Semin Respir Crit Care Med 2022; 43(02): 191-218
DOI: 10.1055/s-0041-1740109
Review Article

Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy

Joseph P. Lynch III
1   Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
,
George G. Zhanel
2   Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
› Author Affiliations

Abstract

Pseudomonas aeruginosa (PA), a non–lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant “epidemic” clones. We discuss the importance of PA as a cause of pneumonia including health care–associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).



Publication History

Article published online:
21 January 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Ramírez-Estrada S, Borgatta B, Rello J. Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect Drug Resist 2016; 9: 7-18
  • 2 Kollef MH, Chastre J, Fagon JY. et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa . Crit Care Med 2014; 42 (10) 2178-2187
  • 3 Tumbarello M, De Pascale G, Trecarichi EM. et al. Clinical outcomes of Pseudomonas aeruginosa pneumonia in intensive care unit patients. Intensive Care Med 2013; 39 (04) 682-692
  • 4 Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 2010; 51 (Suppl. 01) S81-S87
  • 5 Guillamet CV, Vazquez R, Noe J, Micek ST, Kollef MH. A cohort study of bacteremic pneumonia: the importance of antibiotic resistance and appropriate initial therapy?. Medicine (Baltimore) 2016; 95 (35) e4708
  • 6 Venier AG, Gruson D, Lavigne T. et al; REA-RAISIN Group. Identifying new risk factors for Pseudomonas aeruginosa pneumonia in intensive care units: experience of the French national surveillance, REA-RAISIN. J Hosp Infect 2011; 79 (01) 44-48
  • 7 Micek ST, Wunderink RG, Kollef MH. et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care 2015; 19: 219
  • 8 Morata L, Cobos-Trigueros N, Martínez JA. et al. Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2012; 56 (09) 4833-4837
  • 9 Jean SS, Coombs G, Ling T. et al. Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010-2013. Int J Antimicrob Agents 2016; 47 (04) 328-334
  • 10 Carmeli Y, Armstrong J, Laud PJ. et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis 2016; 16 (06) 661-673
  • 11 Goldufsky J, Wood SJ, Jayaraman V. et al. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing. Wound Repair Regen 2015; 23 (04) 557-564
  • 12 Lipsky BA, Tabak YP, Johannes RS, Vo L, Hyde L, Weigelt JA. Skin and soft tissue infections in hospitalised patients with diabetes: culture isolates and risk factors associated with mortality, length of stay and cost. Diabetologia 2010; 53 (05) 914-923
  • 13 Devrim I, Kara A, Duzgol M. et al. Burn-associated bloodstream infections in pediatric burn patients: time distribution of etiologic agents. Burns 2017; 43 (01) 144-148
  • 14 Khosravi AD, Hoveizavi H, Mohammadian A, Farahani A, Jenabi A. Genotyping of multidrug-resistant strains of Pseudomonas aeruginosa isolated from burn and wound infections by ERIC-PCR. Acta Cir Bras 2016; 31 (03) 206-211
  • 15 Haghi F, Zeighami H, Monazami A, Toutouchi F, Nazaralian S, Naderi G. Diversity of virulence genes in multidrug resistant Pseudomonas aeruginosa isolated from burn wound infections. Microb Pathog 2018; 115: 251-256
  • 16 Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 2010; 362 (19) 1804-1813
  • 17 Scheetz MH, Hoffman M, Bolon MK. et al. Morbidity associated with Pseudomonas aeruginosa bloodstream infections. Diagn Microbiol Infect Dis 2009; 64 (03) 311-319
  • 18 Joo EJ, Kang CI, Ha YE. et al. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia: clinical impact of antimicrobial resistance on outcome. Microb Drug Resist 2011; 17 (02) 305-312
  • 19 Joo EJ, Kang CI, Ha YE. et al. Clinical predictors of Pseudomonas aeruginosa bacteremia among Gram-negative bacterial infections in non-neutropenic patients with solid tumor. J Infect 2011; 63 (03) 207-214
  • 20 Tam VH, Gamez EA, Weston JS. et al. Outcomes of bacteremia due to Pseudomonas aeruginosa with reduced susceptibility to piperacillin-tazobactam: implications on the appropriateness of the resistance breakpoint. Clin Infect Dis 2008; 46 (06) 862-867
  • 21 Tago S, Hirai Y, Ainoda Y, Fujita T, Kikuchi K. Gram-negative rod bacteremia after cardiovascular surgery: clinical features and prognostic factors. J Microbiol Immunol Infect 2017; 50 (03) 333-338
