Subscribe to RSS
DOI: 10.1055/s-0045-1810011
Molecular and Biochemical Insights in the Miasma and Biotypology Concepts: A Tool for the Veterinary Practice
Authors

Abstract
Background
The emergence of therapeutic innovations has been constant throughout the history of medicine. However, the lack of a scientific approach has made most of them inconsistent with evidence-based medicine. Homeopathy is a multifactorial science with unlimited applications and study possibilities. Supported by governmental and political issues, the Galtonian eugenics concepts, and new physiology-endocrine insights, biotypology concepts have evolved as a predicted therapeutic based on morphology. Mitochondria are central organelles in cellular metabolism and key determinants of cell miasma. In the pursuit of animal welfare, the close relationship between humans and dogs justifies expanding the homeopathic therapeutic arsenal from which veterinary medicine can benefit.
Materials and Methods
Utilizing a bibliographical review, this article aims to present a review of biotypology ideas in humans and adapt them to animals, and their relations with the Hahnemann miasmas. A new model for cell biotypology is proposed.
Results
Mitochondrial oxidative stress levels can disrupt cell metabolism balance. Resilient and adaptative physiological processes are crucial for exonerative conditions and psora homeostasis. Free radicals and reactive oxygen species (ROS) can alter mitochondrial permeability and immune response in sycosis. Obesity is related to oxidative stress and a sharp decrease in cell respiration and ATP generation. Uninterrupted stress can generate an imbalance in mitochondrial redox, reducing physiological and immune functions in syphilis.
Conclusion
Joining genetic and psycho-neuro-endocrine-physiology-morphology studies in homeopathy can help find the constitutional simillimum to unknown dogs, such as stray or shelter ones. The similia principle can be applied to cell physiological states, enabling a miasma grading and thus favoring therapeutics for any patient.
Publication History
Article published online:
01 October 2025
© 2025. Thieme. All rights reserved.
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Ratnani I, Fatima S, Abid MM, Surani Z, Surani S. Evidence-based medicine: history, review, criticisms, and pitfalls. Cureus 2023; 15 (02) e35266
- 2 Kossak-Romanach A. Homeopathy in 1000 Concepts. Brazilian 1st edition.. Sao Paulo: Elcid; 2003
- 3 Rogers JF, Vandendoren M, Prather JF, Landen JG, Bedford NL, Nelson AC. Neural cell-types and circuits linking thermoregulation and social behavior. Neurosci Biobehav Rev 2024; 161: 105667
- 4 Delicano RA, Hammar U, Egenvall A. et al. The shared risk of diabetes between dog and cat owners and their pets: register based cohort study. BMJ 2020; 371: m4337
- 5 Zupan M, Buskas J, Altimiras J, Keeling LJ. Assessing positive emotional states in dogs using heart rate and heart rate variability. Physiol Behav 2016; 155 (01) 102-111
- 6 Marino F. Biotypology. I: scope and history. Br Homeopath J 1999; a 88 (01) 17-19
- 7 Marino F. Biotypology II: modern concepts. Br Homeopath J 1999; b 88 (04) 178-183
- 8 –Thomaz LCL. Symptomatic nucleus of homeopathic remedies: remedies derived from carbon as case-study. IJHDR 2021; 8 (26) 15-25
- 9 Amezcua M. Calcarea carbonica: biotipology study. Homeopatia Mex 1955; 9 (234) 45-56
- 10 Stahl G, Bagot JL. What should be the place of the tuberculinic chronic reactive mode in 21st century homeopathic practice?. Rev Homeopath 2021; 12 (03) e21-e29
- 11 Gardón Delgado L, Massón Barceló R, Cruz Rivas Y, Llanes Rodríguez M. Biotipos homeopáticos y oclusión en niños con hábito de succión digital. Rev Cubana Estomatol 2006; 43 (03) 42-49
