Semin Musculoskelet Radiol 2022; 26(04): 396-411
DOI: 10.1055/s-0042-1745803
Review Article

Imaging of Bone Marrow: From Science to Practice

1   Department of Radiology, Auckland City Hospital, Auckland, New Zealand
2   Department of Radiology, IMSKE, Valencia, Spain
,
Carmen Ayuso Benavent
3   Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
,
Paolo Simoni
4   Department of Radiology, “Reine Fabiola” Children's University Hospital, Université Libre de Bruxelles, Brussels, Belgium
,
Paula Musa Aguiar
5   Serdil, Clinica de Radiologia e Diagnóstico por Imagem, Porto Alegre - RS, Brazil
,
Alberto Bazzocchi
6   Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
,
Francisco Aparisi
3   Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
› Author Affiliations

Abstract

The study of the bone marrow may pose important challenges, due to its changing features over the life span, metabolic stress, and in cases of disease or treatment. Bone marrow adipocytes serve as storage tissue, but they also have endocrine and paracrine functions, contributing to local and systemic metabolism.

Among different techniques, magnetic resonance (MR) has the benefit of imaging bone marrow directly. The use of advanced MR techniques for bone marrow study has rapidly found clinical applications. Beyond the clinical uses, it has opened up pathways to assess and quantify bone marrow components, establishing the groundwork for further study of its implications in physiologic and pathologic conditions.

We summarize the features of the bone marrow as an organ, address the different modalities available for its study, with a special focus on MR advanced techniques and their addition to analysis in recent years, and review some of the challenges in interpreting the appearance of bone marrow.



Publication History

Article published online:
14 September 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Travlos GS. Normal structure, function, and histology of the bone marrow. Toxicol Pathol 2006; 34 (05) 548-565
  • 2 Aparisi Gómez MP, Ayuso Benavent C, Simoni P, Aparisi F, Guglielmi G, Bazzocchi A. Fat and bone: the multiperspective analysis of a close relationship. Quant Imaging Med Surg 2020; 10 (08) 1614-1635
  • 3 Chan BY, Gill KG, Rebsamen SL, Nguyen JC. MR imaging of pediatric bone marrow. Radiographics 2016; 36 (06) 1911-1930
  • 4 Terashima T, Wiggs B, English D, Hogg JC, van Eeden SF. The effect of cigarette smoking on the bone marrow. Am J Respir Crit Care Med 1997; 155 (03) 1021-1026
  • 5 Dang CV. Runner's anemia. JAMA 2001; 286 (06) 714-716
  • 6 Horowitz KM, Ingardia CJ, Borgida AF. Anemia in pregnancy. Clin Lab Med 2013; 33 (02) 281-291
  • 7 Ricci C, Cova M, Kang YS. et al. Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 1990; 177 (01) 83-88
  • 8 Sze G, Bravo S, Baierl P, Shimkin PM. Developing spinal column: gadolinium-enhanced MR imaging. Radiology 1991; 180 (02) 497-502
  • 9 Kugel H, Jung C, Schulte O, Heindel W. Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging 2001; 13 (02) 263-268
  • 10 Griffith JF, Yeung DKW, Ma HT, Leung JCS, Kwok TCY, Leung PC. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging 2012; 36 (01) 225-230
  • 11 Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 1992; 102 (Pt 2): 341-351
  • 12 Horowitz MC, Berry R, Holtrup B. et al. Bone marrow adipocytes. Adipocyte 2017; 6 (03) 193-204
