Neuroradiologie Scan 2016; 06(04): 295-322
DOI: 10.1055/s-0042-115256
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Ungewöhnliche Manifestationen von Bandscheibenerkrankungen[1]

Uncommon manifestations of intervertebral disk pathologic conditions
Felix E. Diehn
,
Timothy P. Maus
,
Jonathan M. Morris
,
Carrie M. Carr
,
Amy L. Kotsenas
,
Patrick H. Luetmer
,
Vance T. Lehman
,
Kent R. Thielen
,
Ahmad Nassr
,
John T. Wald
Further Information

Publication History

Publication Date:
13 October 2016 (online)

Zusammenfassung

Bandscheibenerkrankungen können sich, über das vertraute Bild des Bandscheibenvorfalls (Diskushernie) mit seinen typischen klinischen Merkmalen hinaus, durch ein breites Spektrum von Bildgebungsbefunden und klinischen Charakteristika manifestieren. Ziel dieses Reviews ist die bildliche Darstellung und Erörterung ungewöhnlicher Manifestationen von Bandscheibenerkrankungen, denen der Radiologe begegnen kann: Bandscheibenvorfälle mit ungewöhnlicher Lokalisation, Erkrankungen mit atypischen Bildgebungsbefunden und solche mit ungewöhnlicher Pathophysiologie. Bei den vorgestellten Beispielen atypischer Bandscheibenvorfälle handelt es sich um Vorfälle in den dorsalen Epiduralraum sowie intradurale, symptomatische thorakale (einschließlich solcher mit sehr großen Kalzifikationen), extrem laterale (retroperitoneale), Fluor-18-Fluordesoxyglukose-avide, akute intravertebrale (Schmorl-Knoten) und massive lumbale Bandscheibenvorfälle. Als Beispiele mit atypischer Pathophysiologie werden Diskuszysten, fibrokartilaginöse Rückenmarksembolien, kalzifizierte Miniaturbandscheiben oder in Höhe eines Bandscheibenfachs auftretende Osteophytensporne als Ursache von Liquorlecks und intrakraniellem Unterdruck sowie die akute kalzifizierende Diszitis des Kindesalters vorgestellt. Die Größe der Bandscheiben ist bei diesem breiten Krankheitsspektrum sehr unterschiedlich und reicht von winzig (z. B. bei den verkalkten Miniaturbandscheiben als Ursache von Liquorlecks mit Austreten großer Liquormengen) bis zu extrem groß (z. B. bei den riesigen kalzifizierten, thorakalen intraduralen Bandscheibenvorfällen als Ursache von Myelopathien). Auch mit Blick auf den akuten Charakter der klinischen Symptomatik ist das vorgestellte Krankheitsspektrum breit: Es reicht von hyperakuten fibrokartilaginösen Embolien als Ursache von Rückenmarksinfarkten über akute Schmorl-Knoten bis hin zu chronischen intraduralen Herniationen. Zudem sind die typischen klinischen Verläufe sehr verschieden, angefangen von den meist verheerenden Folgen eines Rückenmarksinfarkts aufgrund einer fibrokartilaginösen Embolie bis zum gewöhnlich spontanen Abklingen der akuten kalzifizierenden Diszitis des Kindesalters. Bei manchen Krankheiten sind gründliche differenzialdiagnostische Überlegungen erforderlich, während andere anhand der Bildgebungsbefunde relativ leicht zu diagnostizieren sind. Die pathophysiologischen Zusammenhänge sind in manchen Fällen wohlbekannt, in anderen dagegen weitgehend ungeklärt. Der Radiologe muss dieses breite Spektrum ungewöhnlicher Bandscheibenerkrankungen kennen, um richtige radiologische Diagnosen stellen zu können.

