Horm Metab Res 2017; 49(05): 327-337
DOI: 10.1055/s-0042-119202
Endocrine Care
© Georg Thieme Verlag KG Stuttgart · New York

Differences in Gene Expression and Gene Associations in Epicardial Fat Compared to Subcutaneous Fat

J. Yim
1   Department of Medicine, University of British Columbia, Vancouver, B.C., Canada
,
S. W. Rabkin
1   Department of Medicine, University of British Columbia, Vancouver, B.C., Canada
› Author Affiliations
Further Information

Publication History

received 11 July 2016

accepted 30 September 2016

Publication Date:
12 January 2017 (online)

Abstract

Epicardial adipose tissue (EAT) plays a role in cardiac physiology and may contribute to the development of coronary artery disease. Our objective was to determine whether there was a significant difference in gene expression in EAT compared to subcutaneous adipose tissue (SAT) and to identify potential relationships. MEDLINE and EMBASE were searched using the key terms “Epicardial Adipose Tissue” or “Epicardial Fat” in combination with “RNA”, “mRNA”, or “gene”. The entry criteria were studies that presented primary data including expression levels of mRNA in human EAT compared with SAT and an expression of variance (SD). Genes identified by 2 or more studies were evaluated. Genes that showed significant change in expression between EAT and SAT were examined using the Gene Functional Classification analytical tool in Database for Annotation, Visualization and Integrated Discovery and cross-validated by ToppGene. Seventeen genes were identified from 25 studies. Meta-analysis showed that 10 genes (ADORA1, adiponectin, AGT, ADM, CATA, IL-1β, MCP-1, RBP-4, TNF-α, UCP-1) were significantly different in EAT. Gene Functional Classification analysis yielded 23 clusters with significant relationships. The top clusters were focused on responses to glucocorticoid stimulus, regulation of apoptosis, cellular ion homeostasis, and responses to hormone stimulus. Genetic analysis shows that EAT is discretely different from SAT. ADORA1, adiponectin, AGT, ADM, CATA, IL-1β, MCP-1, RBP-4, TNF-α, and UCP-1 may play significant roles in the unique physiology of EAT and/or its role in pathophysiology, through mechanisms as diverse as steroid hormone responses and regulation of apoptosis.

Supporting Information

 
  • References

  • 1 Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obes Rev 2007; 8: 253-261
  • 2 Yazici D, Ozben B, Yavuz D, Deyneli O, Aydin H, Tarcin O, Akalin S. Epicardial adipose tissue thickness in type 1 diabetic patients. Endocrine 2011; 40: 250-255
  • 3 Rabkin SW. The relationship between epicardial fat and indices of obesity and the metabolic syndrome: A Systematic Review and Meta-Analysis. Metab Syndr Relat Disord. 2013
  • 4 Eroglu S, Sade LE, Yildirir A, Bal U, Ozbicer S, Ozgul AS, Bozbas H, Aydinalp A, Muderrisoglu H. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis 2009; 19: 211-217
  • 5 Iacobellis G, Lonn E, Lamy A, Singh N, Sharma AM. Epicardial fat thickness and coronary artery disease correlate independently of obesity. Int J Cardiol 2011; 146: 452-454
  • 6 Xu Y, Cheng X, Hong K, Huang C, Wan L. How to interpret epicardial adipose tissue as a cause of coronary artery disease: a meta-analysis. Coron Artery Dis 2012; 23: 227-233
  • 7 Kunita E, Yamamoto H, Kitagawa T, Ohashi N, Oka T, Utsunomiya H, Urabe Y, Tsushima H, Awai K, MJ B, Kihara Y. Prognostic value of coronary artery calcium and epicardial adipose tissue assessed by non-contrast cardiac computed tomography. Atherosclerosis 2014; 233: 447-453