  • 13 Lecka-Czernik B, Stechschulte LA, Czernik PJ, Sherman SB, Huang S, Krings A. Marrow adipose tissue: skeletal location, sexual dimorphism, and response to sex steroid deficiency. Front Endocrinol (Lausanne) 2017; 8: 188
  • 14 Musa Aguiar P, Zarantonello P, Aparisi Gómez MP. Differentiation between osteoporotic and neoplastic vertebral fractures: state of the art and future perspectives. Curr Med Imaging 2022; 18 (02) 187-207
  • 15 Pawlyn C, Fowkes L, Otero S. et al. Whole-body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma?. Leukemia 2016; 30 (06) 1446-1448
  • 16 Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of normal bone marrow. Eur Radiol 1998; 8 (08) 1327-1334
  • 17 Carroll KW, Feller JF, Tirman PF. Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging 1997; 7 (02) 394-398
  • 18 Zhao J, Krug R, Xu D, Lu Y, Link TM. MRI of the spine: image quality and normal-neoplastic bone marrow contrast at 3 T versus 1.5 T. AJR Am J Roentgenol 2009; 192 (04) 873-880
  • 19 Schweitzer ME, Levine C, Mitchell DG, Gannon FH, Gomella LG. Bull's-eyes and halos: useful MR discriminators of osseous metastases. Radiology 1993; 188 (01) 249-252
  • 20 Shen W, Scherzer R, Gantz M. et al. Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study. J Clin Endocrinol Metab 2012; 97 (04) 1337-1346
  • 21 Shen W, Gong X, Weiss J, Jin Y. Comparison among T1-weighted magnetic resonance imaging, modified Dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat. J Obes 2013; 2013: 298675
  • 22 Phalke VV, Gujar S, Quint DJ. Comparison of 3.0 T versus 1.5 T MR: imaging of the spine. Neuroimaging Clin N Am 2006; 16 (02) 241-248 , ix
  • 23 Guerini H, Omoumi P, Guichoux F. et al. Fat suppression with Dixon techniques in musculoskeletal magnetic resonance imaging: a pictorial review. Semin Musculoskelet Radiol 2015; 19 (04) 335-347
  • 24 Del Grande F, Santini F, Herzka DA. et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 2014; 34 (01) 217-233
  • 25 Brandão S, Seixas D, Ayres-Basto M. et al. Comparing T1-weighted and T2-weighted three-point Dixon technique with conventional T1-weighted fat-saturation and short-tau inversion recovery (STIR) techniques for the study of the lumbar spine in a short-bore MRI machine. Clin Radiol 2013; 68 (11) e617-e623
  • 26 Reeder SB, Yu H, Johnson JW. et al. T1- and T2-weighted fast spin-echo imaging of the brachial plexus and cervical spine with IDEAL water-fat separation. J Magn Reson Imaging 2006; 24 (04) 825-832
  • 27 Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M. MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 1997; 26 (07) 414-418
  • 28 Montazel JL, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 2003; 229 (03) 703-709
  • 29 Stäbler A, Baur A, Bartl R, Munker R, Lamerz R, Reiser MF. Contrast enhancement and quantitative signal analysis in MR imaging of multiple myeloma: assessment of focal and diffuse growth patterns in marrow correlated with biopsies and survival rates. AJR Am J Roentgenol 1996; 167 (04) 1029-1036
  • 30 Meyer JS, Siegel MJ, Farooqui SO, Jaramillo D, Fletcher BD, Hoffer FA. Which MRI sequence of the spine best reveals bone-marrow metastases of neuroblastoma?. Pediatr Radiol 2005; 35 (08) 778-785
  • 31 Daldrup-Link HE, Henning T, Link TM. MR imaging of therapy-induced changes of bone marrow. Eur Radiol 2007; 17 (03) 743-761
  • 32 Melhem ER, Israel DA, Eustace S, Jara H. MR of the spine with a fast T1-weighted fluid-attenuated inversion recovery sequence. AJNR Am J Neuroradiol 1997; 18 (03) 447-454