Abstract

Beyond the familiar disk herniations with typical clinical features, intervertebral disk pathologic conditions can have a wide spectrum of imaging and clinical manifestations. The goal of this review is to illustrate and discuss unusual manifestations of intervertebral disk pathologic conditions that radiologists may encounter, including disk herniations in unusual locations, those with atypical imaging features, and those with uncommon pathophysiologic findings. Examples of atypical disk herniations presented include dorsal epidural, intradural, symptomatic thoracic (including giant calcified), extreme lateral (retroperitoneal), fluorine 18 fluorodeoxyglucose-avid, acute intravertebral (Schmorl node), and massive lumbar disk herniations. Examples of atypical pathophysiologic conditions covered are discal cysts, fibrocartilaginous emboli to the spinal cord, tiny calcified disks or disk-level spiculated osteophytes causing spinal cerebrospinal fluid (CSF) leak and intracranial hypotension, and pediatric acute calcific discitis. This broad gamut of disease includes a variety of sizes of disk pathologic conditions, from the tiny (eg, the minuscule calcified disks causing high-flow CSF leaks) to the extremely large (eg, giant calcified thoracic intradural disk herniations causing myelopathy). A spectrum of clinical acuity is represented, from hyperacute fibrocartilaginous emboli causing spinal cord infarct, to acute Schmorl nodes, to chronic intradural herniations. The entities included are characterized by a range of clinical courses, from the typically devastating cord infarct caused by fibrocartilaginous emboli, to the usually spontaneously resolving pediatric acute calcific discitis. Several conditions have important differential diagnostic considerations, and others have relatively diagnostic imaging findings. The pathophysiologic findings are well understood for some of these entities and poorly defined for others. Radiologists’ knowledge of this broad scope of unusual disk disease is critical for accurate radiologic diagnoses.

1 © 2016 The Radiological Society of North America. All rights reserved. Originally published in English in RadioGraphics 2016; 36: 801–823. Online published in 10.1148/rg.2016150223. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 Fardon DF, Williams AL, Dohring EJ et al. Lumbar disc nomenclature: version 2.0 – recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology. Spine J 2014; 14: 2525-2545
  • 2 Brus-Ramer M, Dillon WP. Idiopathic thoracic spinal cord herniation: retrospective analysis supporting a mechanism of diskogenic dural injury and subsequent tamponade. AJNR Am J Neuroradiol 2012; 33: 52-56
  • 3 Parmar H, Park P, Brahma B et al. Imaging of idiopathic spinal cord herniation. RadioGraphics 2008; 28: 511-518
  • 4 Haber MD, Nguyen DD, Li S. Differentiation of idiopathic spinal cord herniation from CSF-isointense intraspinal extramedullary lesions displacing the cord. RadioGraphics 2014; 34: 313-329
  • 5 Lombardi V. Lumbar spinal block by posterior rotation of anulus fibrosus: case report. J Neurosurg 1973; 39: 642-647
  • 6 Tarukado K, Ikuta K, Fukutoku Y et al. Spontaneous regression of posterior epidural migrated lumbar disc fragments: case series. Spine J 2015; 15: e57-e62
  • 7 Chen CY, Chuang YL, Yao MS et al. Posterior epidural migration of a sequestrated lumbar disk fragment: MR imaging findings. AJNR Am J Neuroradiol 2006; 27: 1592-1594
  • 8 Schellinger D, Manz HJ, Vidic B et al. Disk fragment migration. Radiology 1990; 175: 831-836
  • 9 Dandy WE. Serious complications of ruptured intervertebral disks. J Am Med Assoc 1942; 119: 474-477