- 12 França K, Lotti TM. Psycho-neuro-endocrine-immunology: a psychobiological concept. Adv Exp Med Biol 2017; 996: 123-134
- 13 Bell IR, Koithan M. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system. BMC Complement Altern Med 2012; 12: 191
- 14 Piotti P, Pierantoni L, Albertini M, Pirrone F. Inflammation and behavior changes in dogs and cats. Vet Clin North Am Small Anim Pract 2024; 54 (01) 1-16
- 15 Cavezzi A, Ambrosini L, Colucci R, Ionna GD, Urso SU. Aging in the perspective of integrative medicine, psychoneuroendocrineimmunology and hormesis. Curr Aging Sci 2020; 13 (02) 82-91
- 16 Karić L, Janjić F, Spariosu K. et al. (Un)tying the knot: oxidative stress, inflammatory markers, and lipid status in dogs with hypercortisolism. Animals (Basel) 2024; 14 (23) 3476
- 17 Jimenez AG. Plasma concentration of advanced glycation end-products from wild canids and domestic dogs does not change with age or across body masses. Front Vet Sci 2021; 8: 637132
- 18 Jiménez AG, Strasser R. Effects of adverse life history on oxidative stress and cytokine concentration in domestic dogs. J Appl Anim Welf Sci Published online 2024; 1-13
- 19 Monzel AS, Enríquez JA, Picard M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat Metab 2023; 5 (04) 546-562
- 20 Annesley SJ, Fisher PR. Mitochondria in health and disease. Cells 2019; 8 (07) 680
- 21 Nakamura M, Matsumoto Y, Yasuda K. et al. Unraveling the DNA methylation landscape in dog blood across breeds. BMC Genomics 2024; 25 (01) 1089
- 22 Yamazaki J, Jelinek J, Hisamoto S, Tsukamoto A, Inaba M. Dynamic changes in DNA methylation patterns in canine lymphoma cell lines demonstrated by genome-wide quantitative DNA methylation analysis. Vet J 2018; 231: 48-54
- 23 Horvath S, Lu AT, Haghani A. et al. DNA methylation clocks for dogs and humans. Proc Natl Acad Sci U S A 2022; 119 (21) e2120887119
- 24 Mojica EA, Kültz D. Physiological mechanisms of stress-induced evolution. J Exp Biol 2022; 225 (Suppl_1): jeb243264
- 25 Calabrese EJ, Osakabe N, Di Paola R. et al. Hormesis defines the limits of lifespan. Ageing Res Rev 2023; 91: 102074
- 26 Wang X, Zhang G. The mitochondrial integrated stress response: a novel approach to anti-aging and pro-longevity. Ageing Res Rev 2025; 103: 102603
- 27 Adler UC. Low-grade inflammation in chronic diseases: an integrative pathophysiology anticipated by homeopathy?. Med Hypotheses 2011; 76 (05) 622-626
- 28 Teixeira MZ. Isopathic use of auto-sarcode of DNA as anti-miasmatic homeopathic medicine and modulator of gene expression?. Homeopathy 2019; 108 (02) 139-148
- 29 Elizalde MA. Homeopathy: Theory and Practice. Rio de Janeiro: Luz Menescal Editora; 2004
- 30 Lane N. Hot mitochondria?. PLoS Biol 2018; 16 (01) e2005113
- 31 Ali N, Strahler J, Nater UM. The effects of chronic fatigue and chronic stress on alterations in immune cell responses to acute psychosocial stress. Brain Behav Immun 2025; 123: 707-716
- 32 Pedroza-Garcia JA, Xiang Y, De Veylder L. Cell cycle checkpoint control in response to DNA damage by environmental stresses. Plant J 2022; 109 (03) 490-507
- 33 Soták M, Clark M, Suur BE, Börgeson E. Inflammation and resolution in obesity. Nat Rev Endocrinol 2025; 21 (01) 45-61
- 34 Martinon F. Inflammation initiated by stressed organelles. Joint Bone Spine 2018; 85 (04) 423-428
- 35 Moos WH, Faller DV, Glavas IP. et al. Pathogenic mitochondrial dysfunction and metabolic abnormalities. Biochem Pharmacol 2021; 193: 114809
- 36 Yoshikawa T, You F. Oxidative stress and bio-regulation. Int J Mol Sci 2024; 25 (06) 3360
- 37 Jacobs LJHC, Riemer J. Maintenance of small molecule redox homeostasis in mitochondria. FEBS Lett 2023; 597 (02) 205-223
- 38 Chen TH, Wang HC, Chang CJ, Lee SY. Mitochondrial glutathione in cellular redox homeostasis and disease manifestation. Int J Mol Sci 2024; 25 (02) 1314
