Semin Musculoskelet Radiol 2025; 29(03): 339-356
DOI: 10.1055/s-0045-1808097
Review Article

Imaging of Acute Musculotendinous Injuries

Stefano Fusco
1   Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
,
Eva Llopis
2   Department of Radiology, Hospital Ribera IMSKE, Valencia, Spain
,
Domenico Albano
3   IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
4   Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
,
Salvatore Gitto
1   Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
3   IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
,
Francesca Serpi
1   Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
,
Riccardo D'Ambrosi
1   Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
3   IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
,
Carmelo Messina
1   Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
5   U.O.C. Radiodiagnostica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy
,
1   Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
3   IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
› Author Affiliations

Abstract

Musculotendinous injuries represent a major concern in sports medicine, with significant implications for athlete recovery and performance. Ultrasound and magnetic resonance imaging, in particular, play a crucial role in diagnosing and monitoring these injuries, guiding treatment strategies, and estimating prognosis. Understanding the anatomy and distribution of connective tissue is fundamental to identifying and classifying musculotendinous injuries accurately. This review focuses on the imaging features of musculotendinous injuries and their evolution, emphasizing the role of connective tissue and the anatomical differences influencing injury patterns. It also examines current grading systems and their prognostic value, highlighting the need for muscle-specific subclassifications to improve accuracy in predicting return to play.



Publication History

Article published online:
20 May 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 2011; 39 (06) 1226-1232
  • 2 Junge A, Engebretsen L, Mountjoy ML. et al. Sports injuries during the Summer Olympic Games 2008. Am J Sports Med 2009; 37 (11) 2165-2172
  • 3 López-Valenciano A, Ruiz-Pérez I, Garcia-Gómez A. et al. Epidemiology of injuries in professional football: a systematic review and meta-analysis. Br J Sports Med 2020; 54 (12) 711-718
  • 4 Ueblacker P, Müller-Wohlfahrt HW, Ekstrand J. Epidemiological and clinical outcome comparison of indirect (‘strain’) versus direct (‘contusion’) anterior and posterior thigh muscle injuries in male elite football players: UEFA Elite League study of 2287 thigh injuries (2001–2013). Br J Sports Med 2015; 49 (22) 1461-1465
  • 5 Flores DV, Mejía Gómez C, Estrada-Castrillón M, Smitaman E, Pathria MN. MR imaging of muscle trauma: anatomy, biomechanics, pathophysiology, and imaging appearance. Radiographics 2018; 38 (01) 124-148
  • 6 Mueller-Wohlfahrt HW, Haensel L, Mithoefer K. et al. Terminology and classification of muscle injuries in sport: the Munich Consensus Statement. Br J Sports Med 2013; 47 (06) 342-350
  • 7 Lee JC, Mitchell AWM, Healy JC. Imaging of muscle injury in the elite athlete. Br J Radiol 2012; 85 (1016) 1173-1185
  • 8 Balius R, Alomar X, Pedret C. et al. Role of the extracellular matrix in muscle injuries: histoarchitectural considerations for muscle injuries. Orthop J Sports Med 2018; 6 (09) 2325967118795863
  • 9 Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 2011; 44 (03) 318-331
  • 10 Tadros AS, Huang BK, Pathria MN. Muscle-tendon-enthesis unit. Semin Musculoskelet Radiol 2018; 22 (03) 263-274
  • 11 Brukner P, Cook JL, Purdam CR. Does the intramuscular tendon act like a free tendon?. Br J Sports Med 2018; 52 (19) 1227-1228
