Radiologie up2date 2016; 16(02): 107-124
DOI: 10.1055/s-0042-105420
Gerätetechniken/Neuentwicklungen/Digitale Radiologie
© Georg Thieme Verlag KG Stuttgart · New York

MRT-Perfusionsmessung mit Arterial Spin Labelling – Anwendung für die Niere und Transplantatniere

Arterial spin labelling in imaging of renal diseases and renal allograft pathology
K. Hüper
,
B. Kühn
,
M. Gutberlet
Further Information

Publication History

Publication Date:
14 June 2016 (online)

Zusammenfassung

Das Arterial Spin Labelling (ASL) ist eine Technik der Magnetresonanztomografie (MRT) zur nicht invasiven und kontrastmittelfreien Messung der Perfusion. Mit dem renalen ASL können Funktionsstörungen der Niere und pathophysiologische Veränderungen im Rahmen von Nierenerkrankungen erkannt, Krankheitsverläufe und Therapieeffekte durch longitudinale Untersuchungen beurteilt und Nierentumoren charakterisiert werden. In diesem Artikel werden die ASL-Techniken mit dem Fokus auf die speziellen Herausforderungen für die Nierendiagnostik erklärt. Darüber hinaus werden Beispiele zur klinischen Anwendung des ASL für die Diagnostik von Erkrankungen von Nieren und Transplantatnieren gegeben.

Abstract

Arterial Spin Labelling (ASL) is a technique for non-invasive and contrast-free assessment of perfusion with MRI. Renal ASL allows examination of renal pathophysiology, evaluation of the course of renal disease and therapy effects by longitudinal measurements as well as characterization of renal tumors. In this article, techniques of ASL will be explained and challenges of renal ASL will be emphasized. In addition, examples for clinical application of ASL for diagnosis of renal disease and renal allograft pathology will be given.

Kernaussagen
  • Das Arterial Spin Labelling (ASL) ist eine gut reproduzierbare Technik zur nicht invasiven und kontrastmittelfreien Messung der Perfusion in der MRT.

  • Wasserprotonen des arteriellen Blutes werden als endogene Tracer genutzt, indem sie durch Radiofrequenzpulse mittels Sättigung oder Inversion markiert werden (Label).

  • Für die Perfusionsmessung der Niere hat sich die Flow-Sensitive-Alternating-Inversion-Recovery-Technik (FAIR-Technik) bewährt.

  • Renales ASL erkennt Funktionsstörungen der Niere und erlaubt, Krankheitsverläufe und Therapieeffekte zu monitoren und Nierentumoren zu charakterisieren.

