Subscribe to RSS
DOI: 10.1055/s-0045-1809941
How Can Artificial Intelligence Help Avoid Mistakes in Musculoskeletal Imaging?
Authors

Abstract
Musculoskeletal imaging plays a central role in diagnosing and managing a wide range of orthopedic conditions. However, it remains susceptible to both interpretive and noninterpretive errors, amplified by increasing imaging demand and complexity. Artificial intelligence, especially deep learning and large language models, has shown growing potential to reduce these errors at every stage of the imaging workflow. From optimizing exam requests and imaging protocols to reducing artifacts and improving interpretative consistency, artificial intelligence supports radiologists in enhancing diagnostic accuracy, efficiency, and reproducibility. Applications now extend across all modalities, including magnetic resonance, radiography, computed tomography, and ultrasound, and they address common pitfalls such as subjective assessments and measurement variability. Post-interpretation tools using large language models further improve report clarity and patient communication. Although integration into clinical practice remains ongoing, artificial intelligence already offers a transformative opportunity to improve musculoskeletal imaging quality and safety through collaborative human–machine interaction.
Keywords
musculoskeletal - artificial intelligence - large language model - convolutional neural network - machine learningPublication History
Article published online:
07 October 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Tong MW, Zhou J, Akkaya Z, Majumdar S, Bhattacharjee R. Artificial intelligence in musculoskeletal applications: a primer for radiologists. Diagn Interv Radiol 2025; 31 (02) 89-101
- 2 Reiner BI, Krupinski E. The insidious problem of fatigue in medical imaging practice. J Digit Imaging 2012; 25 (01) 3-6
- 3 Gorelik N, Gyftopoulos S. Applications of artificial intelligence in musculoskeletal imaging: from the request to the report. Can Assoc Radiol J 2021; 72 (01) 45-59
- 4 Chea P, Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol 2020; 49 (02) 183-197
- 5 Pankhania M. Artificial intelligence in musculoskeletal radiology: past, present, and future. Indian Journal of Musculoskeletal Radiology 2020; 2: 89-96
- 6 Hasei J, Nakahara R, Otsuka Y. et al. The three-class annotation method improves the AI detection of early-stage osteosarcoma on plain radiographs: a novel approach for rare cancer diagnosis. Cancers (Basel) 2024; 17 (01) 29
- 7 D'Angelo T, Caudo D, Blandino A. et al. Artificial intelligence, machine learning and deep learning in musculoskeletal imaging: current applications. J Clin Ultrasound 2022; 50 (09) 1414-1431
- 8 Tan JR, Lim DYZ, Le Q. et al. ChatGPT performance in assessing musculoskeletal MRI scan appropriateness based on ACR appropriateness criteria. Sci Rep 2025; 15 (01) 7140
- 9 Gyftopoulos S, Lin D, Knoll F, Doshi AM, Rodrigues TC, Recht MP. Artificial intelligence in musculoskeletal imaging: current status and future directions. AJR Am J Roentgenol 2019; 213 (03) 506-513
- 10 Lee YH. Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks. J Digit Imaging 2018; 31 (05) 604-610
- 11 Trivedi H, Mesterhazy J, Laguna B, Vu T, Sohn JH. Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson's natural language processing algorithm. J Digit Imaging 2018; 31 (02) 245-251
- 12 Melazzini L, Bortolotto C, Brizzi L. et al. AI for image quality and patient safety in CT and MRI. Eur Radiol Exp 2025; 9 (01) 28
- 13 Singh DR, Chin MSM, Peh WCG. Artifacts in musculoskeletal MR imaging. Semin Musculoskelet Radiol 2014; 18 (01) 12-22
- 14 Clement David-Olawade A, Olawade DB, Vanderbloemen L. et al. AI-driven advances in low-dose imaging and enhancement: a review. Diagnostics (Basel) 2025; 15 (06) 689
- 15 Afat S, Wohlers J, Herrmann J. et al. Reducing energy consumption in musculoskeletal MRI using shorter scan protocols, optimized magnet cooling patterns, and deep learning sequences. Eur Radiol 2025; 35 (04) 1993-2004
- 16 Dratsch T, Siedek F, Zäske C. et al. Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers. Eur Radiol Exp 2023; 7 (01) 66
- 17 Johnson PM, Lin DJ, Zbontar J. et al. Deep learning reconstruction enables prospectively accelerated clinical knee MRI. Radiology 2023; 307 (02) e220425
- 18 Guermazi A, Omoumi P, Tordjman M. et al. How AI may transform musculoskeletal imaging. Radiology 2024; 310 (01) e230764
- 19 Sutter R, Ulbrich EJ, Jellus V, Nittka M, Pfirrmann CWA. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology 2012; 265 (01) 204-214
- 20 Fritz J, Ahlawat S, Demehri S. et al. Compressed sensing SEMAC: 8-fold accelerated high resolution metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants. Invest Radiol 2016; 51 (10) 666-676
