, Silye R, Abir R, Krausz T, Winston R M. Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture.  Hum Reprod . 1997;  12 1032-1036
  • 31 Wandji S A, Srsen V, Nathanielsz P W, Eppig J J, Fortune J E. Initiation of growth of baboon primordial follicles in vitro.  Hum Reprod . 1997;  12 1993-2001
  • 32 Wright C S, Hovatta O, Margara R. Effects of follicle-stimulating hormone and serum substitution on the in vitro growth of human ovarian follicles.  Hum Reprod . 1999;  14 1555-1562
  • 33 Qu J, Godin P A, Nissolle M, Donnez J. Distribution and epidermal growth factor receptor expression of primordial follicles in human ovarian tissue before and after cryopreservation.  Hum Reprod . 2000;  15 302-310
  • 34 Liu J, Van Der Elst J, Van Den Broecke R, Dumortier F, Dhont M. Maturation of mouse primordial follicles by combination of grafting and in vitro culture.  Biol Reprod . 2000;  62 1218-1223
  • 35 Hovatta O, Wright C, Krausz T, Hardy K, Winston R M. Human primordial, primary and secondary ovarian follicles in long-term culture: effect of partial isolation.  Hum Reprod . 1999;  14 2519-2524
  • 36 Otkay K, Newton H, Aubard Y, Salha O, Gosden R G. Cryopreservation of immature human oocytes and ovarian tissue: an emerging technology?.  Fertil Steril . 1998;  69 1-7
  • 37 Moor R M, Dai Y, Lee C, Fulka Jr J. Oocyte maturation and embryonic failure.  Hum Reprod Update . 1998;  4 223-236
  • 38 Mermillod P, Oussaid B, Cognie Y. Aspects of follicular and oocyte maturation that affect the developmental potential of embryos.  J Reprod Fertil Suppl . 1999;  54 449-460
  • 39 Eppig J J, Schroeder A C. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation and fertilization in vitro.  Biol Reprod . 1989;  41 268-276
  • 40 Spears N, Boland N I, Murray A A, Gosden R G. Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile.  Hum Reprod . 1994;  9 527-532
  • 41 Telfer E E. In vitro models for oocyte development.  Theriogenology . 1998;  49 451-460
  • 42 Roy S K, Treacy B J. Isolation and long-term culture of human preantral follicles.  Fertil Steril . 1993;  59 783-790
  • 43 Qvist R, Blackwell L F, Bourne H, Brown J B. Development of mouse ovarian follicles from primary to preovulatory stages in vitro.  J Reprod Fertil . 1990;  89 169-180
  • 44 Torrance C, Telfer E E, Gosden R G. Quantitative study of the development of isolated mouse pre-antral follicles in collagen gel culture.  J Reprod Fertil . 1989;  87 367-374
  • 45 Cain L, Chatterjee S, Collins T J. In vitro folliculogenesis of rat preantral follicles.  Endocrinology . 1995;  136 3369-3377
  • 46 Gore-Langton R E, Daniel S A. Follicle-stimulating hormone and estradiol regulate antrum-like reorganisation of granulosa cells in rat preantral follicle cultures.  Biol Reprod . 1990;  43 65-72
  • 47 Roy S K, Greenwald G S. Hormonal requirements for the growth and differentiation of hamster preantral follicles in long-term culture.  J Reprod Fertil . 1989;  87 103-114
  • 48 Roy S K, Greenwald G S. Methods of separation and in vitro culture of preantral follicles from mammalian ovaries.  Hum Reprod Update . 1996;  2 236-245
  • 49 Gomes J E, Correia S C, Gouveia-Oliveira A, Cidadao A J, Plancha C E. Three-dimensional environments preserve extracellular matrix compartments of ovarian follicles and increase FSH-dependent growth.  Mol Reprod Dev . 1999;  54 163-172
  • 50 Boland N I, Humpherson D G, Leese H J, Gosden R G. Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro.  Biol Reprod . 1993;  48 798-806
  • 51 Rose U M, Hanssen R G, Kloosterboer H J. Development and characterization of an in vitro ovulation model using mouse ovarian follicles.  Biol Reprod . 1999;  61 503-511
  • 52 Hartshorne G M, Sargent I L, Barlow D H. Growth rates and antrum formation of mouse ovarian follicles in vitro in response to FSH, relaxin, cAMP and hypoxanthine.  Hum Reprod . 1994;  9 1003-1012