 
  • Literatur

  • 1 Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labelling. Radiology 1998; 208: 410-416
  • 2 Lanzman RS, Notohamiprodjo M, Wittsack HJ. Functional magnetic resonance imaging of the kidneys. Der Radiologe 2015; 55: 1077-1087
  • 3 Williams DS, Detre JA, Leigh JS et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Nat Academy Sciences United States of America 1992; 89: 212-216
  • 4 Detre JA, Leigh JS, Williams DS et al. Perfusion imaging. Magn Reson Med 1992; 23: 37-45
  • 5 Petersen ET, Zimine I, Ho YC et al. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 2006; 79: 688-701
  • 6 Dai W, Garcia D, de Bazelaire C et al. Continuous flow-driven inversion for arterial spin labelling using pulsed radio frequency and gradient fields. Magn Reson Med 2008; 60: 1488-1497
  • 7 Kwong KK, Chesler DA, Weisskoff RM et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 1995; 34: 878-887
  • 8 Edelman RR, Siewert B, Darby DG et al. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 1994; 192: 513-520
  • 9 Henkelman RM, Huang X, Xiang QS et al. Quantitative interpretation of magnetization transfer. Magn Reson Med 1993; 29: 759-766
  • 10 Silva AC, Zhang W, Williams DS et al. Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial spin labelling. Magn Reson Med 1995; 33: 209-214
  • 11 Zhang W, Silva AC, Williams DS et al. NMR measurement of perfusion using arterial spin labelling without saturation of macromolecular spins. Magn Reson Med 1995; 33: 370-376
  • 12 McLaughlin AC, Ye FQ, Pekar JJ et al. Effect of magnetization transfer on the measurement of cerebral blood flow using steady-state arterial spin tagging approaches: a theoretical investigation. Magn Reson Med 1997; 37: 501-510
  • 13 Gunther M. Perfusion imaging. Journal of magnetic resonance imaging: JMRI 2014; 40: 269-279
  • 14 Lanzman RS, Robson PM, Sun MR et al. Arterial spin-labelling MR imaging of renal masses: correlation with histopathologic findings. Radiology 2012; 265: 799-808
  • 15 Robson PM, Madhuranthakam AJ, Dai W et al. Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labelling. Magn Reson Med 2009; 61: 1374-1387
  • 16 Martirosian P, Klose U, Mader I et al. FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 2004; 51: 353-361
  • 17 Fenchel M, Martirosian P, Langanke J et al. Perfusion MR imaging with FAIR true FISP spin labelling in patients with and without renal artery stenosis: initial experience. Radiology 2006; 238: 1013-1021
  • 18 Heusch P, Wittsack HJ, Blondin D et al. Functional evaluation of transplanted kidneys using arterial spin labelling MRI. Journal of magnetic resonance imaging: JMRI 2014; 40: 84-89
  • 19 Hueper K, Gueler F, Brasen JH et al. Functional MRI detects perfusion impairment in renal allografts with delayed graft function. Am J Physiol Renal Physiol 2015; 308: F1444-1451
  • 20 Lanzman RS, Wittsack HJ, Martirosian P et al. Quantification of renal allograft perfusion using arterial spin labelling MRI: initial results. Eur Radiol 2010; 20: 1485-1491
  • 21 Boss A, Martirosian P, Graf H et al. High resolution MR perfusion imaging of the kidneys at 3 Tesla without administration of contrast media. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 2005; 177: 1625-1630
  • 22 Cutajar M, Thomas DL, Hales PW et al. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility. European radiology 2014; 24: 1300-1308
  • 23 Gillis KA, McComb C, Foster JE et al. Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla. BMC nephrology 2014; 15: 23
  • 24 Gardener AG, Francis ST. Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies. Magn Reson Med 2010; 63: 1627-1636
  • 25 Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995; 34: 293-301
  • 26 Dixon WT, Sardashti M, Castillo M et al. Multiple inversion recovery reduces static tissue signal in angiograms. Magn Reson Med 1991; 18: 257-268
  • 27 Mani S, Pauly J, Conolly S et al. Background suppression with multiple inversion recovery nulling: applications to projective angiography. Magn Reson Med 1997; 37: 898-905
  • 28 Ye FQ, Frank JA, Weinberger DR et al. Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 2000; 44: 92-100
  • 29 Gunther M, Oshio K, Feinberg DA. Single-shot 3D imaging techniques improve arterial spin labelling perfusion measurements. Magn Reson Med 2005; 54: 491-498
  • 30 Cutajar M, Hilton R, Olsburgh J et al. Renal blood flow using arterial spin labelling MRI and calculated filtration fraction in healthy adult kidney donors Pre-nephrectomy and post-nephrectomy. Eur Radiol 2015; 25: 2390-2396
  • 31 Maccotta L, Detre JA, Alsop DC. The efficiency of adiabatic inversion for perfusion imaging by arterial spin labelling. NMR in biomedicine 1997; 10: 216-221
  • 32 Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Reviews 1951; 3: 1-41
