Laryngorhinootologie 2017; 96(04): 216-224
DOI: 10.1055/s-0043-101698
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Immuntherapie gegen Tumorstammzellen bei Plattenepithelkarzinomen im Kopf-Hals-Bereich

Immunotherapy Against Head and Neck Cancer Stem Cells
Annekatrin Coordes
1   Klinik für Hals-, Nasen-, Ohrenheilkunde, Kopf- und Halschirurgie, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin
,
Sebastian Ochsenreither
2   Klinik für Hämatologie, Onkologie und Tumorimmunologie, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin und Charité Comprehensive Cancer Center, Charité-Universitätsmedizin Berlin, Berlin
,
Xu Qian
1   Klinik für Hals-, Nasen-, Ohrenheilkunde, Kopf- und Halschirurgie, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin
,
Veit Maria Hofmann
1   Klinik für Hals-, Nasen-, Ohrenheilkunde, Kopf- und Halschirurgie, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin
,
Jens E. Meyer
3   Abteilung für Hals-, Nasen,- Ohrenheilkunde, Kopf- und Halschirurgie und Plastische Chirurgie, AK St. Georg Hamburg, Hamburg
,
Thomas Karl Hoffmann
4   Hals-, Nasen-, Ohrenklinik, Kopf- und Hals-Chirurgie; Universität Ulm
,
Andreas M. Kaufmann
5   Gynäkologie, Gynäkologische Tumorimmunologie, Charité-Universitätsmedizin Berlin, Berlin
,
Andreas E. Albers
1   Klinik für Hals-, Nasen-, Ohrenheilkunde, Kopf- und Halschirurgie, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin
› Author Affiliations
Further Information

Publication History

eingereicht 15 January 2017

akzeptiert   17 January 2017

Publication Date:
10 May 2017 (online)

Zusammenfassung

Immunologische Therapieformen wie die Gabe von Antikörpern kommen bei soliden Tumoren, wie dem Plattenepithelkarzinom des Kopf-Hals-Bereichs entweder alleine, oder kombiniert mit Radio- oder Chemotherapie zum Einsatz. Trotz einiger respektabler Erfolge stößt auch diese Therapieform an ihre Grenzen, nicht zuletzt aufgrund verschiedener Fähigkeiten des Tumors, sich dem Selektionsdruck des Immunsystems zu entziehen. Eine wesentliche Rolle scheinen hier Tumorstammzellen zu spielen, welche eine intrinsische Resistenz gegen konventionelle Therapien aufweisen und die Fähigkeit besitzen, die Heterogenität der Tumormasse zu rekonstruieren. Auf diese Weise haben sie substantiellen Anteil an der Entwicklung von Rezidiven und Metastasen. Entsprechend sollten künftige Immuntherapien auf diese Subpopulation spezifisch abzielen, möglicherweise auch in Kombination mit anderen Therapieformen. In dieser Übersichtsarbeit werden die immunologischen Merkmale von Tumorstammzellen und ihr Potenzial als Ansatzpunkte für eine Immuntherapie zusammengefasst.

Abstract

Immunotherapy against head and neck cancer stem cells Immunologic therapies like antibodies in solid tumors like squamous cell cancer of the head and neck are administered either alone or in combination with radiation and chemotherapy. Despite some respectable successes, the effect of this therapy reaches its limits due the ability of the tumor to escape the immune system. Cancer stem cells seem to play an important role in this process due to their intrinsic resistance to conventional therapy and the ability to regenerate tumor heterogeneity. This way they substantially contribute to the formation of recurrences and metastases. Therefore, future immunotherapies should target specifically this subpopulation, possibly in combination with other therapeutic modalities. In this review the immunologic features of cancer stem cells and their potential as target for immunotherapies is summarized.