  • 33 Lavdas E, Vlychou M, Arikidis N, Kapsalaki E, Roka V, Fezoulidis IV. Comparison of T1-weighted fast spin-echo and T1-weighted fluid-attenuated inversion recovery images of the lumbar spine at 3.0 Tesla. Acta Radiol 2010; 51 (03) 290-295
  • 34 Bruno F, Arrigoni F, Mariani S. et al. Advanced magnetic resonance imaging (MRI) of soft tissue tumors: techniques and applications. Radiol Med (Torino) 2019; 124 (04) 243-252
  • 35 Dallaudière B, Lecouvet F, Vande Berg B. et al. Diffusion-weighted MR imaging in musculoskeletal diseases: current concepts. Diagn Interv Imaging 2015; 96 (04) 327-340
  • 36 Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 2006; 26 (Suppl. 01) S205-S223
  • 37 Baur A, Dietrich O, Reiser M. Diffusion-weighted imaging of bone marrow: current status. Eur Radiol 2003; 13 (07) 1699-1708
  • 38 Giles SL, Messiou C, Collins DJ. et al. Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology 2014; 271 (03) 785-794
  • 39 Zhong X, Dong T, Tan Y. et al. Pelvic insufficiency fracture or bone metastasis after radiotherapy for cervical cancer? The added value of DWI for characterization. Eur Radiol 2020; 30 (04) 1885-1895
  • 40 Sung JK, Jee WH, Jung JY. et al. Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T. Radiology 2014; 271 (02) 488-498
  • 41 Park SW, Lee JH, Ehara S. et al. Single shot fast spin echo diffusion-weighted MR imaging of the spine; Is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema?. Clin Imaging 2004; 28 (02) 102-108
  • 42 Thawait SK, Marcus MA, Morrison WB, Klufas RA, Eng J, Carrino JA. Research synthesis: what is the diagnostic performance of magnetic resonance imaging to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis. Spine 2012; 37 (12) E736-E744
  • 43 Takigawa T, Tanaka M, Sugimoto Y, Tetsunaga T, Nishida K, Ozaki T. Discrimination between malignant and benign vertebral fractures using magnetic resonance imaging. Asian Spine J 2017; 11 (03) 478-483
  • 44 Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frahm J. Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol 2002; 23 (06) 906-912
  • 45 Griffith JF, Yeung DKW, Antonio GE. et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 2006; 241 (03) 831-838
  • 46 Liu Y, Tang GY, Tang RB, Peng YF, Li W. Assessment of bone marrow changes in postmenopausal women with varying bone densities: magnetic resonance spectroscopy and diffusion magnetic resonance imaging. Chin Med J (Engl) 2010; 123 (12) 1524-1527
  • 47 Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW. Diagnostic performance of dual-energy CT for the detection of bone marrow oedema: a systematic review and meta-analysis. Eur Radiol 2018; 28 (10) 4182-4194
  • 48 Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol 1997; 169 (05) 1439-1447
  • 49 Leake RL, Mills MK, Hanrahan CJ. Spinal marrow imaging: clues to disease. Radiol Clin North Am 2019; 57 (02) 359-375
  • 50 Zajick Jr DC, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology 2005; 237 (02) 590-596
  • 51 Romeo V, Ugga L, Stanzione A, Cocozza S, Cuocolo R, Brunetti A. Differential diagnosis of benign and malignant vertebral compression fractures using conventional and advanced MRI techniques. BJR Open 2019; 1 (01) 20180033
  • 52 Ragab Y, Emad Y, Gheita T. et al. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift in-phase and out-of-phase MR imaging. Eur J Radiol 2009; 72 (01) 125-133
  • 53 Erly WK, Oh ES, Outwater EK. The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. AJNR Am J Neuroradiol 2006; 27 (06) 1183-1188
