Semin Musculoskelet Radiol 2022; 26(03): 354-358
DOI: 10.1055/s-0042-1748319
Review Article

Research in Musculoskeletal Radiology: Setting Goals and Strategic Directions

Michail E. Klontzas
1   Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
2   Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece
3   Department of Radiology, School of Medicine, University of Crete, Heraklion, Greece
,
Apostolos H. Karantanas
1   Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
2   Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece
3   Department of Radiology, School of Medicine, University of Crete, Heraklion, Greece
› Author Affiliations

Abstract

The future of musculoskeletal (MSK) radiology is being built on research developments in the field. Over the past decade, MSK imaging research has been dominated by advancements in molecular imaging biomarkers, artificial intelligence, radiomics, and novel high-resolution equipment. Adequate preparation of trainees and specialists will ensure that current and future leaders will be prepared to embrace and critically appraise technological developments, will be up to date on clinical developments, such as the use of artificial tissues, will define research directions, and will actively participate and lead multidisciplinary research. This review presents an overview of the current MSK research landscape and proposes tangible future goals and strategic directions that will fortify the future of MSK radiology.



Publication History

Article published online:
02 June 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Klontzas ME, Papadakis GZ, Marias K, Karantanas AH. Musculoskeletal trauma imaging in the era of novel molecular methods and artificial intelligence. Injury 2020; 51 (12) 2748-2756
  • 2 Nikiforaki K, Manikis GC, Kontopodis E. et al. T2, T2* and spin coupling ratio as biomarkers for the study of lipomatous tumors. Phys Med 2019; 60: 76-82
  • 3 Manikis GC, Nikiforaki K, Lagoudaki E. et al. Differentiating low from high-grade soft tissue sarcomas using post-processed imaging parameters derived from multiple DWI models. Eur J Radiol 2021; 138: 109660
  • 4 Gyftopoulos S, Lin D, Knoll F, Doshi AM, Rodrigues TC, Recht MP. Artificial intelligence in musculoskeletal imaging: current status and future directions. AJR Am J Roentgenol 2019; 213 (03) 506-513
  • 5 Gorelik N, Gyftopoulos S. Applications of artificial intelligence in musculoskeletal imaging: from the request to the report. Can Assoc Radiol J 2021; 72 (01) 45-59
  • 6 Fritz J, Kijowski R, Recht MP. Artificial intelligence in musculoskeletal imaging: a perspective on value propositions, clinical use, and obstacles. Skeletal Radiol 2022; 51 (02) 239-243
  • 7 Klontzas ME, Vassalou EE, Kakkos GA. et al. Differentiation between subchondral insufficiency fractures and advanced osteoarthritis of the knee using transfer learning and an ensemble of convolutional neural networks. Injury 2022; DOI: 10.1016/j.injury.2022.03.008.
  • 8 Lindsey R, Daluiski A, Chopra S. et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A 2018; 115 (45) 11591-11596
  • 9 Krogue JD, Cheng KV, Hwang KM. et al. Automatic hip fracture identification and functional subclassification with deep learning. Radiol Artif Intell 2020; 2 (02) e190023
  • 10 Shin Y, Yang J, Lee YH. Deep generative adversarial networks: applications in musculoskeletal imaging. Radiol Artif Intell 2021; 3 (03) e200157
  • 11 Chang CY, Buckless C, Yeh KJ, Torriani M. Automated detection and segmentation of sclerotic spinal lesions on body CTs using a deep convolutional neural network. Skeletal Radiol 2022; 51 (02) 391-399
  • 12 Dutt R, Mendonca D, Phen HM. et al. Automatic localization and brand detection of cervical spine hardware on radiographs using weakly supervised machine learning. Radiol Artif Intell 2022; 4 (02) 1-10
  • 13 Patel R, Thong EHE, Batta V, Bharath AA, Francis D, Howard J. Automated identification of orthopedic implants on radiographs using deep learning. Radiol Artif Intell 2021; 3 (04) e200183