 
  • Literatur

  • 1 Albers AE, Chen C, Koberle B. et al. Stem cells in squamous head and neck cancer. Crit Rev Oncol Hematol 2012; 81: 224-240
  • 2 Greenlee RT, Hill-Harmon MB, Murray T. et al. Cancer statistics, 2001. CA: a cancer journal for clinicians 2001; 51: 15-36
  • 3 Jones AS, Goodyear PW, Ghosh S. et al. Extensive neck node metastases (N3) in head and neck squamous carcinoma: is radical treatment warranted?. Otolaryngol Head Neck Surg 2011; 144: 29-35
  • 4 Pignon JP, le Maitre A, Maillard E. et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol 2009; 92: 4-14
  • 5 Schuler PJ, Harasymczuk M, Visus C. et al. Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin Cancer Res 2014; 20: 2433-2444
  • 6 Haraf DJ, Nodzenski E, Brachman D. et al. Human papilloma virus and p53 in head and neck cancer: clinical correlates and survival. Clin Cancer Res 1996; 2: 755-762
  • 7 Albers AE, Hoffmann TK, Klussmann JP. et al. Prophylactic and therapeutic vaccines against human papilloma virus. HNO 2010; 58: 778-790
  • 8 Bottley G, Watherston OG, Hiew YL. et al. High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells. Oncogene 2008; 27: 1794-1799
  • 9 Guirat-Dhouib N, Baccar Y, Mustapha IB. et al. Oral HPV infection and MHC class II deficiency (A study of two cases with atypical outcome). Clinical and molecular allergy: CMA 2012; 10: 6
  • 10 Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer immunology, immunotherapy: CII 2005; 54: 187-207
  • 11 Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nature medicine 2004; 10: 909-915
  • 12 Biddle A, Liang X, Gammon L. et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer research 2011; 71: 5317-5326
  • 13 Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 2009; 119: 1429-1437
  • 14 Zhang Z, Filho MS, Nor JE. The biology of head and neck cancer stem cells. Oral oncology 2012; 48: 1-9
  • 15 Clay MR, Tabor M, Owen JH. et al. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head & neck 2010; 32: 1195-1201
  • 16 Chen C, Wei Y, Hummel M. et al. Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One 2011; 6: e16466
  • 17 Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 331: 1559-1564
  • 18 Pang R, Law WL, Chu AC. et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell stem cell 2010; 6: 603-615
  • 19 Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011; 331: 1559-1564
  • 20 Floor S, van Staveren WC, Larsimont D. et al. Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: distinct, overlapping or same populations. Oncogene 2011; 30: 4609-4621
  • 21 Mani SA, Guo W, Liao MJ. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704-715
  • 22 Sarrio D, Franklin CK, Mackay A. et al. Epithelial and mesenchymal subpopulations within normal basal breast cell lines exhibit distinct stem cell/progenitor properties. Stem Cells 2012; 30: 292-303
  • 23 Gilormini M, Wozny AS, Battiston-Montagne P. et al. Isolation and Characterization of a Head and Neck Squamous Cell Carcinoma Subpopulation Having Stem Cell Characteristics. J Vis Exp 2016;
  • 24 Clevers H. The cancer stem cell: premises, promises and challenges. Nature medicine 2011; 17: 313-319
  • 25 Biddle A, Liang X, Gammon L. et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer research 71: 5317-5326
  • 26 Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010; 29: 4741-4751
  • 27 Chen C, Zimmermann M, Tinhofer I. et al. Epithelial-to-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma. Cancer letters 2013; 338: 47-56
  • 28 Shigeishi H, Biddle A, Gammon L. et al. Maintenance of stem cell self-renewal in head and neck cancers requires actions of GSK3beta influenced by CD44 and RHAMM. Stem Cells 2013; 31: 2073-2083
  • 29 Kong D, Li Y, Wang Z. et al. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 2009; 27: 1712-1721
  • 30 [Anonym]. IARC Cancer Incidence in Five Continents. Vol IX 1983-2002. doi:DOI
  • 31 Kreimer AR, Clifford GM, Boyle P. et al. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 2005; 14: 467-475
  • 32 Hammarstedt L, Lindquist D, Dahlstrand H. et al. Human papillomavirus as a risk factor for the increase in incidence of tonsillar cancer. International journal of cancer 2006; 119: 2620-2623