  • 10 Krajewski KL, Regelsberger J. Intradural lumbar disc herniation associated with degenerative spine disease and rheumatoid arthritis. Spine 2013; 38: E763-E765
  • 11 Aydin MV, Ozel S, Sen O et al. Intradural disc mimicking: a spinal tumor lesion. Spinal Cord 2004; 42: 52-54
  • 12 Stillerman CB, Chen TC, Couldwell WT et al. Experience in the surgical management of 82 symptomatic herniated thoracic discs and review of the literature. J Neurosurg 1998; 88: 623-633
  • 13 Yildizhan A, Paşaoğlu A, Okten T et al. Intradural disc herniations pathogenesis, clinical picture, diagnosis and treatment. Acta Neurochir (Wien) 1991; 110: 160-165
  • 14 D’Andrea G, Trillò G, Roperto R et al. Intradural lumbar disc herniations: the role of MRI in preoperative diagnosis and review of the literature. Neurosurg Rev 2004; 27: 75-80; discussion 81-82
  • 15 Kim HS, Eun JP, Park JS. Intradural migration of a sequestrated lumbar disc fragment masquerading as a spinal intradural tumor. J Korean Neurosurg Soc 2012; 52: 156-158
  • 16 Warade AG, Misra BK. Spontaneous cervical intradural disc herniation. J Clin Neurosci 2014; 21: 872-873
  • 17 Epstein NE. Foraminal and far lateral lumbar disc herniations: surgical alternatives and outcome measures. Spinal Cord 2002; 40: 491-500
  • 18 Blikra G. Intradural herniated lumbar disc. J Neurosurg 1969; 31: 676-679
  • 19 Quraishi NA, Khurana A, Tsegaye MM et al. Calcified giant thoracic disc herniations: considerations and treatment strategies. Eur Spine J 2014; 23 (Suppl. 01) S76-S83
  • 20 Choi JY, Lee WS, Sung KH. Intradural lumbar disc herniation: Is it predictable preoperatively? A report of two cases. Spine J 2007; 7: 111-117
  • 21 Wasserstrom R, Mamourian AC, Black JF et al. Intradural lumbar disk fragment with ring enhancement on MR. AJNR Am J Neuroradiol 1993; 14: 401-404
  • 22 Hidalgo-Ovejero AM, García-Mata S, Gozzi-Vallejo S et al. Intradural disc herniation and epidural gas: something more than a casual association?. Spine 2004; 29: E463-E467
  • 23 Ducati LG, Silva MV, Brandão MM et al. Intradural lumbar disc herniation: report of five cases with literature review. Eur Spine J 2013; 22 (Suppl. 03) S404-S408
  • 24 Lee JS, Suh KT. Intradural disc herniation at L5–S1 mimicking an intradural extramedullary spinal tumor: a case report. J Korean Med Sci 2006; 21: 778-780
  • 25 Hott JS, Feiz-Erfan I, Kenny K et al. Surgical management of giant herniated thoracic discs: analysis of 20 cases. J Neurosurg Spine 2005; 3: 191-197
  • 26 Levene HB, Nimmagadda A, Levi AD. An unusual case of footdrop: anterior disc herniation mimicking a nerve sheath tumor. Neurosurgery 2010; 66: E419-E420; discussion E420
  • 27 Abdullah AF, Ditto 3rd EW, Byrd EB et al. Extreme-lateral lumbar disc herniations: clinical syndrome and special problems of diagnosis. J Neurosurg 1974; 41: 229-234
  • 28 Sharma MS, Morris JM, Pichelmann MA et al. L5–S1 extraforaminal intraneural disc herniation mimicking a malignant peripheral nerve sheath tumor. Spine J 2012; 12: e7-e12
  • 29 Moon KP, Suh KT, Lee JS. Reliability of MRI findings for symptomatic extraforaminal disc herniation in lumbar spine. Asian Spine J 2009; 3: 16-20
  • 30 Osborn AG, Hood RS, Sherry RG et al. CT/MR spectrum of far lateral and anterior lumbosacral disk herniations. AJNR Am J Neuroradiol 1988; 9: 775-778
  • 31 Witzmann A, Hammer B, Fischer J. Free sequestered disc herniation at the S2 level misdiagnosed as neuroma. Neuroradiology 1991; 33: 92-93
  • 32 Bakar B, Sumer MM, Cila A et al. An extreme lateral lumbar disc herniation mimicking L4 schwannoma. Acta Neurol Belg 2009; 109: 155-158
  • 33 Chen YK, Chen HY, Kao CH. Schmorl’s node may cause an increased FDG activity. Clin Nucl Med 2011; 36: 494-495
