Aktuelle Neurologie 2018; 45(06): 445-456
DOI: 10.1055/s-0043-119541
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Moderne Verfahren für die Strahlentherapie von Hirntumoren und Tumoren der Schädelbasis

Modern Techniques of Radiation Therapy in the Treatment of Brain Tumors and Tumors of the Skull Base
Christian D. Diehl
1   Klinik für Radioonkologie und Strahlentherapie, Technische Universität München (TUM), München
,
Stephanie E. Combs
1   Klinik für Radioonkologie und Strahlentherapie, Technische Universität München (TUM), München
2   Institut für Innovative Radiotherapie (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Oberschleißheim
› Author Affiliations
Further Information

Publication History

Publication Date:
04 April 2018 (online)

Zusammenfassung

Die moderne Radioonkologie verfügt über eine Reihe hochmoderner Techniken, sodass die Therapiekonzepte und Entscheidungen individualisiert vorgenommen werden. Moderne Techniken ermöglichen eine hohe lokale Dosisdeposition bei optimaler Schonung von gesundem Normalgewebe. Diese Entwicklungen haben die therapeutische Breite der Strahlentherapie entscheidend verbessert. Molekulare Eigenschaften von Tumoren bestimmen heute die Therapieentscheidung im interdisziplinären Kontext sowohl für primäre als auch für sekundäre Hirntumoren. Vor allem Patienten mit Tumoren an der Schädelbasis profitieren von einer hochpräzisen Strahlentherapie, hier kann die Bestrahlung oft auch als Alternative zu Resektion gesehen werden.

Abstract

Today the choice of radiation oncology technique and treatment concept is highly individualized. Modern techniques enable high local dose depositions with significant sparing of normal tissue. This has significantly improved the therapeutic window. Molecular markers guide therapy decisions within the interdisciplinary context, for primary as well as secondary brain tumors. Skull base tumors profit from highly precise radiation techniques; often, radiotherapy can be seen as a treatment alternative to surgery in this region.

