Der Nuklearmediziner 2018; 41(01): 37-51
DOI: 10.1055/s-0043-120726
Dosimetrie
© Georg Thieme Verlag KG Stuttgart · New York

Quantitative PET-Bildgebung für die Dosimetrie an Beispielen von 124I, 86Y, 68Ga und 44Sc

Quantitative PET Imaging for the Dosimetry as exemplified by 124I, 86Y, 68Ga, and 44Sc
Vanessa Stebner*
Klinik für Nuklearmedizin, Universitätsklinikum Essen, Essen
,
Philipp Hetkamp*
Klinik für Nuklearmedizin, Universitätsklinikum Essen, Essen
,
Ina Binse
Klinik für Nuklearmedizin, Universitätsklinikum Essen, Essen
,
Walter Jentzen
Klinik für Nuklearmedizin, Universitätsklinikum Essen, Essen
› Author Affiliations
Further Information

Publication History

Publication Date:
01 March 2018 (online)

Zusammenfassung

Die prätherapeutische PET-Dosimetrie gewinnt insbesondere in der Radionuklidtherapie zur Behandlung von Krebserkrankungen immer mehr an Bedeutung. Im Vergleich zu anderen bildgebenden Verfahren der Nuklearmedizin ermöglicht sie eine genauere Bestimmung der Energiedosen pro applizierte Therapieaktivität in Tumoren und Risikoorganen. Zum Beispiel werden die Radionuklide 124I, 86Y und 68Ga zur Optimierung der Radiojodtherapie von Schilddrüsenkarzinomen und zur Therapieplanung von Somatostatinrezeptor-positiven Tumoren eingesetzt. Das kürzlich eingeführte PET-Nuklid 44Sc rückt immer mehr in den Fokus als Ersatz für 68Ga, weil es auch Spätmessungen mit ausreichender Bildqualität erlaubt. Zur Abschätzung der Energiedosis ist eine genaue PET-Quantifizierung der räumlichen und zeitlichen Tracer-Aktivitätsverteilung im Tumor bzw. Organ notwendig. Im Vergleich zum Standard-Radionuklid 18F besitzen 124I, 86Y und 44Sc ungünstige Zerfallseigenschaften. Die Quantifizierung ist dadurch beeinträchtigt. Außerdem werden die Aktivitäten von kleinen Tumoren durch den bekannten Partial-Volumen-Effekt beeinflusst. In dieser Arbeit werden die wesentlichen Faktoren zur PET-Quantifizierung beschrieben, die bei der Anwendung von 124I, 86Y, 68Ga und 44Sc bei der prätherapeutischen Dosimetrie zu berücksichtigen sind. Darüber hinaus werden klinische Dosimetrieprotokolle von ausgewählten Arbeiten und ihre Korrekturverfahren kurz präsentiert.

Abstract

Pretherapeutic PET dosimetry is becoming increasingly important, in particular in targeted radionuclide therapy for the treatment of cancer diseases. Compared to other nuclear imaging modalities, PET allows a more precise determination of absorbed radiation doses per unit administered therapeutic activity in tumours and organs at risks. For instance, the radionuclides 124I, 86Y, and 68Ga are used to optimise radioiodine therapy of thyroid carcinomas and to plan therapy of somatostatin receptor-positive tumours. The novel PET nuclide 44Sc is increasingly moving into focus as a possible substitute for 68Ga because it allows late measurements with sufficient image quality. For estimating the absorbed radiation dose, an accurate PET quantification of the spatial and temporal tracer activity distribution within the tumour or organ at risk is necessary. Compared to the standard radionuclide 18F, 124I, 86Y, and 44Sc exhibit unfavourable decay properties that affect quantification. In addition, the activities of small tumours are influenced by the well-known partial volume effect. In this work, the essential factors for PET quantification are described that have to be taken into account when using 124I, 86Y, 68Ga, and 44Sc for dosimetry purposes. Furthermore, clinical dosimetry protocols of selected studies and their correction approaches are shortly presented.