  • 12 Balius R, Blasi M, Pedret C. et al; Study Group of the Muscle and Tendon System from the Spanish Society of Sports Traumatology. A histoarchitectural approach to skeletal muscle injury: searching for a common nomenclature. Orthop J Sports Med 2020; 8 (03) 2325967120909090
  • 13 Balius R, Alomar X, Rodas G. et al. The soleus muscle: MRI, anatomic and histologic findings in cadavers with clinical correlation of strain injury distribution. Skeletal Radiol 2013; 42 (04) 521-530
  • 14 Siedi AF, Rolon AU, Bernard N. et al. Posterior leg pain: understanding soleus muscle injuries. Radiographics 2022; 42 (03) 778-788
  • 15 Bordalo M, Arnaiz J, Yamashiro E, Al-Naimi MR. Imaging of muscle injuries: MR imaging-ultrasound correlation. Magn Reson Imaging Clin N Am 2023; 31 (02) 163-179
  • 16 Isern-Kebschull J, Mechó S, Pruna R. et al. Sports-related lower limb muscle injuries: pattern recognition approach and MRI review. Insights Imaging 2020; 11 (01) 108
  • 17 Hayashi D, Hamilton B, Guermazi A, de Villiers R, Crema MD, Roemer FW. Traumatic injuries of thigh and calf muscles in athletes: role and clinical relevance of MR imaging and ultrasound. Insights Imaging 2012; 3 (06) 591-601
  • 18 Sato VN, Moriwaki TL, Ikawa MH. et al. Apophyseal injuries in soccer players. Skeletal Radiol 2025; 54 (04) 715-729
  • 19 Guermazi A, Roemer FW, Robinson P, Tol JL, Regatte RR, Crema MD. Imaging of muscle injuries in sports medicine: sports imaging series. Radiology 2017; 282 (03) 646-663
  • 20 Counsel P, Breidahl W. Muscle injuries of the lower leg. Semin Musculoskelet Radiol 2010; 14 (02) 162-175
  • 21 Albano D, Gitto S, Serpi F, Aliprandi A, Maria Sconfienza L, Messina C. Ultrasound-guided musculoskeletal interventional procedures around the hip: a practical guide. J Ultrason 2023; 23 (92) 15-22
  • 22 Allen GM. Ultrasound-guided interventions in elite soccer players. Skeletal Radiol 2025; 54 (04) 779-788
  • 23 O'Neill CP, Gerety EL, Grainger AJ. Ultrasound imaging in professional soccer: when is it adequate?. Skeletal Radiol 2025; 54 (04) 669-681
  • 24 Gitto S, Messina C, Vitale N, Albano D, Sconfienza LM. Quantitative musculoskeletal ultrasound. Semin Musculoskelet Radiol 2020; 24 (04) 367-374
  • 25 Isern-Kebschull J, Mechó S, Pedret C. et al. Muscle healing in sports injuries: MRI findings and proposed classification based on a single institutional experience and clinical observation. Radiographics 2024; 44 (08) e230147
  • 26 Heiss R, Tol JL, Pogarell T. et al. Imaging of muscle injuries in soccer. Skeletal Radiol 2025; 54 (04) 655-667
  • 27 European Society of Skeletal Radiology (ESSR) Sports Sub-committee. Guidelines for MR imaging of sports injuries. 2016 . Available at: https://www.essr.org/content-essr/uploads/2016/10/ESSR-MRI-Protocols-Thigh-Calf.pdf . Accessed April 6, 2025
  • 28 Chianca V, Albano D, Messina C. et al. Diffusion tensor imaging in the musculoskeletal and peripheral nerve systems: from experimental to clinical applications. Eur Radiol Exp 2017; 1 (01) 12
  • 29 Kalia V, Leung DG, Sneag DB, Del Grande F, Carrino JA. Advanced MRI techniques for muscle imaging. Semin Musculoskelet Radiol 2017; 21 (04) 459-469
  • 30 Kerkhoffs GMMJ, van Es N, Wieldraaijer T, Sierevelt IN, Ekstrand J, van Dijk CN. Diagnosis and prognosis of acute hamstring injuries in athletes. Knee Surg Sports Traumatol Arthrosc 2013; 21 (02) 500-509
  • 31 Ekstrand J, Lee JC, Healy JC. MRI findings and return to play in football: a prospective analysis of 255 hamstring injuries in the UEFA Elite Club Injury Study. Br J Sports Med 2016; 50 (12) 738-743
  • 32 Dimmick S, Linklater JM. Imaging of acute hamstring muscle strain injuries. Semin Musculoskelet Radiol 2017; 21 (04) 415-432
  • 33 Wangensteen A, Bahr R, Van Linschoten R. et al. MRI appearance does not change in the first 7 days after acute hamstring injury—a prospective study. Br J Sports Med 2017; 51 (14) 1087-1092