  • 22 Hatakenaka T, Uemura K, Itsubo T, Hayashi M, Uchiyama S, Kato H. Septic arthritis of the elbow in a child due to Pseudomonas aeruginosa: a case report. J Pediatr Orthop B 2014; 23 (03) 285-287
  • 23 Alamarat ZI, Babic J, Tran TT. et al. Long-term compassionate use of cefiderocol to treat chronic osteomyelitis caused by extensively drug-resistant Pseudomonas aeruginosa and extended-spectrum-β-lactamase-producing Klebsiella pneumoniae in a pediatric patient. Antimicrob Agents Chemother 2020; 64 (04) 64
  • 24 Wegner AM, Wuellner JC, Haus BM. Pseudomonas aeruginosa septic arthritis and osteomyelitis after closed reduction and percutaneous pinning of a supracondylar humerus fracture: a case report and review of the literature. Case Rep Orthop 2017; 2017: 8721835
  • 25 Hagiya H, Tanaka T, Takimoto K. et al. Non-nosocomial healthcare-associated left-sided Pseudomonas aeruginosa endocarditis: a case report and literature review. BMC Infect Dis 2016; 16 (01) 431
  • 26 Reyes MP, Ali A, Mendes RE, Biedenbach DJ. Resurgence of Pseudomonas endocarditis in Detroit, 2006-2008. Medicine (Baltimore) 2009; 88 (05) 294-301
  • 27 Pai S, Bedford L, Ruramayi R. et al. Pseudomonas aeruginosa meningitis/ventriculitis in a UK tertiary referral hospital. QJM 2016; 109 (02) 85-89
  • 28 Gallaher C, Norman J, Singh A, Sanderson F. Community-acquired Pseudomonas aeruginosa meningitis. BMJ Case Rep 2017; 2017: bcr-2017-221839
  • 29 Arancibia F, Bauer TT, Ewig S. et al. Community-acquired pneumonia due to gram-negative bacteria and Pseudomonas aeruginosa: incidence, risk, and prognosis. Arch Intern Med 2002; 162 (16) 1849-1858
  • 30 Rello J, Rodriguez A, Torres A. et al. Implications of COPD in patients admitted to the intensive care unit by community-acquired pneumonia. Eur Respir J 2006; 27 (06) 1210-1216
  • 31 Parkins MD, Gregson DB, Pitout JD, Ross T, Laupland KB. Population-based study of the epidemiology and the risk factors for Pseudomonas aeruginosa bloodstream infection. Infection 2010; 38 (01) 25-32
  • 32 Rodrigo-Troyano A, Suarez-Cuartin G, Peiró M. et al. Pseudomonas aeruginosa resistance patterns and clinical outcomes in hospitalized exacerbations of COPD. Respirology 2016; 21 (07) 1235-1242
  • 33 Goldman N, Loebinger MR, Wilson R. Long-term antibiotic treatment for non-cystic fibrosis bronchiectasis in adults: evidence, current practice and future use. Expert Rev Respir Med 2016; 10 (12) 1259-1268
  • 34 Wilson R, Aksamit T, Aliberti S. et al. Challenges in managing Pseudomonas aeruginosa in non-cystic fibrosis bronchiectasis. Respir Med 2016; 117: 179-189
  • 35 Williams D, Evans B, Haldenby S. et al. Divergent, coexisting Pseudomonas aeruginosa lineages in chronic cystic fibrosis lung infections. Am J Respir Crit Care Med 2015; 191 (07) 775-785
  • 36 Afessa B, Green B. Bacterial pneumonia in hospitalized patients with HIV infection: the pulmonary complications, ICU support, and prognostic factors of hospitalized patients with HIV (PIP) study. Chest 2000; 117 (04) 1017-1022
  • 37 Tumbarello M, Tacconelli E, de Gaetano Donati K. et al. Nosocomial bacterial pneumonia in human immunodeficiency virus infected subjects: incidence, risk factors and outcome. Eur Respir J 2001; 17 (04) 636-640
  • 38 Tumbarello M, Repetto E, Trecarichi EM. et al. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect 2011; 139 (11) 1740-1749
  • 39 Fujitani S, Sun HY, Yu VL, Weingarten JA. Pneumonia due to Pseudomonas aeruginosa: part I: epidemiology, clinical diagnosis, and source. Chest 2011; 139 (04) 909-919
  • 40 Hammer KL, Justo JA, Bookstaver PB, Kohn J, Albrecht H, Al-Hasan MN. Differential effect of prior beta-lactams and fluoroquinolones on risk of bloodstream infections secondary to Pseudomonas aeruginosa . Diagn Microbiol Infect Dis 2017; 87 (01) 87-91
  • 41 Picard C, Al-Herz W, Bousfiha A. et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol 2015; 35 (08) 696-726
  • 42 Stergiopoulou T, Walsh TJ, Seghaye MC. et al. Deficiency of interleukin-1 receptor-associated kinase 4 presenting as fatal Pseudomonas aeruginosa bacteremia in two siblings. Pediatr Infect Dis J 2015; 34 (03) 299-300