* die beiden erstgenannten Autoren publizieren gleichwertig


 
  • Literatur

  • 1 Alessio A, Kinahan P. Application of a spatially variant system model for 3-D whole-body PET image reconstruction Proc. IEEE Int Symp Biomed Imaging 2008; 1315–138
  • 2 Andersen FL, Klausen TL, Loft A. et al. Clinical evaluation of PET image reconstruction using a spatial resolution model. Eur J Radiol 2013; 82: 862-869
  • 3 Barone R, Borson-Chazot F, Valkema R. et al. Patient-specific dosimetry in predicting renal toxicity with 90Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 2005; 46 (Suppl. 01) 99S-106S
  • 4 Baum RP, Kulkarni HR, Carreras C. Peptides and receptors in image-guided therapy: theranostics for neuroendocrine neoplasms. Semin Nucl Med 2012; 42: 190-207
  • 5 Baum RP, Kulkarni HR, Volkmer B. et al. Theranostics of metastatic prostate cancer applying 177Lu-PSMA small molecules in combination with 68Ga-PSMA PET/CT. Nuklearmediziner 2015; 38: 145-152
  • 6 Bazañez-Borgert M, Bundschuh RA, Herz M. et al. Radioactive spheres without inactive wall for lesion simulation in PET. Z Med Phys 2008; 18: 37-42
  • 7 Beijst C, Kist JW, Elschot M. et al. Quantitative comparison of 124I PET/CT and 131I SPECT/CT detectability. J Nucl Med 2016; 57: 103-108
  • 8 Bettinardi V, Castiglioni I, De Bernardi E. et al. PET quantification: strategies for partial volume correction. Clinical and Translational Imaging 2014; 2: 199-121
  • 9 Boellaard R, Krak NC, Hoekstra OS. et al. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 2004; 45: 1519-1527
  • 10 Boellaard R, van Lingen A, Lammertsma AA. Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. J Nucl Med 2001; 42: 808-817
  • 11 Boellaard R, O'Doherty MJ, Weber WA. et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging. version 1.0. Eur J Nucl Med Mol Imaging 2010; 37: 181-200
  • 12 Braad PE, Hansen SB, Thisgaard H. et al. PET imaging with the non-pure positron emitters: 55Co, 86Y and 124I. Phys Med Biol 2015; 60: 3479-3497
  • 13 Beattie PJ, Pentlow KS, OʼDonoghue J. et al. A recommendation for revised dose calibrator measurement procedures for 89Zr and 124I. PLoS One 2014; 9: e106868
  • 14 Buchholz HG, Herzog H, Förster GJ. et al. PET imaging with yttrium-86: comparison of phantom measurements acquired with different PET scanners before and after applying background subtraction. Eur J Nucl Med Mol Imaging 2003; 30: 716-720
  • 15 Bunka M, Müller C, Vermeulen C. et al. Imaging quality of 44Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET. Appl Radiat Isot 2016; 110: 129-133
  • 16 Chen CH, Muzic RF Jr, Nelson AD. et al. Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J Nucl Med 1999; 40: 118-130
  • 17 Chu SYF, Ekström LP, Firestone RB. The Lund/LBNL Nuclear Data Search: version 2.0. 02/1999 http://nucleardata.nuclear.lu.se
  • 18 Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys 2016; 3: 8
  • 19 Erlandsson K, Buvat I, Pretorius PH. et al. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 2012; 57: R119-R159
  • 20 Ezziddin S, Lohmar J, Yong-Hing CJ. et al. Does the pretherapeutic tumor SUV in 68Ga DOTATOC PET predict the absorbed dose of 177Lu octreotate?. Clin Nucl Med 2012; 37: 141-147
  • 21 Flux G, Bardies M, Monsieurs M. et al. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 2006; 16: 47-59
  • 22 Flux GD, Guy MJ, Beddows R. et al. Estimation and implications of random errors in whole-body dosimetry for targeted radionuclide therapy. Phys Med Biol 2002; 47: 3211-3223
  • 23 Freudenberg LS, Jentzen W, Görges R. et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin 2007; 46: 121-128
  • 24 Geworski L, Knoop BO, de Wit M. et al. Multicenter comparison of calibration and cross calibration of PET scanners. J Nucl Med 2002; 43: 635-639
  • 25 Gudkov SV, Shilyagina NY, Vodeneev VA. et al. Targeted radionuclide therapy of human tumors. Int J Mol Sc 2015; 17 DOI: doi: 10.3390/ijms17010033.