  • 34 Peetrons P. Ultrasound of muscles. Eur Radiol 2002; 12 (01) 35-43
  • 35 Pollock N, James SLJ, Lee JC, Chakraverty R. British Athletics Muscle Injury Classification: a new grading system. Br J Sports Med 2014; 48 (18) 1347-1351
  • 36 McAleer S, Macdonald B, Lee J. et al. Time to return to full training and recurrence of rectus femoris injuries in elite track and field athletes 2010–2019; a 9-year study using the British Athletics Muscle Injury Classification. Scand J Med Sci Sports 2022; 32 (07) 1109-1118
  • 37 Brennan JH, Bell C, Brooks K, Roebert JK, O'Shea T, Rotstein AH. Correlating clinical assessment and MRI findings in diagnosing calf injuries in elite male Australian rules footballers. Skeletal Radiol 2020; 49 (04) 563-570
  • 38 Kho JSB, Botchu R, Rushton A, James SL. MRI features of ERSA (exercise-related signal abnormality) lesions in professional soccer players. Skeletal Radiol 2022; 51 (03) 557-564
  • 39 Valle X, Alentorn-Geli E, Tol JL. et al. Muscle injuries in sports: a new evidence-informed and expert consensus-based classification with clinical application. Sports Med 2017; 47 (07) 1241-1253
  • 40 Balius R, Pedret C, Kassarjian A. Muscle madness and making a case for muscle-specific classification systems: a leap from tissue injury to organ injury and system dysfunction. Sports Med 2021; 51 (02) 193-197
  • 41 Meinberg EG, Agel J, Roberts CS, Karam MD, Kellam JF. Fracture and dislocation classification compendium–2018. J Orthop Trauma 2018; 32 (Suppl. 01) S1-S170
  • 42 Sergot L, Kho J, Collins H, Williams J, Murray R, Chakraverty J. MRI classification of calf injuries—a reliability study and correlation with return to play in professional rugby players. Skeletal Radiol 2023; 52 (01) 61-66
  • 43 Pedret C, Balius R, Blasi M. et al. Ultrasound classification of medial gastrocnemius injuries. Scand J Med Sci Sports 2020; 30 (12) 2456-2465
  • 44 Isern-Kebschull J, Pedret C, García-Diez AI. et al. Magnetic resonance classification proposal for medial gastrocnemius muscle injuries. Quant Imaging Med Surg 2024; 14 (11) 7958-7968
  • 45 Chianca V, Di Pietto F, Zappia M, Albano D, Messina C, Sconfienza LM. Musculoskeletal ultrasound in the emergency department. Semin Musculoskelet Radiol 2020; 24 (02) 167-174
  • 46 Yoshida K, Itoigawa Y, Maruyama Y, Kaneko K. Healing process of gastrocnemius muscle injury on ultrasonography using B-mode imaging, power Doppler imaging, and shear wave elastography. J Ultrasound Med 2019; 38 (12) 3239-3246
  • 47 Pollock N, Kelly S, Lee J. et al. A 4-year study of hamstring injury outcomes in elite track and field using the British Athletics rehabilitation approach. Br J Sports Med 2022; 56 (05) 257-263
  • 48 Entwisle T, Ling Y, Splatt A, Brukner P, Connell D. Distal musculotendinous T junction injuries of the biceps femoris: an MRI case review. Orthop J Sports Med 2017; 5 (07) 2325967117714998
  • 49 van der Made AD, Wieldraaijer T, Kerkhoffs GM. et al. The hamstring muscle complex. Knee Surg Sports Traumatol Arthrosc 2015; 23 (07) 2115-2122
  • 50 Balius R, Bossy M, Pedret C. et al. Semimembranosus muscle injuries in sport. A practical MRI use for prognosis. Sports Med Int Open 2017; 1 (03) E94-E100
  • 51 Mechó S, Iriarte I, Lisbona R, Pérez-Andrés R, Pruna R, Rodríguez-Baeza A. Different anatomic patterns of the indirect tendon of the rectus femoris. Surg Radiol Anat 2024; 46 (09) 1421-1428
  • 52 Kassarjian A, Rodrigo RM, Santisteban JM. Intramuscular degloving injuries to the rectus femoris: findings at MRI. AJR Am J Roentgenol 2014; 202 (05) W475–W480
  • 53 Mechó S, Isern-Kebschull J, Kassarjian A. Current concepts of MR imaging anatomy and pathology of the rectus femoris complex. Magn Reson Imaging Clin N Am 2025; 33 (01) 95-114