 
  • Literatur

  • 1 Afshar-Oromieh A, Wolf MB, Kratochwil C. et al. Comparison of (6)(8)Ga-DOTATOC-PET/CT and PET/MRI hybrid systems in patients with cranial meningioma: Initial results. Neuro Oncol 2015; 17: 312-319
  • 2 Rieken S, Habermehl D, Giesel FL. et al. Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy. Radiother Oncol 2013; 109: 487-492
  • 3 Hauswald H, Stenke A, Debus J. et al. Linear accelerator-based stereotactic radiosurgery in 140 brain metastases from malignant melanoma. BMC Cancer 2015; 15: 537
  • 4 Combs SE, Engelhard C, Kopp C. et al. Long-term outcome after highly advanced single-dose or fractionated radiotherapy in patients with vestibular schwannomas – pooled results from 3 large German centers. Radiother Oncol 2015; 114: 378-383
  • 5 Harrabi SB, Adeberg S, Welzel T. et al. Long term results after fractionated stereotactic radiotherapy (FSRT) in patients with craniopharyngioma: maximal tumor control with minimal side effects. Radiat Oncol 2014; 9: 203
  • 6 Combs SE, Schulz-Ertner D, Thilmann C. et al. Treatment of cerebral metastases from breast cancer with stereotactic radiosurgery. Strahlenther Onkol 2004; 180: 590-596
  • 7 Wagner J, Welzel T, Habermehl D. et al. Radiotherapy in patients with vestibular schwannoma and neurofibromatosis type 2: clinical results and review of the literature. Tumori 2014; 100: 189-194
  • 8 Combs SE, Welzel T, Kessel K. et al. Hearing preservation after radiotherapy for vestibular schwannomas is comparable to hearing deterioration in healthy adults and is accompanied by local tumor control and a highly preserved quality of life (QOL) as patientsʼ self-reported outcome. Radiother Oncol 2013; 106: 175-180
  • 9 Combs SE, Adeberg S, Dittmar JO. et al. Skull base meningiomas: Long-term results and patient self-reported outcome in 507 patients treated with fractionated stereotactic radiotherapy (FSRT) or intensity modulated radiotherapy (IMRT). Radiother Oncol 2013; 106: 186-191
  • 10 Combs SE, Edler L, Rausch R. et al. Generation and validation of a prognostic score to predict outcome after re-irradiation of recurrent glioma. Acta Oncol 2013; 52: 147-152
  • 11 Adeberg S, Hartmann C, Welzel T. et al. Long-term outcome after radiotherapy in patients with atypical and malignant meningiomas -- clinical results in 85 patients treated in a single institution leading to optimized guidelines for early radiation therapy. Int J Radiat Oncol Biol Phys 2012; 83: 859-864
  • 12 Adeberg S, Welzel T, Rieken S. et al. Prior surgical intervention and tumor size impact clinical outcome after precision radiotherapy for the treatment of optic nerve sheath meningiomas (ONSM). Radiat Oncol 2011; 6: 117
  • 13 Combs SE, Burkholder I, Edler L. et al. Randomised phase I/II study to evaluate carbon ion radiotherapy versus fractionated stereotactic radiotherapy in patients with recurrent or progressive gliomas: the CINDERELLA trial. BMC Cancer 2010; 10: 533
  • 14 Combs SE, Hartmann C, Nikoghosyan A. et al. Carbon ion radiation therapy for high-risk meningiomas. Radiother Oncol 2010; 95: 54-59
  • 15 Combs SE, Welzel T, Schulz-Ertner D. et al. Differences in clinical results after LINAC-based single-dose radiosurgery versus fractionated stereotactic radiotherapy for patients with vestibular schwannomas. Int J Radiat Oncol Biol Phys 2010; 76: 193-200
  • 16 Combs SE, Steck I, Schulz-Ertner D. et al. Long-term outcome of high-precision radiotherapy in patients with brain stem gliomas: results from a difficult-to-treat patient population using fractionated stereotactic radiotherapy. Radiother Oncol 2009; 91: 60-66
  • 17 Andrews DW, Scott CB, Sperduto PW. et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 2004; 363: 1665-1672
  • 18 Kosaki K, Ecker S, Habermehl D. et al. Comparison of intensity modulated radiotherapy (IMRT) with intensity modulated particle therapy (IMPT) using fixed beams or an ion gantry for the treatment of patients with skull base meningiomas. Radiat Oncol 2012; 7: 44
  • 19 Combs SE, Behnisch W, Kulozik AE. et al. Intensity Modulated Radiotherapy (IMRT) and Fractionated Stereotactic Radiotherapy (FSRT) for children with head-and-neck-rhabdomyosarcoma. BMC Cancer 2007; 7: 177
  • 20 Combs SE, Schulz-Ertner D, Herfarth KK. et al. [Advances in radio-oncology. From precision radiotherapy with photons to ion therapy with protons and carbon ions]. Chirurg 2006; 77: 1126-1132
  • 21 Habermehl D, Ilicic K, Dehne S. et al. The relative biological effectiveness for carbon and oxygen ion beams using the raster-scanning technique in hepatocellular carcinoma cell lines. PLoS One 2014; 9: e113591
  • 22 Schlaich F, Brons S, Haberer T. et al. Comparison of the effects of photon versus carbon ion irradiation when combined with chemotherapy in vitro. Radiat Oncol 2013; 8: 260
  • 23 El ShafieRA, Habermehl D, Rieken S. et al. In vitro evaluation of photon and raster-scanned carbon ion radiotherapy in combination with gemcitabine in pancreatic cancer cell lines. J Radiat Res 2013; 54 (Suppl. 01) i113-119