  • 33 Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer 2011; 11: 9-22
  • 34 Jung YS, Kato I, Kim HR. A novel function of HPV16-E6/E7 in epithelial-mesenchymal transition. Biochemical and biophysical research communications 2013; 435: 339-344
  • 35 Tang AL, Owen JH, Hauff SJ. et al. Head and neck cancer stem cells: the effect of HPV – an in vitro and mouse study. Otolaryngol Head Neck Surg 2013; 149: 252-260
  • 36 Qian X, Wagner S, Ma C. et al. ALDH1-positive cancer stem-like cells are enriched in nodal metastases of oropharyngeal squamous cell carcinoma independent of HPV status. Oncol Rep 2013; 29: 1777-1784
  • 37 Vlashi E, Chen AM, Boyrie S. et al. Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status. Int J Radiat Oncol Biol Phys 2016; 94: 1198-1206
  • 38 Morrison R, Schleicher SM, Sun Y. et al. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. Journal of oncology 2011; 2011: 941876
  • 39 Ogawa K, Yoshioka Y, Isohashi F. et al. Radiotherapy targeting cancer stem cells: current views and future perspectives. Anticancer research 2013; 33: 747-754
  • 40 Diehn M, Cho RW, Lobo NA. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458: 780-783
  • 41 Chen YW, Chen KH, Huang PI. et al. Cucurbitacin I suppressed stem-like property and enhanced radiation-induced apoptosis in head and neck squamous carcinoma–derived CD44(+)ALDH1(+) cells. Molecular cancer therapeutics 2010; 9: 2879-2892
  • 42 Chen YC, Chang CJ, Hsu HS. et al. Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral oncology 2010; 46: 158-165
  • 43 Bourguignon LY, Wong G, Earle C. et al. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. The Journal of biological chemistry 2012; 287: 32800-32824
  • 44 Boiko AD, Razorenova OV, van de Rijn M. et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 2010; 466: 133-137
  • 45 Busse A, Letsch A, Fusi A. et al. Characterization of small spheres derived from various solid tumor cell lines: are they suitable targets for T cells?. Clinical & experimental metastasis 2013; 30: 781-791
  • 46 Chen YC, Chen YW, Hsu HS. et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochemical and biophysical research communications 2009; 385: 307-313
  • 47 Isfoss BL, Holmqvist B, Alm P. et al. Distribution of aldehyde dehydrogenase 1-positive stem cells in benign mammary tissue from women with and without breast cancer. Histopathology 2012; 60: 617-633
  • 48 Okamoto A, Chikamatsu K, Sakakura K. et al. Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral oncology 2009; 45: 633-639
  • 49 Visus C, Ito D, Amoscato A. et al. Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck. Cancer research 2007; 67: 10538-10545
  • 50 Liao T, Kaufmann AM, Qian X. et al. Susceptibility to cytotoxic T cell lysis of cancer stem cells derived from cervical and head and neck tumor cell lines. Journal of cancer research and clinical oncology 2013; 139: 159-170
  • 51 Tseng HC, Arasteh A, Paranjpe A. et al. Increased lysis of stem cells but not their differentiated cells by natural killer cells; de-differentiation or reprogramming activates NK cells. PLoS One 2010; 5: e11590
  • 52 Ochsenreither S, Majeti R, Schmitt T. et al. Cyclin-A1 represents a new immunogenic targetable antigen expressed in acute myeloid leukemia stem cells with characteristics of a cancer-testis antigen. Blood 2012; 119: 5492-5501
  • 53 Nishizawa S, Hirohashi Y, Torigoe T. et al. HSP DNAJB8 controls tumor-initiating ability in renal cancer stem-like cells. Cancer research 2012; 72: 2844-2854
  • 54 Yamada R, Takahashi A, Torigoe T. et al. Preferential expression of cancer/testis genes in cancer stem-like cells: proposal of a novel sub-category, cancer/testis/stem gene. Tissue antigens 2013; 81: 428-434
  • 55 Knutson KL, Lu H, Stone B. et al. Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol 2006; 177: 1526-1533
  • 56 Gjerdrum C, Tiron C, Hoiby T. et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proceedings of the National Academy of Sciences of the United States of America 2010; 107: 1124-1129
  • 57 Kudo-Saito C, Shirako H, Takeuchi T. et al. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer cell 2009; 15: 195-206
  • 58 Wei J, Barr J, Kong LY. et al. Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Molecular cancer therapeutics 2010; 9: 67-78