  • 54 Geith T, Schmidt G, Biffar A. et al. Quantitative evaluation of benign and malignant vertebral fractures with diffusion-weighted MRI: what is the optimum combination of b values for ADC-based lesion differentiation with the single-shot turbo spin-echo sequence?. AJR Am J Roentgenol 2014; 203 (03) 582-588
  • 55 van Vucht N, Santiago R, Lottmann B. et al. The Dixon technique for MRI of the bone marrow. Skeletal Radiol 2019; 48 (12) 1861-1874
  • 56 Schmeel FC, Vomweg T, Träber F. et al. Proton density fat fraction MRI of vertebral bone marrow: accuracy, repeatability, and reproducibility among readers, field strengths, and imaging platforms. J Magn Reson Imaging 2019; 50 (06) 1762-1772
  • 57 Arentsen L, Yagi M, Takahashi Y. et al. Validation of marrow fat assessment using noninvasive imaging with histologic examination of human bone samples. Bone 2015; 72: 118-122
  • 58 Chen WT, Shih TT, Chen RC. et al. Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology 2001; 220 (01) 213-218
  • 59 Morales KA, Arevalo-Perez J, Peck KK, Holodny AI, Lis E, Karimi S. Differentiating atypical hemangiomas and metastatic vertebral lesions: the role of T1-weighted dynamic contrast-enhanced MRI. AJNR Am J Neuroradiol 2018; 39 (05) 968-973
  • 60 Kanchiku T, Taguchi T, Toyoda K, Fujii K, Kawai S. Dynamic contrast-enhanced magnetic resonance imaging of osteoporotic vertebral fracture. Spine (Phila Pa 1976) 2003; 28 (22) 2522-2526 ; discussion 2
  • 61 Griffith JF, Yeung DKW, Leung JCS, Kwok TCY, Leung PC. Prediction of bone loss in elderly female subjects by MR perfusion imaging and spectroscopy. Eur Radiol 2011; 21 (06) 1160-1169
  • 62 Baum T, Yap SP, Karampinos DC. et al. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus?. J Magn Reson Imaging 2012; 35 (01) 117-124
  • 63 Karampinos DC, Ruschke S, Dieckmeyer M. et al. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging 2018; 47 (02) 332-353
  • 64 Patsch JM, Li X, Baum T. et al. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 2013; 28 (08) 1721-1728
  • 65 Li X, Kuo D, Schafer AL. et al. Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging 2011; 33 (04) 974-979
  • 66 Singhal V, Miller KK, Torriani M, Bredella MA. Short- and long-term reproducibility of marrow adipose tissue quantification by 1H-MR spectroscopy. Skeletal Radiol 2016; 45 (02) 221-225
  • 67 Dieckmeyer M, Ruschke S, Cordes C. et al. The need for T2 correction on MRS-based vertebral bone marrow fat quantification: implications for bone marrow fat fraction age dependence. NMR Biomed 2015; 28 (04) 432-439
  • 68 Demmler K, Burkhardt R. Relations between fatty tissue, cancellous bone and vascular pattern of the iliac bone in aplastic anaemia. Bibl Haematol 1978; 45: 109-117
  • 69 Griffith JF, Yeung DKW, Antonio GE. et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 2005; 236 (03) 945-951
  • 70 Schellinger D, Lin CS, Hatipoglu HG, Fertikh D. Potential value of vertebral proton MR spectroscopy in determining bone weakness. AJNR Am J Neuroradiol 2001; 22 (08) 1620-1627
  • 71 Schick F, Seitz D, Machann J, Lutz O, Claussen CD. Magnetic resonance bone densitometry. Comparison of different methods based on susceptibility. Invest Radiol 1995; 30 (04) 254-265
  • 72 Cohen A, Shen W, Dempster DW. et al. Marrow adiposity assessed on transiliac crest biopsy samples correlates with noninvasive measurement of marrow adiposity by proton magnetic resonance spectroscopy ((1)H-MRS) at the spine but not the femur. Osteoporos Int 2015; 26 (10) 2471-2478
