Z Orthop Unfall 2017; 155(02): 201-208
DOI: 10.1055/s-0042-118717
Originalarbeit
Georg Thieme Verlag KG Stuttgart · New York

Implantatassoziierte Komplikationen sowie klinischer und radiologischer Verlauf nach anteriorer zervikaler Korpektomie und Cage-Fusion – retrospektiver Vergleich von PEEK- gegen Titan-Cages

Clinical and Radiological Results after Anterior Cervical Corpectomy with Cage Fusion – a Retrospective Comparison of PEEK vs. Titanium Cages
Chris Schulz
Neurochirurgie, Bundeswehrkrankenhaus Ulm
,
Uwe Max Mauer
Neurochirurgie, Bundeswehrkrankenhaus Ulm
,
René Mathieu
Neurochirurgie, Bundeswehrkrankenhaus Ulm
› Author Affiliations
Further Information

Publication History

Publication Date:
10 January 2017 (online)

Zusammenfassung

Hintergrund Cages sind als anteriores Fusionsmaterial zur ACCF (Anterior Cervical Corpectomy and Fusion) etabliert, aber in klinischen Studien noch nicht ausreichend vergleichend hinsichtlich des bestgeeigneten Materials untersucht.

Patienten und Methoden Retrospektive Analyse von 126 Patienten nach Cage-ACCF (101 PEEK [Polyetheretherketon], 25 Titan) bei zervikaler spondylotischer Myelopathie. Es wurden implantatbedingte Komplikations- und Revisionsraten, radiologische (Sinterung, Fusion, segmentale und regionale Lordose) sowie klinische Parameter (NDI [Neck Disability Index] und EMS [Europäischer Myelopathie Score]) nach 6, 12 und 24 Wochen ausgewertet. Neben deskriptiven Datenanalysen wurden Unterschieds- sowie Zusammenhangshypothesen zwischen Cage-Material sowie den Komplikationen und den jeweiligen klinischen bzw. radiologischen Parametern geprüft.

Ergebnisse Signifikant häufiger Schrauben- und Cage-Komplikationen (36 vs. 7,9 % resp. 64 vs. 36,6 %) sowie tendenziell mehr implantatbedingte Revisionen in der Titan-Cage-Gruppe (16 vs. 2,97 %). Signifikant höhere Rate an Fusion Grad I und II in der PEEK-Gruppe nach 6 Monaten (82 vs. 52 %). Keine signifikanten Differenzen oder Korrelationen zwischen den segmentalen und regionalen Lordoseparametern, dem EMS und NDI sowie dem Cage-Material. Durch partielle Korrelationen mit Kontrolle inhomogen verteilter Parameter (Alter, Anteil von Mehrhöhenkorpektomien, mediane Länge der Fusionsstrecke und Überdistraktionsrate) konnten keine signifikanten Korrelationen von Komplikationen, Revisionen sowie klinischen und radiologischen Ergebnissen zum Cage-Material mehr aufgezeigt werden.

Schlussfolgerung Mit beiden Cage-Materialien lassen sich signifikante Verbesserungen der klinischen und radiologischen Befunde erreichen. Es lässt sich weder mit dieser Studie noch mit den publizierten Ergebnissen in der Literatur ein klinischer Vorteil eines bestimmten synthetischen Wirbelkörperersatzmaterials nach ACCF mit hoher Evidenz belegen.

Abstract

Background Anterior cervical corpectomy and fusion (ACCF) has become a standard procedure for patients with spondylotic myelopathy due to multisegmental stenosis of the cervical canal. Beside the fusion technique using autogenous bone grafts, synthetic cages have been increasingly used in recent years. Published information on the clinical and radiological results of different cage materials for ACCF is still limited. The study presented here is the largest series to date reporting clinical and radiological outcomes and complication rates after one- to three-level ACCF using structural polyetheretherketone (PEEK) or titanium cages augmented by anterior plate-screw osteosynthesis.

Materials and Methods Retrospective comparative study on 126 patients after cage ACCF using modular PEEK (n = 101) or distractable titanium (n = 25) cages with a minimum follow-up of 6 months. The numbers of hardware failures and implant-related surgical revisions were determined. The rate of subsidence and fusion and the course of lordotic alignment (segmental and regional Cobbʼs angles) were analysed. Neck Disability Index (NDI) and European Myelopathy Score (EMS) were assessed.