  • 53 Fehrenbach A, Nusse N, Nayudu P L. Patterns of growth, oestradiol and progesterone released by in vitro cultured mouse ovarian follicles indicate consecutive selective events during follicle development.  J Reprod Fertil . 1998;  113 287-297
  • 54 Nayudu P L, Osborn S M. Factors influencing the rate of preantral and antral growth of mouse ovarian follicles in vitro.  J Reprod Fertil . 1992;  95 349-362
  • 55 McGee E, Spears N, Minami S. Preantral ovarian follicles in serum-free culture: suppression of apoptosis after activation of the cyclic guanosine 3′,5′-monophosphate pathway and stimulation of growth and differentiation by follicle-stimulating hormone.  Endocrinology . 1997;  138 2417-2424
  • 56 Cortvrindt R, Smitz J, Van Steirteghem C A. In vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepubertal mice in a simplified culture system.  Hum Reprod . 1996;  11 2656-2666
  • 57 Eppig J J, Chesnel F, Hirao Y. Oocyte control of granulosa cell development: how and why.  Hum Reprod . 1997;  12 127-132
  • 58 van de Sandt J J, Schroeder A C, Eppig J J. Culture media for mouse oocyte maturation affect subsequent embryonic development.  Mol Reprod Dev . 1990;  25 164-171
  • 59 Zhao J, Dorland M, Taverne M A, VanDer Weidjen C G, Bevers M M, Van Den Hurk R. In vitro culture of rat preantral follicles with emphasis on follicular interactions.  Mol Reprod Dev . 2000;  55 65-74
  • 60 Eppig J J, Downs S M. The effect of hypoxanthine on mouse oocyte growth and development in vitro: maintenance of meiotic arrest and gonadotropin-induced oocyte maturation.  Dev Biol . 1987;  119 313-321
  • 61 Murray A A, Molinek M D, Baker S J. The role of ascorbic acid in promoting follicle integrity and survival in intact murine ovarian follicles in vitro.  Reproduction . 2001;  121 89-96
  • 62 Eppig J J, Hosoe M, O'Brien M J, Pendola F M, Requena A, Watanabe S. Conditions that affect acquisition by mouse oocytes in vitro: FSH, insulin, glucose and ascorbic acid.  Mol Cell Endocrinol . 2000;  163 109-116
  • 63 Cortvrindt R, Smitz J, Van Steirteghem C A. Assessment of the need for FSH in early preantral mouse follicle culture in vitro.  Hum Reprod . 1997;  12 759-768
  • 64 Spears N, Murray A A, Allison V, Boland N I, Gosden R G. Role of gonadotrophins and ovarian steroids in the development of mouse follicles in vitro.  J Reprod Fertil . 1998;  113 19-26
  • 65 Almahbobi G, Nagodauithane A, Trounson A O. Effects of EGF,TGF alpha and androstenedione on follicular growth and aromatization in culture.  Hum Reprod . 1995;  10 2767-2772
  • 66 Balasch J, Miro F, Burzaco I. The role of LH in human follicle development and oocyte fertility: evidence from IVF in a woman with long-standing hypogonadotrophic hypogonadism and using rhFSH.  Hum Reprod . 1995;  10 1678-1683
  • 67 Out H J. New stimulation regimens with recombinant FSH (Puregon) in in vitro fertilization.  Eur J Obstet Gynecol Reprod Biol . 1999;  85 21-22
  • 68 Ulloa-Aguirre A, Midgley Jr R A, Beitins I Z, Padmanabhan V. Follicle-stimulating isohormones: characterization and physiological relevance.  Endocr Rev . 1995;  16 765-787
  • 69 Padmanabhan V, Lee J S, Beitins I Z. Follicle-stimulating isohormones: regulation and biological significance.  J Reprod Fertil Suppl . 1999;  54 87-99
  • 70 Vitt U A, Kloosterboer H J, Rose U M. Isoforms of hrFSH: comparison of effects on murine follicle development in vitro.  Biol Reprod . 1998;  59 854-861
  • 71 Findlay J K, Drummond A E. Regulation of the FSH receptor in the ovary.  Trends Endocrinol Metab . 1999;  10 183-188
  • 72 Hillier S G, Tetsuka M, Fraser H M. Location and developmental regulation of androgen receptor in primate ovary.  Hum Reprod . 1997;  12 107-111