- 39 Galli F, Bartolini D, Ronco C. Oxidative stress, defective proteostasis and immunometabolic complications in critically ill patients. Eur J Clin Invest 2024; 54 (09) e14229
- 40 Bernard H. La Réticulo-Endothéliose chronique ou Sycose. Angoulème, France: Coquemard; 1950
- 41 Sies H. Dynamics of intracellular and intercellular redox communication. Free Radic Biol Med 2024; 225: 933-939
- 42 Zhu H, Xu H, Zhang Y. et al. Exploring the frontiers of cell temperature measurement and thermogenesis. Adv Sci (Weinh) 2025; 12 (01) e2402135
- 43 Pockley AG, Henderson B. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview. Philos Trans R Soc Lond B Biol Sci 2018; 373 (1738) 20160522
- 44 Lopez-Nieto M, Sun Z, Relton E. et al. Activation of the mitochondrial unfolded protein response regulates the dynamic formation of stress granules. J Cell Sci 2025; 138 (09) jcs263548
- 45 Calderwood SK, Mambula SS, Gray Jr PJ, Theriault JR. Extracellular heat shock proteins in cell signaling. FEBS Lett 2007; 581 (19) 3689-3694
- 46 King SM, Quartuccio SM, Vanderhyden BC, Burdette JE. Early transformative changes in normal ovarian surface epithelium induced by oxidative stress require Akt upregulation, DNA damage and epithelial-stromal interaction. Carcinogenesis 2013; 34 (05) 1125-1133
- 47 Tanimoto R, Hiraiwa T, Nakai Y. et al. Detection of temperature difference in neuronal cells. Sci Rep 2016; 6: 22071
- 48 Raghunathan K, Ahsan A, Ray D, Nyati MK, Veatch SL. Membrane transition temperature determines cisplatin response. PLoS One 2015; 10 (10) e0140925
- 49 Ganeshan K, Nikkanen J, Man K. et al. Energetic trade-offs and hypometabolic states promote disease tolerance. Cell 2019; 177 (02) 399-413.e12
- 50 Lettieri-Barbato D, Aquilano K. Aging and immunometabolic adaptations to thermogenesis. Ageing Res Rev 2020; 63: 101143
- 51 Landsberg L, Young JB, Leonard WR, Linsenmeier RA, Turek FW. Is obesity associated with lower body temperatures? Core temperature: a forgotten variable in energy balance. Metabolism 2009; 58 (06) 871-876
- 52 Bhavani SV, Spicer A, Sinha P. et al. Distinct immune profiles and clinical outcomes in sepsis subphenotypes based on temperature trajectories. Intensive Care Med 2024; 50 (12) 2094-2104
- 53 Cramer MN, Gagnon D, Laitano O, Crandall CG. Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev 2022; 102 (04) 1907-1989
- 54 Andrade PM, Marino M, Carillo R, Pinto LF. Multifactorial approach to phosphorus formation. Br Homeopath J 2000; 6 (01) 47-56
- 55 Xu Y, Yu F, Jia Y, Xu X, Li J. Artificial mitochondria nanoarchitectonics via a supramolecular assembled microreactor covered by ATP synthase. Angew Chem Int Ed Engl 2024; 63 (38) e202411164
- 56 Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 2020; 37: 101674
- 57 Vijayakar PG. Predictive Homeopathy Part III: The End of Myasmtion of Miasms (Mathematics of Human Defence Against Diseases). Mumbai: Prafull Vijayajar's School of Predictive Homeopathy; 2019
- 58 Bernard H. Traité de médecine homéopathique. Paris: Coquemard; 1974
- 59 Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 2021; 320 (03) C375-C391
- 60 Sankaran R. The Soul of Remedies. 1st Brazilian ed. São Paulo, Brazil: Ed. Organon; 2019
- 61 Chaudhary MR, Chaudhary S, Sharma Y. et al. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24 (05) 609-662
- 62 Escrig-Larena JI, Delgado-Pulido S, Mittelbrunn M. Mitochondria during T cell aging. Semin Immunol 2023; 69: 101808
- 63 Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103 (04) 2349-2422
- 64 Mani S, Swargiary G, Ralph SJ. Targeting the redox imbalance in mitochondria: a novel mode for cancer therapy. Mitochondrion 2022; 62: 50-73
- 65 Ebert T, Tran N, Schurgers L, Stenvinkel P, Shiels PG. Ageing: oxidative stress, PTMs and disease. Mol Aspects Med 2022; 86: 101099