Results Significantly greater number of screw and cage complications were detected in the titanium cage group (36 vs. 7.9 % and 64 vs. 36.6 %, respectively). Non-significant trend to a higher rate of implant related revision rate in the titanium cage group (16 vs. 2.97 %). Significantly greater rate of grade I or II fusion in the PEEK cage group after 6 months (82 vs. 52 %). NDI, EMS and lordotic alignment improved significantly in both groups. There were neither significant differences between the two groups nor significant correlations between these clinico-radiological parameters and the cage material. Partial correlations performed with control of parameters showing inhomogenous distribution (patient age, fusion distance, rate of multilevel corpectomy and the rate of intraoperative segmental overdistraction) showed no significant correlations for any of the clinical or radiological outcome parameters and the complications or revisions to the cage material.

Conclusion Cages are a safe and effective alternative to autogenous bone graft for ACCF. A significant improvement in clinical and radiological parameters can be achieved with both titanium and PEEK implants. Significant differences between the two cage material groups or significant correlations of clinico-radiological outcome and cage material were not proven. Moreover there is no evidence in the literature for clinical advantages of one special cage material, to date. Therefore further prospective randomised evaluation of different fusion techniques in ACCF is still necessary.

 
  • Literatur

  • 1 Cunningham MR, Hershman S, Bendo J. Systematic review of cohort studies comparing surgical treatments for cervical spondylotic myelopathy. Spine (Phila Pa 1976) 2010; 35: 537-543
  • 2 Wang JC, Hart RA, Emery SE. et al. Graft migration or displacement after multilevel cervical corpectomy and strut grafting. Spine (Phila Pa 1976) 2003; 28: 1016-1021
  • 3 Silber JS, Anderson DG, Daffner SD. et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976) 2003; 28: 134-139
  • 4 Kandziora F, Pflugmacher R, Schaefer J. et al. Biomechanical comparison of expandable cages for vertebral body replacement in the cervical spine. J Neurosurg 2003; 99 (01) Suppl S91-S97
  • 5 Castellvi AE, Castellvi A, Clabeaux DH. Corpectomy with titanium cage reconstruction in the cervical spine. J Clin Neurosci 2012; 19: 517-521
  • 6 Waschke A, Kaczor S, Walter J. et al. Expandable titanium cages for anterior column cervical reconstruction and their effect on sagittal profile: a review of 48 cases. Acta Neurochir (Wien) 2013; 155: 801-807
  • 7 Zaïri F, Aboukais R, Thines L. et al. Relevance of expandable titanium cage for the treatment of cervical spondylotic myelopathy. Eur Spine J 2012; 21: 1545-1550
  • 8 Cabraja M, Abbushi A, Koeppen D. et al. Comparison between anterior and posterior decompression with instrumentation for cervical spondylotic myelopathy: sagittal alignment and clinical outcome. Neurosurg Focus 2010; 28: E15
  • 9 Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007; 28: 4845-4869
  • 10 Bartels RH, Donk R, van Azn RD. Height of cervical foramina after anterior discectomy and implantation of a carbon fiber cage. J Neurosurg 2001; 95 (01) Suppl S40-S42
  • 11 Assietti R, Beretta F, Arienta C. Two-level anterior cervical discectomy and cage-assisted fusion without plates. Neurosurg Focus 2002; 12: E3
  • 12 Kersten RF, van Gaalen SM, de Gast A. et al. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J 2015; 15: 1446-1460
  • 13 Kabir SM, Alabi J, Rezajooi K. et al. Anterior cervical corpectomy: review and comparison of results using titanium mesh cages and carbon fibre reinforced polymer cages. Br J Neurosurg 2010; 24: 542-546
  • 14 Andaluz N, Zuccarello M, Kuntz C. Long-term follow-up of cervical radiographic sagittal spinal alignment after 1- and 2-level cervical corpectomy for the treatment of spondylosis of the subaxial cervical spine causing radiculomyelopathy or myelopathy: a retrospective study. J Neurosurg Spine 2012; 16: 2-7
  • 15 König SA, Spetzger U. Distractable titanium cages versus PEEK cages versus iliac crest bone grafts for the replacement of cervical vertebrae. Minim Invasive Ther Allied Technol 2014; 23: 102-105