  • 8 Fox CS, Hwang S-J, Massaro JM, Lieb K, Vasan RS, O’Donnell CJ, Hoffmann U. Relation of subcutaneous and visceral adipose tissue to coronary and abdominal aortic calcium (from the Framingham Heart Study). Am J Cardiol 2009; 104: 543-547
  • 9 Taguchi R, Takasu J, Itani Y, Yamamoto R, Yokoyama K, Watanabe S, Masuda Y. Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis 2001; 157: 203-209
  • 10 Marques MD, Santos RD, Parga JR, Rocha-Filho JA, Quaglia LA, Miname MH, Avila LF. Relation between visceral fat and coronary artery disease evaluated by multidetector computed tomography. Atherosclerosis 2010; 209: 481-486
  • 11 McKenney ML, Schultz KA, Boyd JH, Byrd JP, Alloosh M, Teague SD, Arce-Esquivel AA, Fain JN, Laughlin MH, Sacks HS, Sturek M. Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J Cardiothorac Surg 2014; 9: 2
  • 12 Iacobellis G, Barbaro G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res 2008; 40: 442-445
  • 13 Sacks HS, Fain JN, Cheema P, Bahouth SW, Garrett E, Wolf RY, Wolford D, Samaha J. Depot-specific overexpression of proinflammatory, redox, endothelial cell, and angiogenic genes in epicardial fat adjacent to severe stable coronary atherosclerosis. Metab Syndr Relat Disord 2011; 9: 433-439
  • 14 Rabkin SW. Epicardial Adipose Tissue and Reactive Oxygen Species. In: Laher I. (Ed.). Handbook of Systems Biology of Oxidative Stress. Heidelberg: Springer; 2013
  • 15 Rabkin S. Epicardial fat: properties, function and relationship to obesity. Obes Rev 2007; 8: 253-261
  • 16 Review Manager(RevMan) [Computer program]. Version 5.3. 2014; Available from http://tech.cochrane.org/revman/download
  • 17 Friedrich JO, Adhikari NKJ, Beyene J. Ratio of means for analyzing continuous outcomes in meta-analysis performed as well as mean difference methods. J Clin Epidemiol 2011; 64: 556-564
  • 18 Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44-57
  • 19 Agra R, Fernández-Trasancos Á, Sierra J, González-Juanatey J, Eiras S. Differential association of S100A9, an inflammatory marker, and p53, a cell cycle marker, expression with epicardial adipocyte size in patients with cardiovascular disease. Inflammation 2014; 37: 1504-1512
  • 20 Agra R, Teijeira-Fernández E, Pascual-Figal D, Sánchez-Más J, Fernández-Trasancos A, González-Juanatey J, Eiras S. Adiponectin and p53 mRNA in epicardial and subcutaneous fat from heart failure patients. Eur J Clin Invest 2014; 44: 29-37
  • 21 Atalar F, Gormez S, Caynak B, Akan G, Tanriverdi G, Bilgic-Gazioglu S, Gunay D, Duran C, Akpinar B, Ozbek U, Buyukdevrim AS, Yazici Z. The role of mediastinal adipose tissue 11beta-hydroxysteroid d ehydrogenase type 1 and glucocorticoid expression in the development of coronary atherosclerosis in obese patients with ischemic heart disease. Cardiovasc Diabetol 2012; 11: 115
  • 22 Bambace C, Sepe A, Zoico E, Telesca M, Olioso D, Venturi S, Rossi A, Corzato F, Faccioli S, Cominacini L, Santini F, Zamboni M. Inflammatory profile in subcutaneous and epicardial adipose tissue in men with and without diabetes. Heart Vessels 2014; 29: 42-48
  • 23 Bilgic Gazioglu S, Akan G, Atalar F, Erten G. PAI-1 and TNF-α profiles of adipose tissue in obese cardiovascular disease patients. Int J Clin Exp Pathol 2015; 8: 15919-15925
  • 24 Castro RB, Longui CA, Faria CD, Silva TS, Richeti F, Rocha MN, Melo MR, Pereira WL, Chamlian EG, Rivetti LA. Tissue-specific adaptive levels of glucocorticoid receptor alpha mRNA and their relationship with insulin resistance. Genet Mol Res 2012; 11: 3975-3987