  • 26 Hardiansyah D, Guo W, Attarwala AA. et al. Treatment planning in PRRT based on simulated PET data and a PBPK model. Determination of accuracy using a PET noise model. Nuklearmedizin 2017; 56: 23-30
  • 27 Hayden C, Casey M, Watson C. Prompt gamma correction for non-standard isotopes in a PET scanner. US Patent 7,894,652, 2011
  • 28 Helisch A, Förster GJ, Reber H. et al. Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2004; 31: 1386-1392
  • 29 Herzog H, Tellmann L, Scholten B. et al. PET imaging problems with the non-standard positron emitters yttrium-86 and iodine-124. Q J Nucl Med Mol Imaging 2008; 52: 159-165
  • 30 Hoetjes NJ, van Velden FHP, Hoekstra OS. et al. Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imag 2010; 37: 1679-1687
  • 31 Hofheinz F, Dittrich S, Pötzsch C. et al. Effects of cold sphere walls in PET phantom measurements on the volume reproducing threshold. Phys Med Biol 2010; 55: 1099-1113
  • 32 Hong I, Rothfuss R, Michel C. et al. Prompt gamma correction on Ga-68 PSMA PET studies. In: IEEE Medical Imaging Conference Record. 2015
  • 33 Huang SC, Hoffman EJ, Phelps ME. et al. Quantitation in positron emission computed tomography: 3. Effect of sampling. J Comput Assist Tomogr 1980; 4: 819-826
  • 34 Jentzen W. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging. Phys Med Biol 2010; 55: 2365-2398
  • 35 Jentzen W. An improved iterative thresholding method to delineate PET volumes using the delineation-averaged signal instead of the enclosed maximum signal. J Nucl Med Technol 2015; 43: 28-35
  • 36 Jentzen W, Freudenberg L, Bockisch A. Quantitative imaging of 124I with PET/ CT in pretherapy lesion dosimetry. Effects impairing image quantification and their corrections. Q J Nucl Med Mol Imaging 2011; 55: 21-43
  • 37 Jentzen W, Freudenberg L, Eising E. et al. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med 2008; 49: 1017-1023
  • 38 Jentzen W, Hobbs RF, Stahl A. et al. Pre-therapeutic 124I PET(/CT) dosimetry confirms low average absorbed doses per administered 131I activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2010; 37: 884-895
  • 39 Jentzen W, Hoppenbrouwers J, van Leeuwen P. et al. Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using 124I PET imaging. J Nucl Med 2014; 55: 1759-1765
  • 40 Jentzen W, Verschure F, van Zon A. et al. 124I PET assessment of response of bone metastases to initial radioiodine treatment of differentiated thyroid cancer. J Nucl Med 2016; 57: 1499-1504
  • 41 Jentzen W, Weise R, Kupferschläger J. et al. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems. Eur J Nucl Med Mol Imaging 2008; 35: 611-623
  • 42 Kessler RM, Ellis JR, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 1984; 8: 514-522
  • 43 Kist JW, van der Vlies M, Hoekstra OS. et al. Calibration of PET/CT scanners for multicenter studies on differentiated thyroid cancer with 124I. EJNMMI Res 2016; 6: 39
  • 44 Heußer T, Mann P, Rank CM. et al. Investigation of the halo-artifact in 68Ga-PSMA-11-PET/MRI. PLoS One 2017; 12: e0183329
  • 45 Hickeson M, Yun M, Matthies A. et al. Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET Eur. J Nucl Med Mol Imaging 2002; 29: 1639-1647
  • 46 Jødal L, Le Loirec C, Champion C. Positron range in PET imaging: non-conventional isotopes. Phys Med Biol 2014; 59: 7419-7434
  • 47 Katz L, Penfold AS. Range-energy relations for electrons and the determination of beta-ray end-point energies by absorption. Rev Mod Phys 1952; 24: 28-44
  • 48 Kidera D, Kihara K, Akamatsu G. et al. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity. Ann Nucl Med 2016; 30: 97-103
  • 49 Leahy RM, Bai B, Asma E. Data corrections and quantitative PET. In: Magnus Dahlbom. (ed.) Physics of PET and SPECT Imaging. CRC Press; 2017: 235-257
  • 50 Lubberink M, Abdul FatahS, Brans B. et al. The role of 124I-positron emission tomography in diagnosis and treatment of thyroid carcinoma. Q J Nucl Med Mol Imaging 2008; 52: 30-36
  • 51 Lubberink M, Herzog H. Quantitative imaging of 124I and 86Y with PET. Eur J Nucl Med Mol Imaging 2011; 38 Suppl 1: S10-S18
