Planta Med 2017; 83(14/15): 1227-1232
DOI: 10.1055/s-0043-116491
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Acetylated Furostene Glycosides from Solanum gilo Fruits[*]

Edwige Nana Tchoupang
1   Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
,
Christina Reder
2   Department of Pharmacognosy, University of Vienna, Vienna, Austria
,
Sylvin Benjamin Ateba
1   Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
,
Martin Zehl
2   Department of Pharmacognosy, University of Vienna, Vienna, Austria
3   Department of Analytical Chemistry, University of Vienna, Vienna, Austria
,
Hanspeter Kählig
4   Institute of Organic Chemistry, University of Vienna, Vienna, Austria
,
Dieudonné Njamen
1   Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
,
Franziska Höller
2   Department of Pharmacognosy, University of Vienna, Vienna, Austria
,
Sabine Glasl-Tazreiter
2   Department of Pharmacognosy, University of Vienna, Vienna, Austria
,
Liselotte Krenn
2   Department of Pharmacognosy, University of Vienna, Vienna, Austria
› Author Affiliations
Further Information

Publication History

received 07 February 2017
revised 05 July 2017

accepted 07 July 2017

Publication Date:
18 July 2017 (online)

Abstract

In continuation of our work on a traditional mixture of spices called “Nkui”, used in Cameroon for its influence on womenʼs reproductive health, we investigated the chemical composition of Solanum gilo, one component of “Nkui”. A methanolic extract was studied in detail. After dereplication of several known compounds, two furo-5-stene-derived saponin glycosides with acetylated sugar moieties were isolated. By extensive 1- and 2D NMR experiments and HR-MS and GC-MS methods, the structures were elucidated as 26-[(3‴,4‴,6‴-tri-O-acetyl)-β-D-glucopyranosyloxy]-22-hydroxyfurost-5-en-3β-yl-O-α-L-rhamnopyranosyl-(1″→2′)-β-D-glucopyranoside (A) and 26-[(3‴,4‴,6‴-tri-O-acetyl)-β-D-glucopyranosyloxy]-22-hydroxyfurost-5-en-3β-yl-[O-α-L-rhamnopyranosyl-(1′′′′→4′)-O-α-L-rhamnopyranosyl-(1″→2′)]-β-D-glucopyranoside (B), both new natural compounds.

* Dedicated to Professor Dr. Max Wichtl in recognition of his outstanding contribution to pharmacognosy research.