  • 25 Chechi K, Blanchard PG, Mathieu P, Deshaies Y, Richard D. Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. Int J Cardiol 2013; 167: 2264-2270
  • 26 Eiras S, Teijeira-Fernandez E, Salgado-Somoza A, Couso E, Garcia-Caballero T, Sierra J, Juanatey JR. Relationship between epicardial adipose tissue adipocyte size and MCP-1 expression. Cytokine 2010; 51: 207-212
  • 27 Eiras S, Teijeira-Fernandez E, Shamagian LG, Fernandez AL, Vazquez-Boquete A, Gonzalez-Juanatey JR. Extension of coronary artery disease is associated with increased IL-6 and decreased adiponectin gene expression in epicardial adipose tissue. Cytokine 2008; 43: 174-180
  • 28 Fain JN, Sacks HS, Bahouth SW, Tichansky DS, Madan AK, Cheema PS. Human epicardial adipokine messenger RNAs: comparisons of their expression in substernal, subcutaneous, and omental fat. Metabolism 2010; 59: 1379-1386
  • 29 Gaborit B, Venteclef N, Ancel P, Pelloux V, Gariboldi V, Leprince P, Amour J, Hatem SN, Jouve E, Dutour A, Clément K. Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovasc Res 2015; 108: 62-73
  • 30 Gormez S, Demirkan A, Atalar F, Caynak B, Erdim R, Sozer V, Gunay D, Akpinar B, Ozbek U, Buyukdevrim AS. Adipose tissue gene expression of adiponectin, tumor necrosis factor-alpha and leptin in metabolic syndrome patients with coronary artery disease. Intern Med 2011; 50: 805-810
  • 31 Guauque-Olarte S, Gaudreault N, Piche ME, Fournier D, Mauriege P, Mathieu P, Bosse Y. The transcriptome of human epicardial, mediastinal and subcutaneous adipose tissues in men with coronary artery disease. PLoS One 2011; 6: e19908
  • 32 Iglesias MJ, Eiras S, Piñeiro R, López-Otero D, Gallego R, Fernández AL, Lago F, González-Juanatey JR. Gender differences in adiponectin and leptin expression in epicardial and subcutaneous adipose tissue. Findings in patients undergoing cardiac surgery. Rev española Cardiol 2006; 59: 1252-1260
  • 33 Kotulak T, Drapalova J, Lips M, Lacinova Z, Kramar P, Riha H, Netuka I, Maly J, Blaha J, Lindner J, Svacina S, Mraz M, Haluzik M. Cardiac surgery increases serum concentrations of adipocyte fatty acid-binding protein and its mRNA expression in circulating monocytes but not in adipose tissue. Physiol Res 2014; 63: 83-94
  • 34 Kremen J, Dolinkova M, Krajickova J, Blaha J, Anderlova K, Lacinova Z, Haluzikova D, Bosanska L, Vokurka M, Svacina S, Haluzik M. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. J Clin Endocrinol Metab 2006; 91: 4620-4627
  • 35 Rodino-Janeiro BK, Salgado-Somoza A, Teijeira-Fernandez E, Gonzalez-Juanatey JR, Alvarez E, Eiras S. Receptor for advanced glycation end-products expression in subcutaneous adipose tissue is related to coronary artery disease. Eur J Endocrinol 2011; 164: 529-537
  • 36 Roubicek T, Dolinkova M, Blaha J, Haluzikova D, Bosanska L, Mraz M, Kremen J, Haluzik M. Increased angiotensinogen production in epicardial adipose tissue during cardiac surgery: possible role in a postoperative insulin resistance. Physiol Res 2008; 57: 911-917
  • 37 Salgado-Somoza A, Teijeira-Fernández E, Fernández AL, González-Juanatey JR, Eiras S. Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress. Am J Physiol Heart Circ Physiol 2010; 299: H202-H209
  • 38 Salgado-Somoza A, Teijeira-Fernandez E, Rubio J, Couso E, Gonzalez-Juanatey JR, Eiras S. Coronary artery disease is associated with higher epicardial retinol-binding protein 4 (RBP4) and lower glucose transporter (GLUT) 4 levels in epicardial and subcutaneous adipose tissue. Clin Endocrinol (Oxf) 2012; 76: 51-58