  • 52 Mawlawi O, Kappadath SC, Pan T. et al. Factors affecting quantification in PET/CT imaging. Curr Med Imaging Rev 2008; 4: 34-45
  • 53 Moses WW. Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A 2011; 648 (Suppl. 01) S236-S240
  • 54 Munk OL, Tolbod LP, Hansen SB. et al. Point-spread function reconstructed PET images of sub-centimeter lesions are not quantitative. EJNMMI Phys 2017; 4: 5
  • 55 Panin VY, Kehren F, Michel C. et al. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imag 2006; 25: 907-921
  • 56 Preylowski V, Schlögl S, Schoenahl F. et al. Is the image quality of I-124-PET impaired by an automatic correction of prompt gammas?. PLoS ONE 2013; 8: e71729
  • 57 Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys 2013; 40: 064301
  • 58 Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 2008; 29: 193-207
  • 59 Rösch F, Baum RP. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: On the way to THERANOSTICS. Dalton Trans 2011; 40: 6104
  • 60 Rösch F, Herzog H, Qaim SM. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals (Basel) 2017; 10 DOI: 10.3390/ph10020056.
  • 61 Schreyer AG, Grosse J, Hellwig D. CT-bedingte Artefakte in PET/CT-Bildern. Nuklearmediziner 2015; 38: 241-248
  • 62 Singh A, van der Meulen NP, Müller C. et al. First-in-human PET/CT imaging of metastatic neuroendocrine neoplasms with cyclotron-produced 44Sc-DOTATOC: a proof-of-concept study. Cancer Biother Radiopharm 2017; 32: 124-132
  • 63 Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007; 48: 932-945
  • 64 Srinivas SM, Dhurairaj T, Basu S. et al. A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med 2009; 23: 341-348
  • 65 Strigari L, Konijnenberg M, Chiesa C. et al. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. Eur J Nucl Med Mol Imaging 2014; 41: 1976-1988
  • 66 Surti S, Scheuermann J. Image reconstruction for PET and SPECT. In: Magnus Dahlbom. (ed.) Physics of PET and SPECT Imaging. CRC Press; 2017: 211-234
  • 67 Surti S, Scheuermann R, Karp JS. Correction technique for cascade gammas in I-124 imaging on a fully-3D, time-of-flight PET scanner. IEEE Trans Nucl Sci 2009; 56: 653-660
  • 68 Teo BK, Seo Y, Bacharach SL. et al. Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. J Nucl Med 2007; 48: 802-810
  • 69 Tohme MS, Qi J. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements. Phys Med Biol 2009; 54: 3709-3725
  • 70 Tong S, Allesio AM, Kinahan PE. Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation. Phys Med Biol 2010; 55: 1453-1473
  • 71 Tong S, Alessio AM, Thielemans K. et al. Properties and mitigation of edge artifacts in PSF-based PET reconstruction. IEEE Trans Nucl Sci 2011; 58: 2264-2275
  • 72 Umbricht CA, Benešová M, Schmid RM. et al. 44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617-preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Res 2017; 7: 9-18
  • 73 Vennart NJ, Bird N, Buscombe J. et al. Optimization of PET/CT image quality using the GE 'Sharp IR' point-spread function reconstruction algorithm. Nucl Med Commun 2017; 38: 471-479
  • 74 Walczak R, Krajewski S, Szkliniarz K. et al. Cyclotron production of 43Sc for PET imaging. EJNMMI Phys 2015; 2: 33
  • 75 Watson CC, Hayden C, Casey ME. et al. Prompt gamma correction for improved quantification in 82Rb PET. J Nucl Med 2008; 49: 64P
  • 76 Wierts R, Brans B, Havekes B. et al. Dose-response relationship in differentiated thyroid cancer patients undergoing radioiodine treatment assessed by means of 124I PET/CT. J Nucl Med 2016; 57: 1027-1032
  • 77 Wollenweber SD, McDaniel DL, Stearns CW. Method and system for scatter correction. US Patent 8,017,914, 2011
  • 78 Wooten AL, Lewis BC, Szatkowski DJ. et al. Calibration setting numbers for dose calibrators for the PET isotopes 52Mn, 64Cu, 76Br, 86Y, 89Zr, 124I. Appl Radiat Isot 2016; 113: 89-95
  • 79 Zaidi H, El NaqaI. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 2010; 37: 2165-2187
  • 80 Zanzonico P. Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat Res 2012; 177: 349-364