  • 24 Combs SE, Bohl J, Elsasser T. et al. Radiobiological evaluation and correlation with the local effect model (LEM) of carbon ion radiation therapy and temozolomide in glioblastoma cell lines. Int J Radiat Biol 2009; 85: 126-137
  • 25 Combs SE, Kieser M, Rieken S. et al. Randomized phase II study evaluating a carbon ion boost applied after combined radiochemotherapy with temozolomide versus a proton boost after radiochemotherapy with temozolomide in patients with primary glioblastoma: the CLEOPATRA trial. BMC Cancer 2010; 10: 478
  • 26 Louis DN, Perry A, Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131: 803-820
  • 27 Karim AB, Maat B, Hatlevoll R. et al. A randomized trial on dose-response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Int J Radiat Oncol Biol Phys 1996; 36: 549-556
  • 28 Shaw E, Arusell R, Scheithauer B. et al. Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J Clin Oncol 2002; 20: 2267-2276
  • 29 van den Bent MJ, Brandes AA, Taphoorn MJ. et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2013; 31: 344-350
  • 30 van den Bent MJ, Afra D, de Witte O. et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 2005; 366: 985-990
  • 31 Buckner JC, Shaw EG, Pugh SL. et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 2016; 374: 1344-1355
  • 32 Eckel-Passow JE, Lachance DH, Molinaro AM. et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 2015; 372: 2499-2508
  • 33 Fisher BJ, Hu C, Macdonald DR. et al. Phase 2 study of temozolomide-based chemoradiation therapy for high-risk low-grade gliomas: preliminary results of Radiation Therapy Oncology Group 0424. Int J Radiat Oncol Biol Phys 2015; 91: 497-504
  • 34 Haque W, Verma V, Butler EB. et al. Patterns of care and outcomes of multi-agent versus single-agent chemotherapy as part of multimodal management of low grade glioma. J Neurooncol 2017; 133: 369-375
  • 35 Field KM, Rosenthal MA, Khasraw M. et al. Evolving management of low grade glioma: No consensus amongst treating clinicians. J Clin Neurosci 2016; 23: 81-87
  • 36 Prabhu RS, Won M, Shaw EG. et al. Effect of the addition of chemotherapy to radiotherapy on cognitive function in patients with low-grade glioma: secondary analysis of RTOG 98-02. J Clin Oncol 2014; 32: 535-541
  • 37 Swennen MH, Bromberg JE, Witkamp TD. et al. Delayed radiation toxicity after focal or whole brain radiotherapy for low-grade glioma. J Neurooncol 2004; 66: 333-339
  • 38 Brown PD, Buckner JC, OʼFallon JR. et al. Effects of radiotherapy on cognitive function in patients with low-grade glioma measured by the folstein mini-mental state examination. J Clin Oncol 2003; 21: 2519-2524
  • 39 Wick W, Hartmann C, Engel C. et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 2009; 27: 5874-5880
  • 40 Cairncross G, Wang M, Shaw E. et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013; 31: 337-343
  • 41 Wiestler B, Capper D, Hovestadt V. et al. Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial. Neuro Oncol 2014; 16: 1630-1638
  • 42 Wick W, Platten M, Meisner C. et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 2012; 13: 707-715
  • 43 Perry JR, Laperriere N, OʼCallaghan CJ. et al. Short-Course Radiation plus Temozolomide in Elderly Patients with Glioblastoma. N Engl J Med 2017; 376: 1027-1037
  • 44 Preusser M, Lim M, Hafler DA. et al. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 2015; 11: 504-514
  • 45 Kachikwu EL, Iwamoto KS, Liao YP. et al. Radiation enhances regulatory T cell representation. Int J Radiat Oncol Biol Phys 2011; 81: 1128-1135
  • 46 Capper D, Zentgraf H, Balss J. et al. Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 2009; 118: 599-601
  • 47 Combs SE, Thilmann C, Edler L. et al. Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol 2005; 23: 8863-8869
  • 48 Fulton DS, Urtasun RC, Scott-Brown I. et al. Increasing radiation dose intensity using hyperfractionation in patients with malignant glioma. Final report of a prospective phase I – II dose response study. J Neurooncol 1992; 14: 63-72
  • 49 Combs SE, Welzel T, Habermehl D. et al. Prospective evaluation of early treatment outcome in patients with meningiomas treated with particle therapy based on target volume definition with MRI and 68Ga-DOTATOC-PET. Acta Oncol 2013; 52: 514-520
  • 50 Afshar-Oromieh A, Giesel FL, Linhart HG. et al. Detection of cranial meningiomas: comparison of (6)(8)Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging 2012; 39: 1409-1415
  • 51 Combs SE, Ganswindt U, Foote RL. et al. State-of-the-art treatment alternatives for base of skull meningiomas: complementing and controversial indications for neurosurgery, stereotactic and robotic based radiosurgery or modern fractionated radiation techniques. Radiat Oncol 2012; 7: 226
  • 52 Hug EB, Devries A, Thornton AF. et al. Management of atypical and malignant meningiomas: role of high-dose, 3D-conformal radiation therapy. J Neurooncol 2000; 48: 151-160
  • 53 Rogers L, Barani I, Chamberlain M. et al. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg 2015; 122: 4-23