  • 39 Shibasaki I, Nishikimi T, Mochizuki Y, Yamada Y, Yoshitatsu M, Inoue Y, Kuwata T, Ogawa H, Tsuchiya G, Ishimitsu T, Fukuda H. Greater expression of inflammatory cytokines, adrenomedullin, and natriuretic peptide receptor-C in epicardial adipose tissue in coronary artery disease. Regul Pept 2010; 165: 210-217
  • 40 Silaghi A, Achard V, Paulmyer-Lacroix O, Scridon T, Tassistro V, Duncea I, Clement K, Dutour A, Grino M. Expression of adrenomedullin in human epicardial adipose tissue: role of coronary status. Am J Physiol Metab 2007; 293: E1443-E1450
  • 41 Skrabal CA, Czaja J, Honz K, Emini R, Hannekum A, Friedl R. Adiponectin–its potential to predict and prevent coronary artery disease. Thorac Cardiovasc Surg 2011; 59: 201-206
  • 42 Teijeira-Fernandez E, Eiras S, Salgado Somoza A, Gonzalez-Juanatey JR. Baseline epicardial adipose tissue adiponectin levels predict cardiovascular outcomes: a long-term follow-up study. Cytokine 2012; 60: 674-680
  • 43 Hirata Y, Kurobe H, Akaike M, Chikugo F, Hori T, Bando Y, Nishio C, Higashida M, Nakaya Y, Kitagawa T, Sata M. Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int Heart J 2011; 52: 139-142
  • 44 McAninch EA, Fonseca TL, Poggioli R, Panos AL, Salerno TA, Deng Y, Li Y, Bianco AC, Iacobellis G. Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease. Obesity (Silver Spring) 2015; 23: 1267-1278
  • 45 Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, Karas J, Optican R, Bahouth SW, Garrett E, Wolf RY, Carter RA, Robbins T, Wolford D, Samaha J. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab 2009; 94: 3611-3615
  • 46 Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat. Physiol Rev 1984; 64: 1-64
  • 47 Mori H, Okazawa H, Iwamoto K, Maeda E, Hashiramoto M, Kasuga M. A polymorphism in the 5′ untranslated region and a Met229–>Leu variant in exon 5 of the human UCP1 gene are associated with susceptibility to type II diabetes mellitus. Diabetologia 2001; 44: 373-376
  • 48 Jia J, Tian Y, Cao Z, Tao L, Zhang X, Gao S, Ge C, Lin Q-Y, Jois M. The polymorphisms of UCP1 genes associated with fat metabolism, obesity and diabetes. Mol Biol Rep 2010; 37: 1513-1522
  • 49 Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821-1830
  • 50 Malavazos AE, Ermetici F, Coman C, Corsi MM, Morricone L, Ambrosi B. Influence of epicardial adipose tissue and adipocytokine levels on cardiac abnormalities in visceral obesity. Int J Cardiol 2007; 121: 132-134
  • 51 Wu Z, Chen Y, Zhao S. Simvastatin inhibits ox-LDL-induced inflammatory adipokines secretion via amelioration of ER stress in 3T3-L1 adipocyte. 2013
  • 52 Sethi JK, Hotamisligil GS. The role of TNFα in adipocyte metabolism. Semin Cell Dev Biol 1999; 10: 19-29
  • 53 Moller DE. Potential Role of TNF-α in the Pathogenesis of Insulin Resistance and Type 2 Diabetes. Trends Endocrinol Metab 2000; 11: 212-217
  • 54 Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 1996; 271: 665-668
  • 55 Hajri T, Tao H, Wattacheril J, Marks-Shulman P, Abumrad NN. Regulation of adiponectin production by insulin: interactions with tumor necrosis factor-a and interleukin-6. Am J Physiol Endocrinol Metab 2011; 300: E350-E360
  • 56 Hube F, Hauner H. The role of TNF-alpha in human adipose tissue: prevention of weight gain at the expense of insulin resistance?. Horm Metab Res 1999; 31: 626-631