  • 43 Johnson LE, D'Agata EM, Paterson DL. et al. Pseudomonas aeruginosa bacteremia over a 10-year period: multidrug resistance and outcomes in transplant recipients. Transpl Infect Dis 2009; 11 (03) 227-234
  • 44 Kritikos A, Manuel O. Bloodstream infections after solid-organ transplantation. Virulence 2016; 7 (03) 329-340
  • 45 Su H, Ye Q, Wan Q, Zhou J. Predictors of mortality in abdominal organ transplant recipients with Pseudomonas aeruginosa infections. Ann Transplant 2016; 21: 86-93
  • 46 Gudiol C, Royo-Cebrecos C, Laporte J. et al. Clinical features, aetiology and outcome of bacteraemic pneumonia in neutropenic cancer patients. Respirology 2016; 21 (08) 1411-1418
  • 47 Marin M, Gudiol C, Ardanuy C. et al. Bloodstream infections in neutropenic patients with cancer: differences between patients with haematological malignancies and solid tumours. J Infect 2014; 69 (05) 417-423
  • 48 Chatzinikolaou I, Abi-Said D, Bodey GP, Rolston KV, Tarrand JJ, Samonis G. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: retrospective analysis of 245 episodes. Arch Intern Med 2000; 160 (04) 501-509
  • 49 Hobson CE, Moy JD, Byers KE, Raz Y, Hirsch BE, McCall AA. Malignant otitis externa: evolving pathogens and implications for diagnosis and treatment. Otolaryngol Head Neck Surg 2014; 151 (01) 112-116
  • 50 Burow M, Forst R, Forst J, Hofner B, Fujak A. Perioperative complications of scoliosis surgery in patients with Duchenne muscular dystrophy and spinal muscular atrophy, focusing on wound healing disorders. Int J Neurosci 2017; 127 (06) 479-485
  • 51 Meher SK, Jain H, Tripathy LN, Basu S. Chronic Pseudomonas aeruginosa cervical osteomyelitis. J Craniovertebr Junction Spine 2016; 7 (04) 276-278
  • 52 Chung DR, Song JH, Kim SH. et al; Asian Network for Surveillance of Resistant Pathogens Study Group. High prevalence of multidrug-resistant nonfermenters in hospital-acquired pneumonia in Asia. Am J Respir Crit Care Med 2011; 184 (12) 1409-1417
  • 53 El Solh AA. Nursing home-acquired pneumonia. Semin Respir Crit Care Med 2009; 30 (01) 16-25
  • 54 El-Solh AA, Sikka P, Ramadan F, Davies J. Etiology of severe pneumonia in the very elderly. Am J Respir Crit Care Med 2001; 163 (3, Pt 1): 645-651
  • 55 Marrie TJ. Pneumonia in the long-term-care facility. Infect Control Hosp Epidemiol 2002; 23 (03) 159-164
  • 56 Muder RR. Pneumonia in residents of long-term care facilities: epidemiology, etiology, management, and prevention. Am J Med 1998; 105 (04) 319-330
  • 57 El Solh AA, Pietrantoni C, Bhat A, Bhora M, Berbary E. Indicators of potentially drug-resistant bacteria in severe nursing home-acquired pneumonia. Clin Infect Dis 2004; 39 (04) 474-480
  • 58 Si D, Runnegar N, Marquess J, Rajmokan M, Playford EG. Characterising health care-associated bloodstream infections in public hospitals in Queensland, 2008-2012. Med J Aust 2016; 204 (07) 276
  • 59 Cheong HS, Kang CI, Wi YM. et al. Clinical significance and predictors of community-onset Pseudomonas aeruginosa bacteremia. Am J Med 2008; 121 (08) 709-714
  • 60 Murray EC, Marek A, Thomson PC, Coia JE. Gram-negative bacteraemia in haemodialysis. Nephrol Dial Transplant 2015; 30 (07) 1202-1208
  • 61 Tao L, Hu B, Rosenthal VD, Gao X, He L. Device-associated infection rates in 398 intensive care units in Shanghai, China: International Nosocomial Infection Control Consortium (INICC) findings. Int J Infect Dis 2011; 15 (11) e774-e780
  • 62 Duszyńska W, Rosenthal VD, Szczęsny A. et al. Urinary tract infections in intensive care unit patients - a single-centre, 3-year observational study according to the INICC project. Anaesthesiol Intensive Ther 2016; 48 (01) 1-6
  • 63 Dinh A, Toumi A, Blanc C. et al. Management of febrile urinary tract infection among spinal cord injured patients. BMC Infect Dis 2016; 16: 156
  • 64 Danin PE, Girou E, Legrand P. et al. Description and microbiology of endotracheal tube biofilm in mechanically ventilated subjects. Respir Care 2015; 60 (01) 21-29
  • 65 Al-Hasan MN, Wilson JW, Lahr BD, Eckel-Passow JE, Baddour LM. Incidence of Pseudomonas aeruginosa bacteremia: a population-based study. Am J Med 2008; 121 (08) 702-708
  • 66 Aggarwal M, Vijan V, Vupputuri A, Nandakumar S, Mathew N. A rare case of fatal endocarditis and sepsis caused by Pseudomonas aeruginosa in a patient with chronic renal failure. J Clin Diagn Res 2016; 10 (07) OD12-OD13