  • 16 Cobb JR. Outline for the study of scoliosis. Instructional course lectures. Am Acad Orthop Surg 1948; 5: 261
  • 17 Bridwell KH, Lenke LG, McEnery KW. et al. Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects?. Spine (Phila Pa 1976) 1995; 20: 1410-1418
  • 18 Vavruch L, Hedlund R, Javid D. et al. A prospective randomized comparison between the cloward procedure and a carbon fiber cage in the cervical spine: a clinical and radiologic study. Spine (Phila Pa 1976) 2002; 27: 1694-1701
  • 19 Schnake KJ, Görler T, Kandziora F. Fusionskriterien für Cages als Wirbelkörperersatz bei thorakolumbalen Frakturen. Unfallchirurg 2014; 117: 1005-1011
  • 20 Herdmann J, Linzbach M, Krzan M. et al. The European Myelopathy Score. In: Bauer BL, Brock M, Klinger M. eds. Advances in Neurosurgery. Berlin, Heidelberg: Springer; 1994: 266-268
  • 21 Vernon H. The Neck Disability Index: state-of-the-art, 1991–2008. J Manipulative Physiol Ther 2008; 31: 491-502
  • 22 Faul F, Erdfelder E, Lang AG. et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39: 175-191
  • 23 Lau D, Song Y, Guan Z. et al. Radiological outcomes of static vs. expandable titanium cages after corpectomy: a retrospective cohort analysis of subsidence. Neurosurgery 2013; 72: 529-539
  • 24 Elder BD, Lo SF, Kosztowski TA. et al. A systematic review of the use of expandable cages in the cervical spine. Neurosurg Rev 2016; 39: 1-11
  • 25 Sasso RC, Ruggiero jr. RA, Reilly TM. et al. Early reconstruction failures after multilevel cervical corpectomy. Spine (Phila Pa 1976) 2003; 28: 140-142
  • 26 Daubs MD. Early failures following cervical corpectomy reconstruction with titanium mesh cages and anterior plating. Spine (Phila Pa 1976) 2005; 30: 1402-1406
  • 27 Greiner-Perth R, Allam Y, El-Saghir H. et al. Analysis of reoperations after surgical treatment of degenerative cervical spine disorders: a report on 900 cases. Cent Eur Neurosurg 2009; 70: 3-8
  • 28 Okawa A, Sakai K, Hirai T. et al. Risk factors for early reconstruction failure of multilevel cervical corpectomy with dynamic plate fixation. Spine (Phila Pa 1976) 2011; 36: E582-587
  • 29 Jiang SD, Jiang LS, Dai LY. Anterior cervical discectomy and fusion versus anterior cervical corpectomy and fusion for multilevel cervical spondylosis: a systematic review. Arch Orthop Trauma Surg 2012; 132: 155-161
  • 30 Parker SL, Godil SS, Shau DN. et al. Assessment of the minimum clinically important difference in pain, disability, and quality of life after anterior cervical discectomy and fusion: clinical article. J Neurosurg Spine 2013; 18: 154-160
  • 31 Scheer JK, Tang JA, Smith JS. et al. Cervical spine alignment, sagittal deformity, and clinical implications: a review. J Neurosurg Spine 2013; 19: 141-159
  • 32 Ploumis A, Mehbod A, Garvey T. et al. Prospective assessment of cervical fusion status: plain radiographs versus CT-scan. Acta Orthop Belg 2006; 72: 342-346
  • 33 Buchowski JM, Liu G, Bunmaprasert T. et al. Anterior cervical fusion assessment: surgical exploration versus radiographic evaluation. Spine (Phila Pa 1976) 2008; 33: 1185-1191
  • 34 Park DK, Rhee JM, Kim SS. et al. Do CT scans overestimate the fusion rate after anterior cervical discectomy and fusion?. J Spinal Disord Tech 2015; 28: 41-46
  • 35 Song KS, Piyaskulkaew C, Chuntarapas T. et al. Dynamic radiographic criteria for detecting pseudarthrosis following anterior cervical arthrodesis. J Bone Joint Surg Am 2014; 96: 557-563
  • 36 Mattei TA. “Statistically significant” does not necessarily mean ‘clinically different’ on pain/quality of life scales: opportune remarks on clinical outcomes measures in cervical spondylotic myelopathy. Neurosurgery 2012; 71: E518-521
  • 37 Vitzthum HE, Dalitz K. Analysis of five specific scores for cervical spondylogenic myelopathy. Eur Spine J 2007; 16: 2096-2103
  • 38 Whitmore RG, Ghogawala Z, Petrov D. et al. Functional outcome instruments used for cervical spondylotic myelopathy: interscale correlation and prediction of preference-based quality of life. Spine J 2013; 13: 902-907