  • 57 Li Y, Totsune K, Takeda K, Furuyama K, Shibahara S, Takahashi K. Differential expression of adrenomedullin and resistin in 3T3-L1 adipocytes treated with tumor necrosis factor-alpha. Eur J Endocrinol 2003; 149: 231-238
  • 58 Zhang H, Zhang S-Y, Jiang C, Li Y, Xu G, Xu M-J, Wang X. Intermedin/adrenomedullin 2 polypeptide promotes adipose tissue browning and reduces high-fat diet-induced obesity and insulin resistance in mice. Int J Obes (Lond) 2016; 40: 852-860
  • 59 Letizia C, Rossi G, Cerci S. Adrenomedullin and endocrine disorders. Panminerva Med 2003; 45: 241-251A
  • 60 Kato J, Tsuruda T, Kita T, Kitamura K, Eto T. Adrenomedullin: a protective factor for blood vessels. Arterioscler Thromb Vasc Biol 2005; 25: 2480-2487
  • 61 Iacobellis G, di Gioia CR, Cotesta D, Petramala L, Travaglini C, De Santis V, Vitale D, Tritapepe L, Letizia C. Epicardial adipose tissue adiponectin expression is related to intracoronary adiponectin levels. Horm Metab Res 2009; 41: 227-231
  • 62 Yvan-Charvet L, Quignard-Boulangé A. Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int 2011; 79: 162-168
  • 63 Ailhaud G, Teboul M, Massiera F. Angiotensinogen, adipocyte differentiation and fat mass enlargement. Curr Opin Clin Nutr Metab Care 2002; 5: 385-389
  • 64 Allen CL, Bayraktutan U. Differential mechanisms of angiotensin II and PDGF-BB on migration and proliferation of coronary artery smooth muscle cells. J Mol Cell Cardiol 2008; 45: 198-208
  • 65 van Rijn MJE, Bos MJ, Isaacs A, Yazdanpanah M, Arias-Vásquez A, Stricker BHC, Klungel OH, Oostra BA, Koudstaal PJ, Witteman JC, Hofman A, Breteler MMB, van Duijn CM. Polymorphisms of the renin-angiotensin system are associated with blood pressure, atherosclerosis and cerebral white matter pathology. J Neurol Neurosurg Psychiatry 2007; 78: 1083-1087
  • 66 Maedler K, Dharmadhikari G, Schumann DM, Størling J. Interleukin-1 beta targeted therapy for type 2 diabetes. Expert Opin Biol Ther 2009; 9: 1177-1188
  • 67 Dinarello CA, Donath MY, Mandrup-Poulsen T. Role of IL-1b in type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 2010; 1:
  • 68 O’Hara A, Lim F-L, Mazzatti DJ, Trayhurn P. Stimulation of inflammatory gene expression in human preadipocytes by macrophage-conditioned medium: Upregulation of IL-6 production by macrophage-derived IL-1b. Mol Cell Endocrinol 2012; 349: 239-247
  • 69 Bing C. Is interleukin-1β a culprit in macrophage-adipocyte crosstalk in obesity?. Adipocyte 2015; 4: 149-152A
  • 70 Freitas Lima LC, Braga V de A, do Socorro de França Silva M, Cruz J de C, Sousa Santos SH, de Oliveira Monteiro MM, Balarini C de M. Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol 2015; 6: 304
  • 71 Ding M, Rzucidlo EM, Davey JC, Xie Y, Liu R, Jin Y, Stavola L, Martin KA. Chapter Eleven – Adiponectin in the Heart and Vascular System. Vitamins Horm 2012; 289-319
  • 72 Brochu-Gaudreau K, Rehfeldt C, Blouin R, Bordignon V, Murphy BD, Palin M-F. Adiponectin action from head to toe. Endocrine 2010; 37: 11-32
  • 73 Li L, Wu L-L. Chapter Fourteen – Adiponectin and Interleukin-6 in Inflammation-Associated Disease. Vitamins Horm 2012; 375-395
  • 74 Díez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 2003; 148: 293-300
  • 75 Phillips A, Cobbold C. A Comparison of the Effects of Aerobic and Intense Exercise on the Type 2 Diabetes Mellitus Risk Marker Adipokines, Adiponectin and Retinol Binding Protein-4. Int J Chronic Dis 2014; 358058