- 66 Jaganjac M, Milkovic L, Zarkovic N, Zarkovic K. Oxidative stress and regeneration. Free Radic Biol Med 2022; 181: 154-165
- 67 Üremiş N, Üremiş MM. Oxidative/nitrosative stress, apoptosis, and redox signaling: key players in neurodegenerative diseases. J Biochem Mol Toxicol 2025; 39 (01) e70133
- 68 Garg S, Jana A, Gupta S. et al. Discovery of gallic acid-based mitochondriotropic antioxidant attenuates LPS-induced neuroinflammation. Free Radic Biol Med 2025; 226: 302-329
- 69 Angelova PR, Abramov AY. Interplay of mitochondrial calcium signalling and reactive oxygen species production in the brain. Biochem Soc Trans 2024; 52 (04) 1939-1946
- 70 Adriaenssens E, Asselbergh B, Rivera-Mejías P. et al. Small heat shock proteins operate as molecular chaperones in the mitochondrial intermembrane space. Nat Cell Biol 2023; 25 (03) 467-480
- 71 Wiegant F, Van Wijk R. The similia principle: results obtained in a cellular model system. Homeopathy 2010; 99 (01) 3-14
- 72 Dattilo S, Mancuso C, Koverech G. et al. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing 2015; 12: 20
- 73 Schirrmacher V. Less can be more: the hormesis theory of stress adaptation in the global biosphere and its implications. Biomedicines 2021; 9 (03) 293
- 74 Bell IR. The complexity of the homeopathic healing response part 2: the role of the homeopathic simillimum as a complex system in initiating recovery from disease. Homeopathy 2020; 109 (02) 51-64
- 75 Boericke W. Homeopathic Materia Medica. Brazilian edition.. São Paulo: Robe Editorial; 2003
- 76 Vannier L. La Typologie et ses applications thérapeutiques. Collection Resurgence. Embourg, Belgium: Marco Pietteur; 1996
- 77 Tétau M. Les constitutions homéopathiques. Sainte-Foy-lès-Lyon: Edition Similia; 2007
- 78 von Ancken A, Coelho Cde P. Veterinary biotypology: a review and new possibilities. Int J High Dilution Res [Internet] 2022; 21 (02) 30
- 79 Bellavite P, Olioso D, Marzotto M, Moratti E, Conforti A. A dynamic network model of the similia principle. Complement Ther Med 2013; 21 (06) 750-761
- 80 Teixeira MZ. “Similia similibus curentur”: the scientific grounding of the homeopathic therapeutic principle through the systematic study of the rebound effect of modern drugs. Clinics (Sao Paulo) 2022; 77: 100091
- 81 Teixeira MZ. Telomere and telomerase: biological markers of organic vital force state and homeopathic treatment effectiveness. Homeopathy 2021; 110 (04) 283-291
- 82 Manchanda RK, Gupta M, Gupta A, Haselen RV. The clinical and biological effects of homeopathically prepared signaling molecules: a scoping review. Homeopathy 2022; 111 (01) 10-21
- 83 Stejerean-Todoran I, Gibhardt CS, Bogeski I. Calcium signals as regulators of ferroptosis in cancer. Cell Calcium 2024; 124: 102966
- 84 Hermann A, Sitdikova G. Homocysteine: biochemistry, molecular biology and role in disease. Biomolecules 2021; 11 (05) 737
- 85 Dernovšek J, Tomašič T. Following the design path of isoform-selective Hsp90 inhibitors: small differences, great opportunities. Pharmacol Ther 2023; 245: 108396
- 86 Birbo B, Madu EE, Madu CO, Jain A, Lu Y. Role of HSP90 in cancer. Int J Mol Sci 2021; 22 (19) 10317
- 87 Yoshimura K, Zou G, Fan Y. et al. HSP90 inhibitor AUY922 suppresses tumor growth and modulates immune response through YAP1-TEAD pathway inhibition in gastric cancer. Cancer Lett 2025; 610: 217354
- 88 Liao W, Huang M, Du X, Tang L, Li J, Tang Q. Comprehensive analysis of heat shock protein 110, 90, 70, 60 families and tumor immune microenvironment characterization in clear cell renal cell carcinoma. Sci Rep 2025; 15 (01) 469
- 89 Wengert LA, Backe SJ, Bourboulia D, Mollapour M, Woodford MR. TRAP1 chaperones the metabolic switch in cancer. Biomolecules 2022; 12 (06) 786