  • 67 Wang PH, Wang HC. Risk factors to predict drug-resistant pathogens in hemodialysis-associated pneumonia. BMC Infect Dis 2016; 16: 377
  • 68 Glikson E, Sagiv D, Wolf M, Shapira Y. Necrotizing otitis externa: diagnosis, treatment, and outcome in a case series. Diagn Microbiol Infect Dis 2017; 87 (01) 74-78
  • 69 Lutz JK, Lee J. Prevalence and antimicrobial-resistance of Pseudomonas aeruginosa in swimming pools and hot tubs. Int J Environ Res Public Health 2011; 8 (02) 554-564
  • 70 Hilliam Y, Kaye S, Winstanley C. Pseudomonas aeruginosa and microbial keratitis. J Med Microbiol 2020; 69 (01) 3-13
  • 71 Hedayati H, Ghaderpanah M, Rasoulinejad SA, Montazeri M. Clinical presentation and antibiotic susceptibility of contact lens associated microbial keratitis. J Pathogens 2015; 2015: 152767
  • 72 Thirumalmuthu K, Devarajan B, Prajna L, Mohankumar V. Mechanisms of fluoroquinolone and aminoglycoside resistance in keratitis-associated Pseudomonas aeruginosa . Microb Drug Resist 2019; 25 (06) 813-823
  • 73 Giordano M, Ciarambino T, Politi C, Aurilio C, Paolisso G. Necrotizing painful skin lesion after a mosquito bite in healthy elderly woman: case report. Am J Emerg Med 2014; 32 (09) 1148.e3-1148.e4
  • 74 Keene WE, Markum AC, Samadpour M. Outbreak of Pseudomonas aeruginosa infections caused by commercial piercing of upper ear cartilage. JAMA 2004; 291 (08) 981-985
  • 75 Liu Y, Liu K, Yu X, Li B, Cao B. Identification and control of a Pseudomonas spp (P. fulva and P. putida) bloodstream infection outbreak in a teaching hospital in Beijing, China. Int J Infect Dis 2014; 23: 105-108
  • 76 Uddin F, Roulston K, McHugh TD, Khan TA, Sohail M. Bacteremia in a human caused by an XDR strain of Pseudomonas fulva . J Infect Dev Ctries 2018; 12 (07) 597-599
  • 77 Ocampo-Sosa AA, Guzmán-Gómez LP, Fernández-Martínez M. et al. Isolation of VIM-2-producing Pseudomonas monteilii clinical strains disseminated in a tertiary hospital in northern Spain. Antimicrob Agents Chemother 2015; 59 (02) 1334-1336
  • 78 Scales BS, Dickson RP, LiPuma JJ, Huffnagle GB. Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin Microbiol Rev 2014; 27 (04) 927-948
  • 79 Gershman MD, Kennedy DJ, Noble-Wang J. et al; Pseudomonas fluorescens Investigation Team. Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clin Infect Dis 2008; 47 (11) 1372-1379
  • 80 Juan C, Zamorano L, Mena A, Albertí S, Pérez JL, Oliver A. Metallo-beta-lactamase-producing Pseudomonas putida as a reservoir of multidrug resistance elements that can be transferred to successful Pseudomonas aeruginosa clones. J Antimicrob Chemother 2010; 65 (03) 474-478
  • 81 Turano H, Gomes F, Medeiros M. et al. Presence of high-risk clones of OXA-23-producing Acinetobacter baumannii (ST79) and SPM-1-producing Pseudomonas aeruginosa (ST277) in environmental water samples in Brazil. Diagn Microbiol Infect Dis 2016; 86 (01) 80-82
  • 82 Blanc DS, Nahimana I, Petignat C, Wenger A, Bille J, Francioli P. Faucets as a reservoir of endemic Pseudomonas aeruginosa colonization/infections in intensive care units. Intensive Care Med 2004; 30 (10) 1964-1968
  • 83 Salm F, Deja M, Gastmeier P. et al. Prolonged outbreak of clonal MDR Pseudomonas aeruginosa on an intensive care unit: contaminated sinks and contamination of ultra-filtrate bags as possible route of transmission?. Antimicrob Resist Infect Control 2016; 5: 53
  • 84 Wendel AF, Kolbe-Busch S, Ressina S. et al. Detection and termination of an extended low-frequency hospital outbreak of GIM-1-producing Pseudomonas aeruginosa ST111 in Germany. Am J Infect Control 2015; 43 (06) 635-639
  • 85 Guida M, Di Onofrio V, Gallè F. et al. Pseudomonas aeruginosa in swimming pool water: evidences and perspectives for a new control strategy. Int J Environ Res Public Health 2016; 13 (09) 13
  • 86 Hocquet D, Muller A, Bertrand X. What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. J Hosp Infect 2016; 93 (04) 395-402
  • 87 Bou R, Aguilar A, Perpiñán J. et al. Nosocomial outbreak of Pseudomonas aeruginosa infections related to a flexible bronchoscope. J Hosp Infect 2006; 64 (02) 129-135
  • 88 Kirschke DL, Jones TF, Craig AS. et al. Pseudomonas aeruginosa and Serratia marcescens contamination associated with a manufacturing defect in bronchoscopes. N Engl J Med 2003; 348 (03) 214-220