  • 73 Vendola K A, Zhou J, Adesanya O O, Weil S J, Bondy C A. Androgens stimulate early stages of follicular growth in the primate ovary.  J Clin Invest . 1998;  101 2622-2629
  • 74 Billig H, Furuta I, Hsueh A JW. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis.  Endocrinology . 1993;  133 2204-2212
  • 75 Farookhi R. Effects of aromatizable and nonaromatizable androgen treatments on LH receptors and ovulation induction in immature rats.  Biol Reprod . 1985;  33 363-369
  • 76 Drummond A E, Findlay J K. The role of estrogen in folliculogenesis.  Mol Cell Endocrinol . 1999;  151 57-64
  • 77 Murray A A, Gosden R G, Allison V, Spears N. Effect of androgens on the development of mouse follicles growing in vitro.  J Reprod Fertil . 1998;  113 27-33
  • 78 Smyth C D, Gosden R G, McNeilly A S, Hillier S G. Effect of inhibin immunoneutralisation on steroidogenesis in rat ovarian follicles in vitro.  J Endocrinol . 1994;  140 437-443
  • 79 Knight P G. Roles of inhibins, activins and follistatin in the female reproductive system.  Front Neuroendocrinol . 1996;  17 476-509
  • 80 Findlay J K. An update on the roles of inhibin, activin and follistatin as local regulators of folliculogenesis.  Biol Reprod . 1993;  48 15-23
  • 81 Smitz J, Cortvrindt R. Inhibin A and B secretion in mouse preantral follicle culture.  Hum Reprod . 1998;  13 927-935
  • 82 McGee E A, Chun S Y, Lai S, He Y, Hsueh A J. Keratinocyte growth factor promotes the survival, growth, and differentiation of preantral ovarian follicles.  Fertil Steril . 1999;  71 732-738
  • 83 Li R, Phillips D M, Mather J P. Activin promotes ovarian follicle development in vitro.  Endocrinology . 1995;  136 849-856
  • 84 Smitz J, Cortvrindt R, Hu Y, Vanderstichele H. Effects of recombinant activin A on an in vitro culture of mouse preantral follicles.  Mol Reprod Dev . 1998;  50 294-304
  • 85 McGee E A, Smith R, Spears N, Nachtigal M, Ingraham H, Hsueh A JW. Mullerian inhibitory substance induces growth of preantral ovarian follicles.  Biol Reprod . 2001;  64 293-298
  • 86 Yokota H, Yamada K, Liu X. Paradoxical action of activin A on folliculogenesis in immature and adult mice.  Endocrinology . 1997;  138 4572-4576
  • 87 Parrott J A, Skinner M K. Developmental and hormonal regulation of KGF expression and action in the ovarian follicle.  Endocrinology . 1998;  139 228-235
  • 88 Mizunuma H, Liu X, Andoh K. Activin from secondary follicles causes small preantral follicles to remain dormant at the resting stage.  Endocrinology . 1999;  140 37-42
  • 89 Hayashi M, McGee E A, Min G. Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles.  Endocrinology . 1999;  140 1236-1244
  • 90 Spears N, de Bruin P J, Gosden R G. The establishment of follicular dominance in co-cultured mouse ovarian follicles.  J Reprod Fertil . 1996;  106 1-6
  • 91 Johnson L D, Albertini D F, McGinnis L K, Biggers J D. Chromatin organization, meiotic status and meiotic competence acquisition in mouse oocytes from cultured ovarian follicles.  J Reprod Fertil . 1995;  104 277-284
  • 92 Hartshorne G M, Sargent I L, Barlow D H. Meiotic progression of mouse oocytes throughout follicle growth and ovulation in vitro.  Hum Reprod . 1994;  9 352-359
  • 93 Merriman J A, Whittingham D G, Carroll J. The effect of follicle stimulating hormone and epidermal growth factor on the developmental capacity of in vitro matured mouse oocytes.  Hum Reprod . 1998;  13 690-695
  • 94 Eppig J J, Wigglesworth K, O'Brien M. Comparison of embryonic developmental competence of mouse oocytes grown with and without serum.  Mol Reprod Dev . 1992;  32 33-40
  • 95 Sicinski P, Donaher J L, Geig Y. Cyclin D2 is an FSH-responsive gene in gonadal cell proliferation and oncogenesis.  Nature . 1996;  384 470-474
    >