  • 54 Bordalo M, de Aysa PN, Helito PVP. et al. Degloving intramuscular injuries of the semimembranosus and adductor longus muscles in adolescent soccer players. Skeletal Radiol 2025; 54 (04) 887-892
  • 55 Pedret C, Rupérez F, Mechó S, Balius R, Rodas G. Anatomical variability of the soleus muscle: a key factor for the prognosis of injuries?. Sports Med 2022; 52 (11) 2565-2568
  • 56 Nurenberg P, Giddings CJ, Stray-Gundersen J, Fleckenstein JL, Gonyea WJ, Peshock RM. MR imaging-guided muscle biopsy for correlation of increased signal intensity with ultrastructural change and delayed-onset muscle soreness after exercise. Radiology 1992; 184 (03) 865-869
  • 57 Hoy MK, Stache Jr S, Roedl JB. Hamstring injuries: a paradigm for return to play. Semin Musculoskelet Radiol 2024; 28 (02) 119-129
  • 58 Pesquer L, Poussange N, Sonnery-Cottet B. et al. Imaging of rectus femoris proximal tendinopathies. Skeletal Radiol 2016; 45 (07) 889-897
  • 59 Tyler P, Saifuddin A. The imaging of myositis ossificans. Semin Musculoskelet Radiol 2010; 14 (02) 201-216
  • 60 Kransdorf MJ, Meis JM, Jelinek JS. Myositis ossificans: MR appearance with radiologic-pathologic correlation. AJR Am J Roentgenol 1991; 157 (06) 1243-1248
  • 61 Silder A, Heiderscheit BC, Thelen DG, Enright T, Tuite MJ. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol 2008; 37 (12) 1101-1109
  • 62 Linklater JM, Hamilton B, Carmichael J, Orchard J, Wood DG. Hamstring injuries: anatomy, imaging, and intervention. Semin Musculoskelet Radiol 2010; 14 (02) 131-161
  • 63 Matsuda DK. Editorial commentary: proximal hamstring syndrome: another pain in the buttock. Arthroscopy 2018; 34 (01) 122-125
  • 64 Delgado GJ, Chung CB, Lektrakul N. et al. Tennis leg: clinical US study of 141 patients and anatomic investigation of four cadavers with MR imaging and US. Radiology 2002; 224 (01) 112-119
  • 65 Comin J, Malliaras P, Baquie P, Barbour T, Connell D. Return to competitive play after hamstring injuries involving disruption of the central tendon. Am J Sports Med 2013; 41 (01) 111-115
  • 66 Reurink G, Almusa E, Goudswaard GJ. et al. No association between fibrosis on magnetic resonance imaging at return to play and hamstring reinjury risk. Am J Sports Med 2015; 43 (05) 1228-1234
  • 67 Silder A, Sherry MA, Sanfilippo J, Tuite MJ, Hetzel SJ, Heiderscheit BC. Clinical and morphological changes following 2 rehabilitation programs for acute hamstring strain injuries: a randomized clinical trial. J Orthop Sports Phys Ther 2013; 43 (05) 284-299
  • 68 Crema MD, Godoy IRB, Abdalla RJ, de Aquino JS, Ingham SJM, Skaf AY. Hamstring injuries in professional soccer players: extent of MRI-detected edema and the time to return to play. Sports Health 2018; 10 (01) 75-79
  • 69 Cruz J, Mascarenhas V. Adult thigh muscle injuries-from diagnosis to treatment: what the radiologist should know. Skeletal Radiol 2018; 47 (08) 1087-1098
  • 70 Waterworth G, Wein S, Gorelik A, Rotstein AH. MRI assessment of calf injuries in Australian Football League players: findings that influence return to play. Skeletal Radiol 2017; 46 (03) 343-350
  • 71 Reurink G, Goudswaard GJ, Tol JL. et al. MRI observations at return to play of clinically recovered hamstring injuries. Br J Sports Med 2014; 48 (18) 1370-1376
  • 72 Zein MI, Reurink G, Suskens JJM. et al. 3.0-Tesla MRI observation at return to play after hamstring injuries. Clin J Sport Med 2025; 35 (02) 119-126
  • 73 Wangensteen A, Guermazi A, Tol JL. et al. New MRI muscle classification systems and associations with return to sport after acute hamstring injuries: a prospective study. Eur Radiol 2018; 28 (08) 3532-3541
  • 74 Flores DV. Invited commentary: MRI of muscle healing and return to play: current status. Radiographics 2024; 44 (08) e240096