  • 14 Islam S, Kanavati F, Arain Z. et al. Fully automated deep-learning section-based muscle segmentation from CT images for sarcopenia assessment. Clin Radiol 2022:S0009-9260(22)00044-7
  • 15 Thian YL, Li Y, Jagmohan P, Sia D, Chan VEY, Tan RT. Convolutional neural networks for automated fracture detection and localization on wrist radiographs. Radiol Artif Intell 2019; 1 (01) e180001
  • 16 Guan B, Liu F, Mizaian AH. et al. Deep learning approach to predict pain progression in knee osteoarthritis. Skeletal Radiol 2022; 51 (02) 363-373
  • 17 Vassalou EE, Klontzas ME, Marias K, Karantanas AH. Predicting long-term outcomes of ultrasound-guided percutaneous irrigation of calcific tendinopathy with the use of machine learning. Skeletal Radiol 2022; 51 (02) 417-422
  • 18 Guermazi A, Tannoury C, Kompel AJ. et al. Improving radiographic fracture recognition performance and efficiency using artificial intelligence. Radiology 2022; 302 (03) 627-636
  • 19 Yin P, Mao N, Wang S, Sun C, Hong N. Clinical-radiomics nomograms for pre-operative differentiation of sacral chordoma and sacral giant cell tumor based on 3D computed tomography and multiparametric magnetic resonance imaging. Br J Radiol 2019; 92 (1101): 20190155
  • 20 Hong JH, Jung JY, Jo A. et al. Development and validation of a radiomics model for differentiating bone islands and osteoblastic bone metastases at abdominal CT. Radiology 2021; 299 (03) 626-632
  • 21 Leporq B, Bouhamama A, Pilleul F. et al. MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study. Cancer Imaging 2020; 20 (01) 78
  • 22 Jin Z, Zhang F, Wang Y. et al. Single-photon emission computed tomography/computed tomography image-based radiomics for discriminating vertebral bone metastases from benign bone lesions in patients with tumors. Front Med (Lausanne) 2022; 8 (January): 792581
  • 23 Ashinsky BG, Bouhrara M, Coletta CE. et al. Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. J Orthop Res 2017; 35 (10) 2243-2250
  • 24 Du Y, Almajalid R, Shan J, Zhang M. A novel method to predict knee osteoarthritis progression on MRI using machine learning methods. IEEE Trans Nanobioscience 2018; 17 (03) 228-236
  • 25 Hirvasniemi J, Gielis WP, Arbabi S. et al. Bone texture analysis for prediction of incident radiographic hip osteoarthritis using machine learning: data from the Cohort Hip and Cohort Knee (CHECK) study. Osteoarthritis Cartilage 2019; 27 (06) 906-914
  • 26 Hirvasniemi J, Klein S, Bierma-Zeinstra S, Vernooij MW, Schiphof D, Oei EHG. A machine learning approach to distinguish between knees without and with osteoarthritis using MRI-based radiomic features from tibial bone. Eur Radiol 2021; 31 (11) 8513-8521
  • 27 Lim HK, Ha HI, Park SY, Han J. Prediction of femoral osteoporosis using machine-learning analysis with radiomics features and abdomen-pelvic CT: a retrospective single center preliminary study. PLoS One 2021; 16 (03) e0247330
  • 28 Klontzas ME, Volitakis E, Aydingöz Ü, Chlapoutakis K, Karantanas AH. Machine learning identifies factors related to early joint space narrowing in dysplastic and non-dysplastic hips. Eur Radiol 2022; 32 (01) 542-550
  • 29 Klontzas ME, Manikis GC, Nikiforaki K. et al. Radiomics and machine learning can differentiate transient osteoporosis from avascular necrosis of the hip. Diagnostics (Basel) 2021; 11 (09) 1686
  • 30 Fanciullo C, Gitto S, Carlicchi E, Albano D, Messina C, Sconfienza LM. Radiomics of musculoskeletal sarcomas: a narrative review. J Imaging 2022; 8 (02) 1-20
  • 31 Gitto S, Cuocolo R, van Langevelde K. et al. MRI radiomics-based machine learning classification of atypical cartilaginous tumour and grade II chondrosarcoma of long bones. EBioMedicine 2022; 75: 103757
  • 32 Chen H, Zhang X, Wang X. et al. MRI-based radiomics signature for pretreatment prediction of pathological response to neoadjuvant chemotherapy in osteosarcoma: a multicenter study. Eur Radiol 2021; 31 (10) 7913-7924
  • 33 Liu J, Guo W, Zeng P. et al. Vertebral MRI-based radiomics model to differentiate multiple myeloma from metastases: influence of features number on logistic regression model performance. Eur Radiol 2022; 32 (01) 572-581