  • 33 Herscovitch P, Raichle ME. What is the correct value for the brain – blood partition coefficient for water?. J Cerebral Blood Flow Metabolism 1985; 5: 65-69
  • 34 de Bazelaire CM, Duhamel GD, Rofsky NM et al. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004; 230: 652-659
  • 35 Buxton RB, Frank LR, Wong EC et al. A general kinetic model for quantitative perfusion imaging with arterial spin labelling. Magn Reson Med 1998; 40: 383-396
  • 36 Barth M, Moser E. Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI. Cellular and molecular biology 1997; 43: 783-791
  • 37 Lu H, Clingman C, Golay X et al. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 2004; 52: 679-682
  • 38 Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998; 39: 702-708
  • 39 Luh WM, Wong EC, Bandettini PA et al. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labelling. Magn Reson Med 1999; 41: 1246-1254
  • 40 Rossi C, Artunc F, Martirosian P et al. Histogram analysis of renal arterial spin labelling perfusion data reveals differences between volunteers and patients with mild chronic kidney disease. Investigative Radiol 2012; 47: 490-496
  • 41 Cutajar M, Thomas DL, Banks T et al. Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGMA 2012; 25: 145-153
  • 42 Artz NS, Sadowski EA, Wentland AL et al. Arterial spin labelling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 2011; 29: 74-82
  • 43 Artz NS, Sadowski EA, Wentland AL et al. Reproducibility of renal perfusion MR imaging in native and transplanted kidneys using non-contrast arterial spin labelling. Journal of magnetic resonance imaging: JMRI 2011; 33: 1414-1421
  • 44 Lerman LO, Flickinger AL, Sheedy PF et al. Reproducibility of human kidney perfusion and volume determinations with electron beam computed tomography. Investigative Radiol 1996; 31: 204-210
  • 45 Roman RJ, Zou AP. Influence of the renal medullary circulation on the control of sodium excretion. Am J Physiol 1993; 265: R963-973
  • 46 Pallone TL, Robertson CR, Jamison RL. Renal medullary microcirculation. Physiological Reviews 1990; 70: 885-920
  • 47 Artz NS, Wentland AL, Sadowski EA et al. Comparing kidney perfusion using noncontrast arterial spin labelling MRI and microsphere methods in an interventional swine model. Investigative Radiol 2011; 46: 124-131
  • 48 Ritt M, Janka R, Schneider MP et al. Measurement of kidney perfusion by magnetic resonance imaging: comparison of MRI with arterial spin labelling to para-aminohippuric acid plasma clearance in male subjects with metabolic syndrome. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – Eur Renal Association 2010; 25: 1126-1133
  • 49 Michaely HJ, Schoenberg SO, Ittrich C et al. Renal disease: value of functional magnetic resonance imaging with flow and perfusion measurements. Investigative Radiology 2004; 39: 698-705
  • 50 Wu WC, Su MY, Chang CC et al. Renal perfusion 3-T MR imaging: a comparative study of arterial spin labelling and dynamic contrast-enhanced techniques. Radiol 2011; 261: 845-853
  • 51 Mehta RL, Kellum JA, Shah SV et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Critical Care 2007; 11: R31
  • 52 Stevens PE, Levin A. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group M. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Annals Internal Medicine 2013; 158: 825-830
  • 53 Group KDIGOKCW. KDIGO Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease Foreword. Kidney Int Suppl 2013; 3: 1-150
  • 54 Breidthardt T, Cox EF, Squire I et al. The pathophysiology of the chronic cardiorenal syndrome: a magnetic resonance imaging study. Eur Radiol 2015; 25: 1684-1691
  • 55 Cooper CJ, Murphy TP, Cutlip DE et al. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med 2014; 370: 13-22
  • 56 Investigators A, Wheatley K, Ives N et al. Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med 2009; 361: 1953-1962
  • 57 Zhu Y, Ren J, Ma X et al. Percutaneous Revascularization for Atherosclerotic Renal Artery Stenosis: A Meta-Analysis of Randomized Controlled Trials. Annals Vasc Surg 2015;
  • 58 Chowdhury AH, Cox EF, Francis ST et al. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Annals Surg 2012; 256: 18-24
  • 59 Schneider MP, Janka R, Ziegler T et al. Reversibility of the effects of aliskiren in the renal versus systemic circulation. Clin J Am Soc Nephrol 2012; 7: 258-264
  • 60 Pedrosa I, Rafatzand K, Robson P et al. Arterial spin labelling MR imaging for characterisation of renal masses in patients with impaired renal function: initial experience. Eur Radiol 2012; 22: 484-492
  • 61 de Bazelaire C, Alsop DC, George D et al. Magnetic resonance imaging-measured blood flow change after antiangiogenic therapy with PTK787/ZK 222584 correlates with clinical outcome in metastatic renal cell carcinoma. Clin Cancer Res 2008; 14: 5548-5554