- 21 Seo S, Do WJ, Luu HM, Kim KH, Choi SH, Park SH. Artificial neural network for slice encoding for metal artifact correction (SEMAC) MRI. Magn Reson Med 2020; 84 (01) 263-276
- 22 Ladefoged CN, Andersen FL, Andersen TL. et al. DeepDixon synthetic CT for [18F]FET PET/MRI attenuation correction of post-surgery glioma patients with metal implants. Front Neurosci 2023; 17: 1142383
- 23 Shin Y, Kim S, Lee YH. AI musculoskeletal clinical applications: how can AI increase my day-to-day efficiency?. Skeletal Radiol 2022; 51 (02) 293-304
- 24 Gitto S, Serpi F, Albano D. et al. AI applications in musculoskeletal imaging: a narrative review. Eur Radiol Exp 2024; 8 (01) 22
- 25 Dhumale A, Shinde S, Ambali MP, Patil P. Integration of artificial intelligence for diagnostic methods in musculoskeletal conditions: a systematic review. Cureus 2025; 17 (02) e79391
- 26 Klontzas ME, Papadakis GZ, Marias K, Karantanas AH. Musculoskeletal trauma imaging in the era of novel molecular methods and artificial intelligence. Injury 2020; 51 (12) 2748-2756
- 27 Bousson V, Benoist N, Guetat P, Attané G, Salvat C, Perronne L. Application of artificial intelligence to imaging interpretations in the musculoskeletal area: Where are we? Where are we going?. Joint Bone Spine 2023; 90 (01) 105493
- 28 Anderson PG, Baum GL, Keathley N. et al. Deep learning assistance closes the accuracy gap in fracture detection across clinician types. Clin Orthop Relat Res 2023; 481 (03) 580-588
- 29 Kraus M, Pertman L, Eshed I. What's new in pediatric musculoskeletal imaging. J Child Orthop 2025; 19 (02) 109-118
- 30 Shin Y, Yang J, Lee YH, Kim S. Artificial intelligence in musculoskeletal ultrasound imaging. Ultrasonography 2021; 40 (01) 30-44
- 31 Guermazi A, Tannoury C, Kompel AJ. et al. Improving radiographic fracture recognition performance and efficiency using artificial intelligence. Radiology 2022; 302 (03) 627-636
- 32 Hoppe BF, Rueckel J, Rudolph J. et al. Automated spinopelvic measurements on radiographs with artificial intelligence: a multi-reader study. Radiol Med 2025; 130 (03) 359-367
- 33 Regnard NE, Lanseur B, Ventre J. et al. Assessment of performances of a deep learning algorithm for the detection of limbs and pelvic fractures, dislocations, focal bone lesions, and elbow effusions on trauma X-rays. Eur J Radiol 2022; 154: 110447
- 34 Berlin C, Adomeit S, Grover P. et al. Novel AI-based algorithm for the automated computation of coronal parameters in adolescent idiopathic scoliosis patients: a validation study on 100 preoperative full spine X-rays. Global Spine J 2024; 14 (06) 1728-1737
- 35 Song SY, Seo MS, Kim CW. et al. AI-driven segmentation and automated analysis of the whole sagittal spine from X-ray images for spinopelvic parameter evaluation. Bioengineering (Basel) 2023; 10 (10) 1229
- 36 Sharma S. Artificial intelligence for fracture diagnosis in orthopedic X-rays: current developments and future potential. SICOT J 2023; 9: 21
- 37 Kraus M, Anteby R, Konen E, Eshed I, Klang E. Artificial intelligence for X-ray scaphoid fracture detection: a systematic review and diagnostic test accuracy meta-analysis. Eur Radiol 2024; 34 (07) 4341-4351
- 38 Yoon AP, Lee YL, Kane RL, Kuo CF, Lin C, Chung KC. Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs. JAMA Netw Open 2021; 4 (05) e216096
- 39 Jacques T, Cardot N, Ventre J, Demondion X, Cotten A. Commercially-available AI algorithm improves radiologists' sensitivity for wrist and hand fracture detection on X-ray, compared to a CT-based ground truth. Eur Radiol 2024; 34 (05) 2885-2894
- 40 Gerke O, Naghavi-Behzad M, Nygaard ST. et al. Diagnosing bone metastases in breast cancer: a systematic review and network meta-analysis on diagnostic test accuracy studies of 2-[18F]FDG-PET/CT, 18F-NaF-PET/CT, MRI, contrast-enhanced CT, and bone scintigraphy. Semin Nucl Med 2025; 55 (01) 137-151
- 41 Omar M, Watad A, McGonagle D. et al. The role of deep learning in diagnostic imaging of spondyloarthropathies: a systematic review. Eur Radiol 2025; 35 (06) 3661-3672
- 42 Kim UH, Kim HJ, Seo J. et al. Cerebrospinal fluid flow artifact reduction with deep learning to optimize the evaluation of spinal canal stenosis on spine MRI. Skeletal Radiol 2024; 53 (05) 957-965
- 43 Doshi R, Amin KS, Khosla P, Bajaj SS, Chheang S, Forman HP. Quantitative evaluation of large language models to streamline radiology report impressions: a multimodal retrospective analysis. Radiology 2024; 310 (03) e231593
- 44 Bhayana R. Chatbots and large language models in radiology: a practical primer for clinical and research applications. Radiology 2024; 310 (01) e232756