  • 89 Banerjee D, Stableforth D. The treatment of respiratory pseudomonas infection in cystic fibrosis: what drug and which way?. Drugs 2000; 60 (05) 1053-1064
  • 90 Muder RR, Brennen C, Drenning SD, Stout JE, Wagener MM. Multiply antibiotic-resistant gram-negative bacilli in a long-term-care facility: a case-control study of patient risk factors and prior antibiotic use. Infect Control Hosp Epidemiol 1997; 18 (12) 809-813
  • 91 Blanc DS, Petignat C, Janin B, Bille J, Francioli P. Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study. Clin Microbiol Infect 1998; 4 (05) 242-247
  • 92 Mulcahy LR, Isabella VM, Lewis K. Pseudomonas aeruginosa biofilms in disease. Microb Ecol 2014; 68 (01) 1-12
  • 93 Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am J Respir Cell Mol Biol 2018; 58 (04) 428-439
  • 94 Guy M, Vanhems P, Dananché C. et al. Outbreak of pulmonary Pseudomonas aeruginosa and Stenotrophomonas maltophilia infections related to contaminated bronchoscope suction valves, Lyon, France, 2014. Euro Surveill 2016; 21 (28) 21
  • 95 Founou LL, Founou RC, Essack SY. Antibiotic resistance in the food chain: a developing country-perspective. Front Microbiol 2016; 7: 1881
  • 96 Faure E, Kwong K, Nguyen D. Pseudomonas aeruginosa in chronic lung infections: How to adapt within the host?. Front Immunol 2018; 9: 2416
  • 97 González-Olvera EM, Pérez-Morales R, González Zamora A, Castro-Escarpulli G, Palma-Martínez I, Alba-Romero JJ. Antibiotic resistance, virulence factors and genotyping of Pseudomonas aeruginosa in public hospitals of northeastern Mexico. J Infect Dev Ctries 2019; 13 (05) 374-383
  • 98 Lee K, Yoon SS. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J Microbiol Biotechnol 2017; 27 (06) 1053-1064
  • 99 Silva LV, Galdino AC, Nunes AP. et al. Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa . Int J Med Microbiol 2014; 304 (08) 990-1000
  • 100 Peña C, Cabot G, Gómez-Zorrilla S. et al; Spanish Network for Research in Infectious Diseases (REIPI). Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis 2015; 60 (04) 539-548
  • 101 Huber P, Basso P, Reboud E, Attrée I. Pseudomonas aeruginosa renews its virulence factors. Environ Microbiol Rep 2016; 8 (05) 564-571
  • 102 Wong-Beringer A, Wiener-Kronish J, Lynch S, Flanagan J. Comparison of type III secretion system virulence among fluoroquinolone-susceptible and -resistant clinical isolates of Pseudomonas aeruginosa . Clin Microbiol Infect 2008; 14 (04) 330-336
  • 103 Cho HH, Kwon KC, Kim S, Koo SH. Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistant Pseudomonas aeruginosa . Ann Lab Med 2014; 34 (04) 286-292
  • 104 El Solh AA, Akinnusi ME, Wiener-Kronish JP, Lynch SV, Pineda LA, Szarpa K. Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia. Am J Respir Crit Care Med 2008; 178 (05) 513-519
  • 105 Tseng BS, Reichhardt C, Merrihew GE. et al. A biofilm matrix-associated protease inhibitor protects Pseudomonas aeruginosa from proteolytic attack. MBio 2018; 9 (02) 9
  • 106 Winstanley C, O'Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 2016; 24 (05) 327-337
  • 107 Persyn E, Sassi M, Aubry M. et al. Rapid genetic and phenotypic changes in Pseudomonas aeruginosa clinical strains during ventilator-associated pneumonia. Sci Rep 2019; 9 (01) 4720
  • 108 Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother 2005; 49 (04) 1306-1311
  • 109 Gales AC, Jones RN, Turnidge J, Rennie R, Ramphal R. Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis 2001; 32 (Suppl. 02) S146-S155
  • 110 Magill SS, Edwards JR, Fridkin SK. Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Survey of health care-associated infections. N Engl J Med 2014; 370 (26) 2542-2543
  • 111 Zarb P, Coignard B, Griskeviciene J. et al; National Contact Points for the ECDC pilot point prevalence survey, Hospital Contact Points for the ECDC pilot point prevalence survey. The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Euro Surveill 2012; 17 (46) 17
  • 112 Vincent JL, Bihari DJ, Suter PM. et al; EPIC International Advisory Committee. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. JAMA 1995; 274 (08) 639-644
  • 113 Vincent JL, Sakr Y, Sprung CL. et al; Sepsis Occurrence in Acutely Ill Patients Investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34 (02) 344-353