  • 54 Rogers L, Zangh P, Vogelbaum MA. et al. Intermediate-risk meningioma: initial outcomes from NRG Oncology/RTOG-0539. Int J Radiat Oncol Biol Phys 2015; 93: S139-S140
  • 55 Bakkouri WE, Kania RE, Guichard JP. et al. Conservative management of 386 cases of unilateral vestibular schwannoma: tumor growth and consequences for treatment. J Neurosurg 2009; 110: 662-669
  • 56 Walsh RM, Bath AP, Bance ML. et al. The natural history of untreated vestibular schwannomas. Is there a role for conservative management?. Rev Laryngol Otol Rhinol (Bord) 2000; 121: 21-26
  • 57 Samii M, Matthies C. Management of 1000 vestibular schwannomas (acoustic neuromas): the facial nerve-preservation and restitution of function. Neurosurgery 1997; 40: 684-695
  • 58 Pollock BE, Driscoll CL, Foote RL. et al. Patient outcomes after vestibular schwannoma management: a prospective comparison of microsurgical resection and stereotactic radiosurgery. Neurosurgery 2006; 59: 77-85 ; discussion 77 – 85
  • 59 Raut VV, Walsh RM, Bath AP. et al. Conservative management of vestibular schwannomas – second review of a prospective longitudinal study. Clin Otolaryngol Allied Sci 2004; 29: 505-514
  • 60 Combs SE, Thilmann C, Huber PE. et al. Achievement of long-term local control in patients with craniopharyngiomas using high precision stereotactic radiotherapy. Cancer 2007; 109: 2308-2314
  • 61 Rieken S, Habermehl D, Welzel T. et al. Long term toxicity and prognostic factors of radiation therapy for secreting and non-secreting pituitary adenomas. Radiat Oncol 2013; 8: 18
  • 62 Mehta MP, Tsao MN, Whelan TJ. et al. The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence-based review of the role of radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 2005; 63: 37-46
  • 63 Seyedin SN, Schoenhals JE, Lee DA. et al. Strategies for combining immunotherapy with radiation for anticancer therapy. Immunotherapy 2015; 7: 967-980
  • 64 Tang C, Wang X, Soh H. et al. Combining radiation and immunotherapy: a new systemic therapy for solid tumors?. Cancer Immunol Res 2014; 2: 831-838
  • 65 Patel KR, Lawson DH, Kudchadkar RR. et al. Two heads better than one? Ipilimumab immunotherapy and radiation therapy for melanoma brain metastases. Neuro Oncol 2015; 17: 1312-1321
  • 66 Okwan-Duodu D, Pollack BP, Lawson D. et al. Role of radiation therapy as immune activator in the era of modern immunotherapy for metastatic malignant melanoma. Am J Clin Oncol 2015; 38: 119-125
  • 67 Tsao MN, Rades D, Wirth A. et al. Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): An American Society for Radiation Oncology evidence-based guideline. Pract Radiat Oncol 2012; 2: 210-225
  • 68 Graham PH, Bucci J, Browne L. Randomized comparison of whole brain radiotherapy, 20 Gy in four daily fractions versus 40 Gy in 20 twice-daily fractions, for brain metastases. Int J Radiat Oncol Biol Phys 2010; 77: 648-654
  • 69 Kocher M, Soffietti R, Abacioglu U. et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol 2011; 29: 134-141
  • 70 Kocher M, Wittig A, Piroth MD. et al. Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 2014; 190: 521-532
  • 71 Yamamoto M, Kawabe T, Sato Y. et al. Stereotactic radiosurgery for patients with multiple brain metastases: a case-matched study comparing treatment results for patients with 2-9 versus 10 or more tumors. J Neurosurg 2014; 121: 16-25
  • 72 Chang WS, Kim HY, Chang JW. et al. Analysis of radiosurgical results in patients with brain metastases according to the number of brain lesions: is stereotactic radiosurgery effective for multiple brain metastases?. J Neurosurg 2010; 113: 73-78
  • 73 Rwigema JC, Wegner RE, Mintz AH. et al. Stereotactic radiosurgery to the resection cavity of brain metastases: a retrospective analysis and literature review. Stereotact Funct Neurosurg 2011; 89: 329-337
  • 74 Specht HM, Kessel KA, Oechsner M. et al. HFSRT of the resection cavity in patients with brain metastases. Strahlenther Onkol 2016; 192: 368-376
  • 75 Auperin A, Arriagada R, Pignon JP. et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med 1999; 341: 476-484
  • 76 Slotman B, Faivre-Finn C, Kramer G. et al. Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med 2007; 357: 664-672
  • 77 Raedt R, Boon P, Persson A. et al. Radiation of the rat brain suppresses seizure-induced neurogenesis and transiently enhances excitability during kindling acquisition. Epilepsia 2008; 48: 1952-1963
  • 78 Gondi V, Tome WA, Mehta MP. Why avoid the hippocampus?. A comprehensive review. Radiother Oncol 2010; 97: 370-376
  • 79 Gondi V, Hermann BP, Mehta MP. et al. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys 2013; 85: 348-354
  • 80 Gondi V, Tolakanahalli R, Mehta MP. et al. Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2010; 78: 1244-1252
  • 81 Harth S, Abo-Madyan Y, Zheng L. et al. Estimation of intracranial failure risk following hippocampal-sparing whole brain radiotherapy. Radiother Oncol 2013; 109: 152-158