  • 34 Lin CY, Chen HY, Ding HJ et al. Evaluation of Schmorl’s nodes using F-18 FDG PET/CT. Clin Radiol 2012; 67: e17-e21
  • 35 Hilton RC, Ball J, Benn RT. Vertebral end-plate lesions (Schmorl’s nodes) in the dorsolumbar spine. Ann Rheum Dis 1976; 35: 127-132
  • 36 Pfirrmann CW, Resnick D. Schmorl nodes of the thoracic and lumbar spine: radiographic-pathologic study of prevalence, characterization, and correlation with degenerative changes of 1.650 spinal levels in 100 cadavers. Radiology 2001; 219: 368-374
  • 37 Hamanishi C, Kawabata T, Yosii T et al. Schmorl’s nodes on magnetic resonance imaging: their incidence and clinical relevance. Spine 1994; 19: 450-453
  • 38 Resnick D, Niwayama G. Intravertebral disk herniations: cartilaginous (Schmorl’s) nodes. Radiology 1978; 126: 57-65
  • 39 Wu HT, Morrison WB, Schweitzer ME. Edematous Schmorl’s nodes on thoracolumbar MR imaging: characteristic patterns and changes over time. Skeletal Radiol 2006; 35: 212-219
  • 40 Stäbler A, Bellan M, Weiss M et al. MR imaging of enhancing intraosseous disk herniation (Schmorl’s nodes). AJR Am J Roentgenol 1997; 168: 933-938
  • 41 Park P, Tran NK, Gala VC et al. The radiographic evolution of a Schmorl’s node. Br J Neurosurg 2007; 21: 224-227
  • 42 Grivé E, Rovira A, Capellades J et al. Radiologic findings in two cases of acute Schmörl’s nodes. AJNR Am J Neuroradiol 1999; 20: 1717-1721
  • 43 Cribb GL, Jaffray DC, Cassar-Pullicino VN. Observations on the natural history of massive lumbar disc herniation. J Bone Joint Surg Br 2007; 89: 782-784
  • 44 Benson RT, Tavares SP, Robertson SC et al. Conservatively treated massive prolapsed discs: a 7-year follow-up. Ann R Coll Surg Engl 2010; 92: 147-153
  • 45 Bozzao A, Gallucci M, Masciocchi C et al. Lumbar disk herniation: MR imaging assessment of natural history in patients treated without surgery. Radiology 1992; 185: 135-141
  • 46 Kono K, Nakamura H, Inoue Y et al. Intraspinal extradural cysts communicating with adjacent herniated disks: imaging characteristics and possible pathogenesis. AJNR Am J Neuroradiol 1999; 20: 1373-1377
  • 47 Aydin S, Abuzayed B, Yildirim H et al. Discal cysts of the lumbar spine: report of five cases and review of the literature. Eur Spine J 2010; 19: 1621-1626
  • 48 Chiba K, Toyama Y, Matsumoto M et al. Intraspinal cyst communicating with the intervertebral disc in the lumbar spine: discal cyst. Spine 2001; 26: 2112-2118
  • 49 Endo Y, Miller TT, Saboeiro GR et al. Lumbar discal cyst: diagnostic discography followed by therapeutic computed tomography-guided aspiration and injection. J Radiol Case Rep 2014; 8: 35-40
  • 50 Friedman MV, Park A, Bumpass D et al. Percutaneous discal cyst rupture in a professional football player using sublaminar epidural injection for thecal sac displacement. J Vasc Interv Radiol 2015; 26: 75-78
  • 51 Lee HK, Lee DH, Choi CG et al. Discal cyst of the lumbar spine: MR imaging features. Clin Imaging 2006; 30: 326-330
  • 52 Demaerel P, Eerens I, Goffin J et al. Spontaneous regression of an intraspinal disc cyst. Eur Radiol 2001; 11: 2317-2318
  • 53 Naiman JL, Donohue WL, Prichard JS. Fatal nucleus pulposus embolism of spinal cord after trauma. Neurology 1961; 11: 83-87
  • 54 Roshal D, Gutierrez C, Brock D et al. Pearls & oysters: fibrocartilaginous embolism myelopathy. Neurology 2010; 74: e21-e23
  • 55 Tosi L, Rigoli G, Beltramello A. Fibrocartilaginous embolism of the spinal cord: a clinical and pathogenetic reconsideration. J Neurol Neurosurg Psychiatry 1996; 60: 55-60
  • 56 Mikulis DJ, Ogilvy CS, McKee A et al. Spinal cord infarction and fibrocartilagenous emboli. AJNR Am J Neuroradiol 1992; 13: 155-160