  • 114 Vincent JL, Rello J, Marshall J. et al; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009; 302 (21) 2323-2329
  • 115 Yin Y, Zhao C, Li H. et al. Clinical and microbiological characteristics of adults with hospital-acquired pneumonia: a 10-year prospective observational study in China. Eur J Clin Microbiol Infect Dis 2021; 40 (04) 683-690
  • 116 Sader HS, Castanheira M, Arends SJR, Goossens H, Flamm RK. Geographical and temporal variation in the frequency and antimicrobial susceptibility of bacteria isolated from patients hospitalized with bacterial pneumonia: results from 20 years of the SENTRY Antimicrobial Surveillance Program (1997-2016). J Antimicrob Chemother 2019; 74 (06) 1595-1606
  • 117 Kollef MH, Shorr A, Tabak YP, Gupta V, Liu LZ, Johannes RS. Epidemiology and outcomes of health-care-associated pneumonia: results from a large US database of culture-positive pneumonia. Chest 2005; 128 (06) 3854-3862
  • 118 Ding C, Yang Z, Wang J. et al. Prevalence of Pseudomonas aeruginosa and antimicrobial-resistant Pseudomonas aeruginosa in patients with pneumonia in mainland China: a systematic review and meta-analysis. Int J Infect Dis 2016; 49: 119-128
  • 119 Akça O, Koltka K, Uzel S. et al. Risk factors for early-onset, ventilator-associated pneumonia in critical care patients: selected multiresistant versus nonresistant bacteria. Anesthesiology 2000; 93 (03) 638-645
  • 120 Micek ST, Kollef KE, Reichley RM, Roubinian N, Kollef MH. Health care-associated pneumonia and community-acquired pneumonia: a single-center experience. Antimicrob Agents Chemother 2007; 51 (10) 3568-3573
  • 121 Poch DS, Ost DE. What are the important risk factors for healthcare-associated pneumonia?. Semin Respir Crit Care Med 2009; 30 (01) 26-35
  • 122 Cillóniz C, Gabarrús A, Ferrer M. et al. Community-acquired pneumonia due to multidrug- and non-multidrug-resistant Pseudomonas aeruginosa . Chest 2016; 150 (02) 415-425
  • 123 Yayan J, Ghebremedhin B, Rasche K. Antibiotic resistance of Pseudomonas aeruginosa in pneumonia at a single University Hospital Center in Germany over a 10-year period. PLoS One 2015; 10 (10) e0139836
  • 124 Sibila O, Laserna E, Maselli DJ. et al. Risk factors and antibiotic therapy in P. aeruginosa community-acquired pneumonia. Respirology 2015; 20 (04) 660-666
  • 125 American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171 (04) 388-416
  • 126 Carratalà J, Mykietiuk A, Fernández-Sabé N. et al. Health care-associated pneumonia requiring hospital admission: epidemiology, antibiotic therapy, and clinical outcomes. Arch Intern Med 2007; 167 (13) 1393-1399
  • 127 Gross AE, Van Schooneveld TC, Olsen KM. et al. Epidemiology and predictors of multidrug-resistant community-acquired and health care-associated pneumonia. Antimicrob Agents Chemother 2014; 58 (09) 5262-5268
  • 128 Pop-Vicas AE, D'Agata EM. The rising influx of multidrug-resistant gram-negative bacilli into a tertiary care hospital. Clin Infect Dis 2005; 40 (12) 1792-1798
  • 129 Chalmers JD, Rother C, Salih W, Ewig S. Healthcare-associated pneumonia does not accurately identify potentially resistant pathogens: a systematic review and meta-analysis. Clin Infect Dis 2014; 58 (03) 330-339
  • 130 El-Solh AA, Aquilina AT, Dhillon RS, Ramadan F, Nowak P, Davies J. Impact of invasive strategy on management of antimicrobial treatment failure in institutionalized older people with severe pneumonia. Am J Respir Crit Care Med 2002; 166 (08) 1038-1043
  • 131 Rello J, Borgatta B, Lisboa T. Risk factors for Pseudomonas aeruginosa pneumonia in the early twenty-first century. Intensive Care Med 2013; 39 (12) 2204-2206
  • 132 Neuhauser MM, Weinstein RA, Rydman R, Danziger LH, Karam G, Quinn JP. Antibiotic resistance among gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA 2003; 289 (07) 885-888
  • 133 Trouillet JL, Chastre J, Vuagnat A. et al. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med 1998; 157 (02) 531-539
  • 134 Fernandez-Barat L, Ferrer M, De Rosa F. et al. Intensive care unit-acquired pneumonia due to Pseudomonas aeruginosa with and without multidrug resistance. J Infect 2017; 74 (02) 142-152