  • 76 Teijeira-Fernandez E, Eiras S, Grigorian-Shamagian L, Fernandez A, Adrio B, Gonzalez-Juanatey JR. Epicardial adipose tissue expression of adiponectin is lower in patients with hypertension. J Hum Hypertens 2008; 22: 856-863
  • 77 Kodydková J, Vávrová L, Kocík M, Žák A. Human catalase, its polymorphisms, regulation and changes of its activity in different diseases. Folia Biol (Praha) 2014; 60: 153-167
  • 78 Okuno Y, Matsuda M, Miyata Y, Fukuhara A, Komuro R, Shimabukuro M, Shimomura I. Human catalase gene is regulated by peroxisome proliferator activated receptor-gamma through a response element distinct from that of mouse. Endocr J 2010; 57: 303-309
  • 79 Okuno Y, Matsuda M, Kobayashi H, Morita K, Suzuki E, Fukuhara A, Komuro R, Shimabukuro M, Shimomura I. Adipose expression of catalase is regulated via a novel remote PPARgamma-responsive region. Biochem Biophys Res Commun 2008; 366: 698-704
  • 80 Rupérez AI, Olza J, Gil-Campos M, Leis R, Mesa MD, Tojo R, Cañete R, Gil A, Aguilera CM. Are catalase -844A/G polymorphism and activity associated with childhood obesity?. Antioxid Redox Signal 2013; 19: 1970-1975
  • 81 Yang H, Roberts LJ, Shi MJ, Zhou LC, Ballard BR, Richardson A, Guo ZM. Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E. Circ Res 2004; 95: 1075-1081
  • 82 Lin S-J, Shyue S-K, Liu P-L, Chen Y-H, Ku H-H, Chen J-W, Tam K-B, Chen Y-L. Adenovirus-mediated overexpression of catalase attenuates oxLDL-induced apoptosis in human aortic endothelial cells via AP-1 and C-Jun N-terminal kinase/extracellular signal-regulated kinase mitogen-activated protein kinase pathways. J Mol Cell Cardiol 2004; 36: 129-139
  • 83 Bergmann K, Sypniewska G. Diabetes as a complication of adipose tissue dysfunction. Is there a role for potential new biomarkers?. Clin Chem Lab Med 2013; 51: 177-185
  • 84 Cronstein BN, Levin RI, Philips M, Hirschhorn R, Abramson SB, Weissmann G. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol 1992; 148: 2201-2206
  • 85 Ramakers BP, Riksen NP, van der Hoeven JG, Smits P, Pickkers P. Modulation of Innate Immunity by Adenosine Receptor Stimulation. Shock 2011; 36: 208-215
  • 86 Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003; 4: P3
  • 87 Hirata A, Maeda N, Nakatsuji H, Hiuge-Shimizu A, Okada T, Funahashi T, Shimomura I. Contribution of glucocorticoid-mineralocorticoid receptor pathway on the obesity-related adipocyte dysfunction. Biochem Biophys Res Commun 2012; 419: 182-187
  • 88 Muñoz-Durango N, Vecchiola A, Gonzalez-Gomez LM, Simon F, Riedel CA, Fardella CE, Kalergis AM. Modulation of Immunity and Inflammation by the Mineralocorticoid Receptor and Aldosterone. Biomed Res Int 2015; 2015: 652738
  • 89 Caprio M, Antelmi A, Chetrite G, Muscat A, Mammi C, Marzolla V, Fabbri A, Zennaro M-CC, Feve B, Fève B. Antiadipogenic effects of the mineralocorticoid receptor antagonist drospirenone: potential implications for the treatment of metabolic syndrome. Endocrinology 2011; 152: 113-125
  • 90 van der Kallen CJH, van Greevenbroek MMJ, Stehouwer CDA, Schalkwijk CG. Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver?. Apoptosis 2009; 14: 1424-1434
  • 91 Fisk M, Gajendragadkar PR, Mäki-Petäjä KM, Wilkinson IB, Cheriyan J. Therapeutic potential of p38 MAP kinase inhibition in the management of cardiovascular disease. Am J Cardiovasc Drugs 2014; 14: 155-165
  • 92 Kyriakis JM, Avruch J. Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays 1996; 18: 567-577