  • 57 Toro G, Roman GC, Navarro-Roman L et al. Natural history of spinal cord infarction caused by nucleus pulposus embolism. Spine 1994; 19: 360-366
  • 58 Han JJ, Massagli TL, Jaffe KM. Fibrocartilaginous embolism: an uncommon cause of spinal cord infarction – a case report and review of the literature. Arch Phys Med Rehabil 2004; 85: 153-157
  • 59 Duprez TP, Danvoye L, Hernalsteen D et al. Fibrocartilaginous embolization to the spinal cord: serial MR imaging monitoring and pathologic study. AJNR Am J Neuroradiol 2005; 26: 496-501
  • 60 Diehn FE, Hunt CH, Lehman VT et al. Vertebral body infarct and ventral cauda equina enhancement: two confirmatory findings of acute spinal cord infarct. J Neuroimaging 2015; 25: 133-135
  • 61 Vishteh AG, Schievink WI, Baskin JJ et al. Cervical bone spur presenting with spontaneous intracranial hypotension: case report. J Neurosurg 1998; 89: 483-484
  • 62 Thielen KR, Sillery JC, Morris JM et al. Ultrafast dynamic computed tomography myelography for the precise identification of high-flow cerebrospinal fluid leaks caused by spiculated spinal osteophytes. J Neurosurg Spine 2015; 22: 324-331
  • 63 Ball BG, Luetmer PH, Giannini C et al. Ventral “spinal epidural meningeal cysts”: not epidural and not cysts? Case series and review of the literature. Neurosurgery 2012; 70: 320-328; discussion 328
  • 64 Sagiuchi T, Iida H, Tachibana S et al. Idiopathic spinal cord herniation associated with calcified thoracic disc extrusion: case report. Neurol Med Chir (Tokyo) 2003; 43: 364-368
  • 65 Luetmer PH, Schwartz KM, Eckel LJ et al. When should I do dynamic CT myelography? Predicting fast spinal CSF leaks in patients with spontaneous intracranial hypotension. AJNR Am J Neuroradiol 2012; 33: 690-694
  • 66 Verdoorn JT, Luetmer PH, Carr CM et al. Predicting high-flow spinal cerebrospinal fluid leaks in spontaneous intracranial hypotension using a spinal MRI-based algorithm: Have repeat CT myelograms been reduced?. AJNR Am J Neuroradiol 2016; 37: 185-189
  • 67 Kranz PG, Luetmer PH, Diehn FE et al. Myelographic techniques for the detection of spinal CSF leaks in spontaneous intracranial hypotension. AJR Am J Roentgenol 2016; 206: 8-19
  • 68 Schievink WI, Moser FG, Maya MM. CSF-venous fistula in spontaneous intracranial hypotension. Neurology 2014; 83: 472-473
  • 69 Silverman FN. Calcification of the intervertebral disks in childhood. Radiology 1954; 62: 801-816
  • 70 Sonnabend DH, Taylor TK, Chapman GK. Intervertebral disc calcification syndromes in children. J Bone Joint Surg Br 1982; 64: 25-31
  • 71 Eyring EJ, Peterson CA, Bjornson DR. Intervertebral-disc calcification in childhood: a distinct clinical syndrome. J Bone Joint Surg Am 1964; 46: 1432-1441
  • 72 Swischuk LE, Jubang M, Jadhav SP. Calcific discitis in children: vertebral body involvement (possible insight into etiology). Emerg Radiol 2008; 15: 427-430
  • 73 Melnick JC, Silverman FN. Intervertebral disk calcification in childhood. Radiology 1963; 80: 399-408
  • 74 Swischuk LE, Stansberry SD. Calcific discitis: MRI changes in discs without visible calcification. Pediatr Radiol 1991; 21: 365-366
  • 75 McGregor JC, Butler P. Disc calcification in childhood: computed tomographic and magnetic resonance imaging appearances. Br J Radiol 1986; 59: 180-182
  • 76 Mittal P, Saggar K, Sandhu P et al. Case report: acute calcific discitis with intravertebral disc herniation in the dorsolumbar spine. Indian J Radiol Imaging 2010; 20: 205-207
  • 77 Girodias JB, Azouz EM, Marton D. Intervertebral disk space calcification: a report of 51 children with a review of the literature. Pediatr Radiol 1991; 21: 541-546
  • 78 Dai LY, Ye H, Qian QR. The natural history of cervical disc calcification in children. J Bone Joint Surg Am 2004; 86-A: 1467-1472