  • 135 Flamm RK, Nichols WW, Sader HS, Farrell DJ, Jones RN. In vitro activity of ceftazidime/avibactam against Gram-negative pathogens isolated from pneumonia in hospitalised patients, including ventilated patients. Int J Antimicrob Agents 2016; 47 (03) 235-242
  • 136 Resende MM, Monteiro SG, Callegari B, Figueiredo PM, Monteiro CR, Monteiro-Neto V. Epidemiology and outcomes of ventilator-associated pneumonia in northern Brazil: an analytical descriptive prospective cohort study. BMC Infect Dis 2013; 13: 119
  • 137 Zhang Y, Yao Z, Zhan S. et al. Disease burden of intensive care unit-acquired pneumonia in China: a systematic review and meta-analysis. Int J Infect Dis 2014; 29: 84-90
  • 138 Biedenbach DJ, Giao PT, Hung Van P. et al. Antimicrobial-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from patients with hospital-acquired or ventilator-associated pneumonia in Vietnam. Clin Ther 2016; 38 (09) 2098-2105
  • 139 Ali HS, Khan FY, George S, Shaikh N, Al-Ajmi J. Epidemiology and outcome of ventilator-associated pneumonia in a heterogeneous ICU population in Qatar. BioMed Res Int 2016; 2016: 8231787
  • 140 Rosenthal VD, Maki DG, Mehta Y. et al; International Nosocomial Infection Control Consortium. International Nosocomial Infection Control Consortium (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module. Am J Infect Control 2014; 42 (09) 942-956
  • 141 Hurley JC. Worldwide variation in Pseudomonas associated ventilator associated pneumonia. A meta-regression. J Crit Care 2019; 51: 88-93
  • 142 Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: results from the SENTRY Antimicrobial Surveillance Program, 2009-2012. Int J Antimicrob Agents 2014; 43 (04) 328-334
  • 143 He S, Chen B, Li W. et al. Ventilator-associated pneumonia after cardiac surgery: a meta-analysis and systematic review. J Thorac Cardiovasc Surg 2014; 148 (06) 3148-55.e1 , 5
  • 144 Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 2015; 21-22: 41-59
  • 145 Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents 2015; 45 (06) 568-585
  • 146 Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 2011; 35 (05) 736-755
  • 147 Qureshi S, Agrawal C, Madan M, Pandey A, Chauhan H. Superbugs causing ventilator associated pneumonia in a tertiary care hospital and the return of pre-antibiotic era!. Indian J Med Microbiol 2015; 33 (02) 286-289
  • 148 Sands KM, Wilson MJ, Lewis MAO. et al. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation. J Crit Care 2017; 37: 30-37
  • 149 Rello J, Ausina V, Ricart M. et al. Risk factors for infection by Pseudomonas aeruginosa in patients with ventilator-associated pneumonia. Intensive Care Med 1994; 20 (03) 193-198
  • 150 Berthelot P, Grattard F, Mahul P. et al. Prospective study of nosocomial colonization and infection due to Pseudomonas aeruginosa in mechanically ventilated patients. Intensive Care Med 2001; 27 (03) 503-512
  • 151 Talon D, Mulin B, Rouget C, Bailly P, Thouverez M, Viel JF. Risks and routes for ventilator-associated pneumonia with Pseudomonas aeruginosa . Am J Respir Crit Care Med 1998; 157 (3, Pt 1): 978-984
  • 152 Rello J, Allegri C, Rodriguez A. et al. Risk factors for ventilator-associated pneumonia by Pseudomonas aeruginosa in presence of recent antibiotic exposure. Anesthesiology 2006; 105 (04) 709-714
  • 153 Zhuo H, Yang K, Lynch SV. et al. Increased mortality of ventilated patients with endotracheal Pseudomonas aeruginosa without clinical signs of infection. Crit Care Med 2008; 36 (09) 2495-2503
  • 154 Fagon JY, Chastre J, Hance AJ, Montravers P, Novara A, Gibert C. Nosocomial pneumonia in ventilated patients: a cohort study evaluating attributable mortality and hospital stay. Am J Med 1993; 94 (03) 281-288
  • 155 Park SY, Park HJ, Moon SM. et al. Impact of adequate empirical combination therapy on mortality from bacteremic Pseudomonas aeruginosa pneumonia. BMC Infect Dis 2012; 12: 308
  • 156 von Baum H, Welte T, Marre R, Suttorp N, Ewig S. CAPNETZ Study group. Community-acquired pneumonia through Enterobacteriaceae and Pseudomonas aeruginosa: diagnosis, incidence and predictors. Eur Respir J 2010; 35 (03) 598-605
  • 157 Shindo Y, Ito R, Kobayashi D. et al. Risk factors for drug-resistant pathogens in community-acquired and healthcare-associated pneumonia. Am J Respir Crit Care Med 2013; 188 (08) 985-995
