RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000070.xml
Semin Musculoskelet Radiol 2023; 27(04): 421-431
DOI: 10.1055/s-0043-1770354
DOI: 10.1055/s-0043-1770354
Review Article
Overview of Periosteal Reaction by Imaging

Abstract
The periosteum is a membrane that covers almost all bones in the body. It is a living structure but attracts little attention unless it reacts excessively. We highlight the important points in the anatomy, histology, and physiology of the periosteum, the stimuli and various aspects of periosteal reaction, and the main conditions underlying periosteal reaction.
Publikationsverlauf
Artikel online veröffentlicht:
25. September 2023
© 2023. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Dwek JR. The periosteum: what is it, where is it, and what mimics it in its absence?. Skeletal Radiol 2010; 39 (04) 319-323
- 2 Edeiken J, Hodes PJ, Caplan LH. New bone production and periosteal reaction. Am J Roentgenol Radium Ther Nucl Med 1966; 97 (03) 708-718
- 3 Rana RS, Wu JS, Eisenberg RL. Periosteal reaction. AJR Am J Roentgenol 2009; 193 (04) W259-72
- 4 Bisseret D, Kaci R, Lafage-Proust MH. et al. Periosteum: characteristic imaging findings with emphasis on radiologic-pathologic comparisons. Skeletal Radiol 2015; 44 (03) 321-338
- 5 Allen H, Barnthouse NC, Chan BY. Periosteal pathologic conditions: imaging findings and pathophysiology. Radiographics 2023; 43 (02) e220120
- 6 Allen MR, Hock JM, Burr DB. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 2004; 35 (05) 1003-1012
- 7 Roberts SJ, van Gastel N, Carmeliet G, Luyten FP. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 2015; 70: 10-18
- 8 Murray DW, Wilson-MacDonald J, Morscher E, Rahn BA, Käslin M. Bone growth and remodelling after fracture. J Bone Joint Surg Br 1996; 78 (01) 42-50
- 9 Nakahara H, Bruder SP, Haynesworth SE. et al. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 1990; 11 (03) 181-188
- 10 Zhang X, Awad HA, O'Keefe RJ, Guldberg RE, Schwarz EM. A perspective: engineering periosteum for structural bone graft healing. Clin Orthop Relat Res 2008; 466 (08) 1777-1787
- 11 Ragsdale BD, Madewell JE, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part II: periosteal reactions. Radiol Clin North Am 1981; 19 (04) 749-783
- 12 Kenan S, Abdelwahab IF, Klein MJ, Hermann G, Lewis MM. Lesions of juxtacortical origin (surface lesions of bone). Skeletal Radiol 1993; 22 (05) 337-357
- 13 Walker MM, Baumann ME, Alexander JH. et al. Mechanical strain induces ex vivo expansion of periosteum. PLoS One 2022; 17 (12) e0279519
- 14 Cotten A, Flipo RM, Mentre A, Delaporte E, Duquesnoy B, Chastanet P. SAPHO syndrome. Radiographics 1995; 15 (05) 1147-1154
- 15 Chigira M, Shimizu T. Computed tomographic appearances of sternocostoclavicular hyperostosis. Skeletal Radiol 1989; 18 (05) 347-352
- 16 Earwaker JWS, Cotten A. SAPHO: syndrome or concept? Imaging findings. Skeletal Radiol 2003; 32 (06) 311-327
- 17 Suei Y, Taguchi A, Tanimoto K. Diagnostic points and possible origin of osteomyelitis in synovitis, acne, pustulosis, hyperostosis and osteitis (SAPHO) syndrome: a radiographic study of 77 mandibular osteomyelitis cases. Rheumatology (Oxford) 2003; 42 (11) 1398-1403
- 18 Fournié B, Viraben R, Durroux R, Lassoued S, Gay R, Fournié A. Psoriatic onycho-pachydermo-periostitis of the big toe. Anatomo-clinical study and physiopathogenic approach apropos of 4 cases [in French].. Rev Rhum Mal Osteoartic 1989; 56 (8–9): 579-582
- 19 Gravallese EM, Schett G. Effects of the IL-23-IL-17 pathway on bone in spondyloarthritis. Nat Rev Rheumatol 2018; 14 (11) 631-640
- 20 Tsukazaki H, Kaito T. The role of the IL-23/IL-17 pathway in the pathogenesis of spondyloarthritis. Int J Mol Sci 2020; 21 (17) 6401
- 21 Vecellio M, Hake VX, Davidson C, Carena MC, Wordsworth BP, Selmi C. The IL-17/IL-23 axis and its genetic contribution to psoriatic arthritis. Front Immunol 2021; 11: 596086
- 22 Caffey J. Infantile cortical hyperostosis; a review of the clinical and radiographic features. Proc R Soc Med 1957; 50 (05) 347-354
- 23 Gensure RC, Mäkitie O, Barclay C. et al. A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders. J Clin Invest 2005; 115 (05) 1250-1257
- 24 Glorieux FH. Caffey disease: an unlikely collagenopathy. J Clin Invest 2005; 115 (05) 1142-1144
- 25 Uppal S, Diggle CP, Carr IM. et al. Mutations in 15-hydroxyprostaglandin dehydrogenase cause primary hypertrophic osteoarthropathy. Nat Genet 2008; 40 (06) 789-793
- 26 Tan I, Lomasney L, Stacy GS, Lazarus M, Mar WA. Spectrum of voriconazole-induced periostitis with review of the differential diagnosis. AJR Am J Roentgenol 2019; 212 (01) 157-165
- 27 Reber JD, McKenzie GA, Broski SM. Voriconazole-induced periostitis: beyond post-transplant patients. Skeletal Radiol 2016; 45 (06) 839-842
- 28 Kang H, Jha S, Deng Z. et al. Somatic activating mutations in MAP2K1 cause melorheostosis. Nat Commun 2018; 9 (01) 1390
- 29 Fratzl-Zelman N, Roschger P, Kang H. et al. Melorheostotic bone lesions caused by somatic mutations in MAP2K1 have deteriorated microarchitecture and periosteal reaction. J Bone Miner Res 2019; 34 (05) 883-895
- 30 Jha S, Fratzl-Zelman N, Roschger P. et al. Distinct clinical and pathological features of melorheostosis associated with somatic MAP2K1 mutations. J Bone Miner Res 2019; 34 (01) 145-156
- 31 Cheung MS, Glorieux FH, Rauch F. Natural history of hyperplastic callus formation in osteogenesis imperfecta type V. J Bone Miner Res 2007; 22 (08) 1181-1186
- 32 Kim OH, Jin DK, Kosaki K. et al. Osteogenesis imperfecta type V: clinical and radiographic manifestations in mutation confirmed patients. Am J Med Genet A 2013; 161A (08) 1972-1979
- 33 Rauch F, Moffatt P, Cheung M. et al. Osteogenesis imperfecta type V: marked phenotypic variability despite the presence of the IFITM5 c.-14C>T mutation in all patients. J Med Genet 2013; 50 (01) 21-24