  • 73 Baum T, Yap SP, Dieckmeyer M. et al. Assessment of whole spine vertebral bone marrow fat using chemical shift-encoding based water-fat MRI. J Magn Reson Imaging 2015; 42 (04) 1018-1023
  • 74 Baum T, Rohrmeier A, Syväri J. et al. Anatomical variation of age-related changes in vertebral bone marrow composition using chemical shift encoding-based water-fat magnetic resonance imaging. Front Endocrinol (Lausanne) 2018; 9: 141
  • 75 Karampinos DC, Melkus G, Baum T, Bauer JS, Rummeny EJ, Krug R. Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water-fat imaging and single-voxel MRS. Magn Reson Med 2014; 71 (03) 1158-1165
  • 76 Wong WD, Shah S, Murray N, Walstra F, Khosa F, Nicolaou S. Advanced musculoskeletal applications of dual-energy computed tomography. Radiol Clin North Am 2018; 56 (04) 587-600
  • 77 Rajiah P, Sundaram M, Subhas N. Dual-energy CT in musculoskeletal imaging: what is the role beyond gout?. AJR Am J Roentgenol 2019; 213 (03) 493-505
  • 78 Pache G, Krauss B, Strohm P. et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions—feasibility study. Radiology 2010; 256 (02) 617-624
  • 79 Bierry G, Venkatasamy A, Kremer S, Dosch JC, Dietemann JL. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skeletal Radiol 2014; 43 (04) 485-492
  • 80 Diekhoff T, Hermann KG, Pumberger M, Hamm B, Putzier M, Fuchs M. Dual-energy CT virtual non-calcium technique for detection of bone marrow edema in patients with vertebral fractures: a prospective feasibility study on a single-source volume CT scanner. Eur J Radiol 2017; 87: 59-65
  • 81 Thomas C, Schabel C, Krauss B. et al. Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. AJR Am J Roentgenol 2015; 204 (03) W324-W331
  • 82 Stevens SK, Moore SG, Kaplan ID. Early and late bone-marrow changes after irradiation: MR evaluation. AJR Am J Roentgenol 1990; 154 (04) 745-750
  • 83 Blomlie V, Rofstad EK, Skjønsberg A, Tverå K, Lien HH. Female pelvic bone marrow: serial MR imaging before, during, and after radiation therapy. Radiology 1995; 194 (02) 537-543
  • 84 Yankelevitz DF, Henschke CI, Knapp PH, Nisce L, Yi Y, Cahill P. Effect of radiation therapy on thoracic and lumbar bone marrow: evaluation with MR imaging. AJR Am J Roentgenol 1991; 157 (01) 87-92
  • 85 Otake S, Mayr NA, Ueda T, Magnotta VA, Yuh WTC. Radiation-induced changes in MR signal intensity and contrast enhancement of lumbosacral vertebrae: do changes occur only inside the radiation therapy field?. Radiology 2002; 222 (01) 179-183
  • 86 Sacks EL, Goris ML, Glatstein E, Gilbert E, Kaplan HS. Bone marrow regeneration following large field radiation: influence of volume, age, dose, and time. Cancer 1978; 42 (03) 1057-1065
  • 87 Rahmouni A, Divine M, Mathieu D. et al. MR appearance of multiple myeloma of the spine before and after treatment. AJR Am J Roentgenol 1993; 160 (05) 1053-1057
  • 88 Zinzani PL. Lymphoma: diagnosis, staging, natural history, and treatment strategies. Semin Oncol 2005; 32 (01, Suppl 1): S4-S10
  • 89 Wasser K, Moehler T, Nosas-Garcia S. et al. Correlation of MRI and histopathology of bone marrow in patients with multiple myeloma. [in German]. Rofo 2005; 177 (08) 1116-1122
  • 90 Hartman RP, Sundaram M, Okuno SH, Sim FH. Effect of granulocyte-stimulating factors on marrow of adult patients with musculoskeletal malignancies: incidence and MRI findings. AJR Am J Roentgenol 2004; 183 (03) 645-653