  • 59 Akalay I, Janji B, Hasmim M. et al. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer research 2013; 73: 2418-2427
  • 60 Krishnamurthy S, Dong Z, Vodopyanov D. et al. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer research 2010; 70: 9969-9978
  • 61 Duray A, Demoulin S, Hubert P. et al. Immune suppression in head and neck cancers: a review. Clinical & developmental immunology 2010; 2010: 701657
  • 62 Allen CT, Judd NP, Bui JD. et al. The clinical implications of antitumor immunity in head and neck cancer. Laryngoscope 2012; 122: 144-157
  • 63 Ferris RL, Hunt JL, Ferrone S. Human leukocyte antigen (HLA) class I defects in head and neck cancer: molecular mechanisms and clinical significance. Immunol Res 2005; 33: 113-133
  • 64 Lopez-Albaitero A, Nayak JV, Ogino T. et al. Role of antigen-processing machinery in the in vitro resistance of squamous cell carcinoma of the head and neck cells to recognition by CTL. J Immunol 2006; 176: 3402-3409
  • 65 deLeeuw RJ, Kost SE, Kakal JA. et al. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res 2012; 18: 3022-3029
  • 66 Wei J, Barr J, Kong LY. et al. Glioma-associated cancer-initiating cells induce immunosuppression. Clin Cancer Res 2010; 16: 461-473
  • 67 Jinushi M, Chiba S, Yoshiyama H. et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proceedings of the National Academy of Sciences of the United States of America 2011; 108: 12425-12430
  • 68 Mitchem JB, Brennan DJ, Knolhoff BL. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer research 2013; 73: 1128-1141
  • 69 Nirschl CJ, Drake CG. Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin Cancer Res 2013; 19: 4917-4924
  • 70 Chabanon RM, Pedrero M, Lefebvre C. et al. Mutational Landscape and Sensitivity to Immune Checkpoint Blockers. Clin Cancer Res 2016; 22: 4309-4321
  • 71 Chow LQ, Haddad R, Gupta S. et al. Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients With Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Results From the Phase Ib KEYNOTE-012 Expansion Cohort. J Clin Oncol 2016;
  • 72 Lee Y, Sunwoo J. PD-L1 is preferentially expressed on CD44+ tumor-initiating cells in head and neck squamous cell carcinoma. Journal for ImmunoTherapy of Cancer 2014; 2: P270
  • 73 Visus C, Wang Y, Lozano-Leon A. et al. Targeting ALDH(bright) human carcinoma-initiating cells with ALDH1A1-specific CD8(+) T cells. Clin Cancer Res 2011; 17: 6174-6184
  • 74 Ning N, Pan Q, Zheng F. et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer research 2012; 72: 1853-1864
  • 75 Duarte S, Momier D, Baque P. et al. Preventive cancer stem cell-based vaccination reduces liver metastasis development in a rat colon carcinoma syngeneic model. Stem Cells 2013; 31: 423-432
  • 76 Albers AE, Strauss L, Liao T. et al. T cell-tumor interaction directs the development of immunotherapies in head and neck cancer. Clinical & developmental immunology 2010; 2010: 236378
  • 77 Wu A, Wiesner S, Xiao J. et al. Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. Journal of neuro-oncology 2007; 83: 121-131
  • 78 Ueda R, Ohkusu-Tsukada K, Fusaki N. et al. Identification of HLA-A2- and A24-restricted T-cell epitopes derived from SOX6 expressed in glioma stem cells for immunotherapy. International journal of cancer 2010; 126: 919-929
  • 79 Schmitz M, Temme A, Senner V. et al. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. British journal of cancer 2007; 96: 1293-1301
  • 80 Kiessling A, Schmitz M, Stevanovic S. et al. Prostate stem cell antigen: Identification of immunogenic peptides and assessment of reactive CD8+ T cells in prostate cancer patients. International journal of cancer 2002; 102: 390-397
  • 81 Pellegatta S, Poliani PL, Corno D. et al. Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer research 2006; 66: 10247-10252
  • 82 Xu Q, Liu G, Yuan X. et al. Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells 2009; 27: 1734-1740
  • 83 Garcia-Hernandez Mde L, Gray A, Hubby B. et al. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer research 2008; 68: 861-869
  • 84 Zhang Z, Chen X, Chang X. et al. Vaccination with embryonic stem cells generates effective antitumor immunity against ovarian cancer. International journal of molecular medicine 2013; 31: 147-153