  • 34 Baur A, Dietrich O, Reiser M. Diffusion-weighted imaging of the spinal column. Neuroimaging Clin N Am 2002; 12 (01) 147-160
  • 35 Oztekin O, Ozan E, Hilal Adibelli Z, Unal G, Abali Y. SSH-EPI diffusion-weighted MR imaging of the spine with low b values: is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema?. Skeletal Radiol 2009; 38 (07) 651-658
  • 36 Hooijmans MT, Monte JRC, Froeling M. et al. Quantitative MRI reveals microstructural changes in the upper leg muscles after running a marathon. J Magn Reson Imaging 2020; 52 (02) 407-417
  • 37 Klupp E, Cervantes B, Schlaeger S. et al. Paraspinal muscle DTI metrics predict muscle strength. J Magn Reson Imaging 2019; 50 (03) 816-823
  • 38 Shen H, Tang Y, Huang L. et al. Applications of diffusion-weighted MRI in thoracic spinal cord injury without radiographic abnormality. Int Orthop 2007; 31 (03) 375-383
  • 39 Klengel A, Stumpp P, Klengel S, Böttger I, Rönisch N, Kahn T. Detection of traumatic bone marrow lesions after knee trauma: comparison of ADC maps derived from diffusion-weighted imaging with standard fat-saturated proton density-weighted turbo spin-echo sequences. Radiology 2017; 283 (02) 469-477
  • 40 Jungmann PM, Baum T, Bauer JS. et al. Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques?. BioMed Res Int 2014; 2014: 840170
  • 41 Crema MD, Roemer FW, Marra MD. et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011; 31 (01) 37-61
  • 42 Link TM, Li X. Establishing compositional MRI of cartilage as a biomarker for clinical practice. Osteoarthritis Cartilage 2018; 26 (09) 1137-1139
  • 43 Rutland JW, Delman BN, Gill CM, Zhu C, Shrivastava RK, Balchandani P. Emerging use of ultra-high-field 7T MRI in the study of intracranial vascularity: state of the field and future directions. AJNR Am J Neuroradiol 2020; 41 (01) 2-9
  • 44 Germann C, Galley J, Falkowski AL. et al. Ultra-high resolution 3D MRI for chondrocalcinosis detection in the knee—a prospective diagnostic accuracy study comparing 7-tesla and 3-tesla MRI with CT. Eur Radiol 2021; 31 (12) 9436-9445
  • 45 Kirkbride TE, Raja AY, Müller K, Bateman CJ, Becce F, Anderson NG. Discrimination between calcium hydroxyapatite and calcium oxalate using multienergy spectral photon-counting CT. AJR Am J Roentgenol 2017; 209 (05) 1088-1092
  • 46 Wang ZJ, Ohliger MA, Larson PEZ. et al. Hyperpolarized 13C MRI: state of the art and future directions. Radiology 2019; 291 (02) 273-284
  • 47 Park JM, Harrison CE, Ma J. et al. Hyperpolarized 13C MR spectroscopy depicts in vivo effect of exercise on pyruvate metabolism in human skeletal muscle. Radiology 2021; 300 (03) 626-632
  • 48 Mongan J, Moy L, Kahn Jr CE. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers. Radiol Artif Intell 2020; 2 (02) e200029
  • 49 Lekadir K, Osuala R, Gallin C. et al. FUTURE-AI: Guiding principles and consensus recommendations for trustworthy artificial intelligence in medical imaging. arXiv preprint 2109.09658; 2021: 1-36
  • 50 Dayan I, Roth HR, Zhong A. et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med 2021; 27 (10) 1735-1743
  • 51 Zwanenburg A, Vallières M, Abdalah MA. et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 2020; 295 (02) 328-338
  • 52 Karantanas AH, Efremidis S. The concept of the invisible radiologist in the era of artificial intelligence. Eur J Radiol 2022; 2022: 110147
  • 53 Kim YS, Smoak MM, Melchiorri AJ, Mikos AG. An overview of the tissue engineering market in the United States from 2011 to 2018. Tissue Eng Part A 2019; 25 (1-2): 1-8
  • 54 Klontzas ME, Kakkos GA, Papadakis GZ, Marias K, Karantanas AH. Advanced clinical imaging for the evaluation of stem cell based therapies. Expert Opin Biol Ther 2021; 21 (09) 1253-1264
  • 55 Mitsouras D, Liacouras P, Imanzadeh A. et al. Medical 3D printing for the radiologist. Radiographics 2015; 35 (07) 1965-1988
  • 56 Klontzas ME, Karantanas AH. Incorporating engineering principles in radiology education: are we ready to face the future?. Diagn Interv Imaging 2021; 102 (04) 195-196