Supporting Information

 
  • References

  • 1 Tchoupang EN, Ateba SB, Zingue S, Zehl M, Krenn L, Njamen D. Estrogenic properties of spices of the traditional Cameroonian dish “nkui” in ovariectomized Wistar rats. J Complement Integr Med 2016; 13: 151-162
  • 2 Woguia AL, Ngondi JL, Boudjeko T, Rihouey C, Oben EJ. Hypolipidemic and antioxidative effects of dika nut (Irvingia gabonensis) seeds and nkui (Trimphetta cordifolia) stem bark mucilages in triton WR-1339 induced hyperlipidemic rats. Food Sci Biotechnol 2012; 21: 1715-1721
  • 3 Anonymous Solanaceae source. Available at. http://www.solanaceaesource.org/ Accessed January 13, 2017
  • 4 Anonymous The plant list, Version 1.1., 2013 ed. Available at. http://www.theplantlist.org/ Accessed January 13, 2017
  • 5 Lester RN, Niakan L. Origin and Domestication of the Scarlet Eggplant, Solanum aethiopicum, from S. anguivi in Africa. In: DʼArcy WG. ed. Solanaceae: Biology and Systematics. New York: Columbia University Press; 1986: 433-456
  • 6 Plazas M, Andujar I, Vilanova S, Gramazio P, Herraiz FJ, Prohens J. Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Front Plant Sci 2014; 5: 318
  • 7 Plazas M, Prohens J, Cunat AN, Vilanova S, Gramazio P, Herraiz FJ, Andujar I. Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants. Int J Mol Sci 2014; 15: 17221-17241
  • 8 Sekara A, Cebula S, Kunicki E. Cultivated eggplants – origin, breeding objectives and genetic resources, a review. Folia Horticulturae 2007; 19: 97-114
  • 9 Sharmin D, Khalil MI, Begum SN, Meah MB. Molecular characterization of eggplant crosses by using RAPD analysis. Int J Sustain Crop Prod 2011; 6: 22-28
  • 10 Rippberger H. Steroidal alkaloids and sapogenins from roots of some Solanum species. Planta Med 1995; 61: 292
  • 11 Banerjee SK, George V, Kapoor R. Chemical investigation of the berries of Solanum aethiopicum . Planta Med 1974; 25: 216-218
  • 12 Tagawa C, Okawa M, Ikeda T, Yoshida T, Nohara T. Homo-cholestane glycosides from Solanum aethiopicum . Tetrahedron Lett 2003; 44: 4839-4841
  • 13 Nwanna EE, Ibukun EO, Oboh G, Ademosun AO, Boligon AA, Athayde M. HPLC-DAD Analysis and in-vitro property of polyphenols extracts from (Solanum aethiopium) fruits on α-amylase, α-glucosidase and angiotensin – 1- Converting Enzyme Activities. Int J Biomed Sci 2014; 10: 272-281
  • 14 Wu SB, Meyer RS, Whitaker BD, Litt A, Kennelly EJ. A new liquid chromatography-mass spectrometry-based strategy to integrate chemistry, morphology, and evolution of eggplant (Solanum) species. J Chromatogr A 2013; 1314: 154-172
  • 15 Pontes PV, Moreira RFA, Trugo LC, De Maria CAB. The content of chlorogenic acids in tropical fruits. J Sci Food Agr 2002; 82: 1177-1181
  • 16 Wang W, Zhao Y, Jing W, Zhang J, Xiao H, Zha Q, Liu A. Ultrahigh-performance liquid chromatography-ion trap mass spectrometry characterization of the steroidal saponins of Dioscorea panthaica Prain et Burkill and its application for accelerating the isolation and structural elucidation of steroidal saponins. Steroids 2015; 95: 51-65
  • 17 Wang P, Hao J, Zhang X, Wang C, Guan H, Li M. Synthesis of furostanol glycosides: discovery of a potent α-glucosidase inhibitor. Org Biomol Chem 2016; 14: 9362-9374
  • 18 Obmann A, Werner I, Presser A, Zehl M, Swoboda Z, Purevsuren S, Narantuya S, Kletter C, Glasl S. Flavonoid C- and O-glycosides from the Mongolian medicinal plant Dianthus versicolor Fisch. Carbohydr Res 2011; 346: 1868-1875
  • 19 Tian RH, Ohmura E, Matsui M, Noharas T. Abutiloside A, a 26-acylamino-3β,16α-dihydroxy-5α-cholesta-22-one glycoside from Solanum abutiloides . Phytochemistry 1997; 44: 723-726
  • 20 Ono M, Kakiuchi T, Ebisawa H, Shiono Y, Nakamura T, Kai T, Ikeda T, Miyashita H, Yoshimitsu H, Nohara T. Steroidal glycosides from the fruits of Solanum viarum . Chem Pharm Bull 2009; 57: 632-635
  • 21 El-Aasr M, Miyashita H, Ikeda T, Lee JH, Yoshimitsu H, Nohara T, Murakami K. A new spirostanol glycoside from fruits of Solanum indicum L. Chem Pharm Bull 2009; 57: 747-748
  • 22 Abdel-Sattar E, Shabana MM, El-Mekkawy S. Protodioscin and pseudoprotodioscin from Solanum intrusum . Res J Phytochem 2008; 2: 100-105
  • 23 Shen J, Yang X, Meng Z, Guo C. Protodioscin ameliorates fructose-induced renal injury via inhibition of the mitogen activated protein kinase pathway. Phytomedicine 2016; 23: 1504-1510
  • 24 Wang T, Choi RCY, Li J, Bi CWC, Zang L, Liu Z, Dong TTX, Bi K, Tsim KWK. Antihyperlipidemic effect of protodioscin, an active ingredient isolated from the rhizomes of Dioscorea nipponica . Planta Med 2010; 76: 1642-1646
  • 25 Guo C, Li C, Yu Y, Chen W, Ma T, Zhou Z. Antihyperglycemic and antihyperlipidemic activities of protodioscin in a high-fat diet and streptozotocin-induced diabetic rats. RSC Adv 2016; 6: 88640-88646
  • 26 Tang YN, Pang YX, He XC, Zhang YZ, Zhang JY, Zhao ZZ, Yi T, Chen HB. UPLC-QTOF-MS identification of metabolites in rat biosamples after oral administration of Dioscorea saponins: a comparative study. J Ethnopharmacol 2015; 165: 127-140