  • 93 Gathercole LL, Morgan SA, Bujalska IJ, Hauton D, Stewart PM, Tomlinson JW. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue. PLoS One 2011; 6: e26223
  • 94 Yeager MP, Pioli PA, Collins J, Barr F, Metzler S, Sites BD, Guyre PM. Glucocorticoids enhance the in vivo migratory response of human monocytes. Brain Behav Immun 2016; 54: 86-94
  • 95 Caprio M, Fève B, Claës A, Viengchareun S, Lombès M, Zennaro M-C. Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J 2007; 21: 2185-2194
  • 96 Warris LT, van den Heuvel-Eibrink MM, Ariës IM, Pieters R, van den Akker ELT, den Boer ML. Hydrocortisone does not influence glucocorticoid sensitivity of acute lymphoblastic leukemia cells. Haematologica 2015; 100: e137-e139
  • 97 Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev 2005; 10: 15-22
  • 98 Terada Y, Ueda S, Hamada K, Shimamura Y, Ogata K, Inoue K, Taniguchi Y, Kagawa T, Horino T, Takao T. Aldosterone stimulates nuclear factor-kappa B activity and transcription of intercellular adhesion molecule-1 and connective tissue growth factor in rat mesangial cells via serum- and glucocorticoid-inducible protein kinase-1. Clin Exp Nephrol 2012; 16: 81-88
  • 99 Chantong B, Kratschmar DV, Nashev LG, Balazs Z, Odermatt A. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells. J Neuroinflammation 2012; 9: 260
  • 100 Alexandraki K, Piperi C, Kalofoutis C, Singh J, Alaveras A, Kalofoutis A. Inflammatory process in type 2 diabetes: The role of cytokines. Ann N Y Acad Sci 2006; 1084: 89-117
  • 101 Strissel KJ, Denis GV, Nikolajczyk BS. Immune regulators of inflammation in obesity-associated type 2 diabetes and coronary artery disease. Curr Opin Endocrinol Diabetes Obes 2014; 21: 330-338A
  • 102 Lubrano V, Balzan S. Consolidated and emerging inflammatory markers in coronary artery disease. World J Exp Med 2015; 5: 21-32
  • 103 Alie N, Eldib M, Fayad ZA, Mani V. Inflammation, Atherosclerosis, and Coronary Artery Disease: PET/CT for the Evaluation of Atherosclerosis and Inflammation. Clin Med Insights Cardiol 2014; 8: 13-21
  • 104 Jansen MF, Hollander MR, van Royen N, Horrevoets AJ, Lutgens E. CD40 in coronary artery disease: a matter of macrophages?. Basic Res Cardiol 2016; 111: 38
  • 105 Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron 2006; 37: 208-222
  • 106 Fernández-Velasco M, González-Ramos S, Boscá L. Involvement of monocytes/macrophages as key factors in the development and progression of cardiovascular diseases. Biochem J 2014; 458: 187-193
  • 107 Kaplan M, Aviram M, Hayek T. Oxidative stress and macrophage foam cell formation during diabetes mellitus-induced atherogenesis: role of insulin therapy. Pharmacol Ther 2012; 136: 175-185
  • 108 Rabkin SW, Langer A, Ur E, Calciu C-D, Leiter LA. Inflammatory biomarkers CRP, MCP-1, serum amyloid alpha and interleukin-18 in patients with HTN and dyslipidemia: impact of diabetes mellitus on metabolic syndrome and the effect of statin therapy. Hypertens Res 2013; 36: 550-558
  • 109 McDermott DH, Yang Q, Kathiresan S, Cupples LA, Massaro JM, Keaney JF, Larson MG, Vasan RS, Hirschhorn JN, O’Donnell CJ, Murphy PM, Benjamin EJ. CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the Framingham Heart Study. Circulation 2005; 112: 1113-1120
  • 110 Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998; 394: 894-897
  • 111 Schlitt A, Heine GH, Blankenberg S, Espinola-Klein C, Dopheide JF, Bickel C, Lackner KJ, Iz M, Meyer J, Darius H, Rupprecht HJ. CD14+CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thromb Haemost 2004; 92: 419-424