  • 158 Fine MJ, Smith MA, Carson CA. et al. Prognosis and outcomes of patients with community-acquired pneumonia. A meta-analysis. JAMA 1996; 275 (02) 134-141
  • 159 Hatchette TF, Gupta R, Marrie TJ. Pseudomonas aeruginosa community-acquired pneumonia in previously healthy adults: case report and review of the literature. Clin Infect Dis 2000; 31 (06) 1349-1356
  • 160 García-Vázquez E, Marcos MA, Mensa J. et al. Assessment of the usefulness of sputum culture for diagnosis of community-acquired pneumonia using the PORT predictive scoring system. Arch Intern Med 2004; 164 (16) 1807-1811
  • 161 Charles PG, Whitby M, Fuller AJ. et al; Australian CAP Study Collaboration. The etiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy. Clin Infect Dis 2008; 46 (10) 1513-1521
  • 162 Maruyama T, Fujisawa T, Okuno M. et al. A new strategy for healthcare-associated pneumonia: a 2-year prospective multicenter cohort study using risk factors for multidrug-resistant pathogens to select initial empiric therapy. Clin Infect Dis 2013; 57 (10) 1373-1383
  • 163 Restrepo MI, Babu BL, Reyes LF. et al; GLIMP. Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: a multinational point prevalence study of hospitalised patients. Eur Respir J 2018; 52 (02) 52
  • 164 Falguera M, Carratalà J, Ruiz-Gonzalez A. et al. Risk factors and outcome of community-acquired pneumonia due to Gram-negative bacilli. Respirology 2009; 14 (01) 105-111
  • 165 Lynch III JP, Sayah DM, Belperio JA, Weigt SS. Lung transplantation for cystic fibrosis: results, indications, complications, and controversies. Semin Respir Crit Care Med 2015; 36 (02) 299-320
  • 166 Bendiak GN, Ratjen F. The approach to Pseudomonas aeruginosa in cystic fibrosis. Semin Respir Crit Care Med 2009; 30 (05) 587-595
  • 167 Fothergill JL, Walshaw MJ, Winstanley C. Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur Respir J 2012; 40 (01) 227-238
  • 168 Brodt AM, Stovold E, Zhang L. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: a systematic review. Eur Respir J 2014; 44 (02) 382-393
  • 169 McShane PJ, Naureckas ET, Tino G, Strek ME. Non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med 2013; 188 (06) 647-656
  • 170 McDonnell MJ, Jary HR, Perry A. et al. Non cystic fibrosis bronchiectasis: a longitudinal retrospective observational cohort study of Pseudomonas persistence and resistance. Respir Med 2015; 109 (06) 716-726
  • 171 Finch S, McDonnell MJ, Abo-Leyah H, Aliberti S, Chalmers JD. A comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann Am Thorac Soc 2015; 12 (11) 1602-1611
  • 172 Buscot M, Pottier H, Marquette CH, Leroy S. Phenotyping adults with non-cystic fibrosis bronchiectasis: a 10-year cohort study in a French Regional University Hospital Center. Respiration 2016; 92 (01) 1-8
  • 173 Logan LK, Gandra S, Mandal S. et al. Multidrug- and carbapenem-resistant Pseudomonas aeruginosa in children, United States, 1999–2012. J Pediatric Infect Dis Soc 2017; 6 (04) 352-359
  • 174 Mustafa MH, Chalhoub H, Denis O. et al. Antimicrobial susceptibility of Pseudomonas aeruginosa isolated from cystic fibrosis patients through Northern Europe. Antimicrob Agents Chemother 2016; 60 (11) 6735-6741
  • 175 Greipel L, Fischer S, Klockgether J. et al. Molecular epidemiology of mutations in antimicrobial resistance loci of Pseudomonas aeruginosa isolates from cystic fibrosis airways. Antimicrob Agents Chemother 2016; 60 (11) 6726-6734
  • 176 Cigana C, Melotti P, Baldan R. et al. Genotypic and phenotypic relatedness of Pseudomonas aeruginosa isolates among the major cystic fibrosis patient cohort in Italy. BMC Microbiol 2016; 16 (01) 142
  • 177 Jani M, Mathee K, Azad RK. Identification of novel genomic islands in liverpool epidemic strain of Pseudomonas aeruginosa using segmentation and clustering. Front Microbiol 2016; 7: 1210
  • 178 van Mansfeld R, de Been M, Paganelli F, Yang L, Bonten M, Willems R. Within-host evolution of the Dutch high-prevalent Pseudomonas aeruginosa clone ST406 during chronic colonization of a patient with cystic fibrosis. PLoS One 2016; 11 (06) e0158106
  • 179 Workentine M, Poonja A, Waddell B. et al. Development and validation of a PCR assay to detect the prairie epidemic strain of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 2016; 54 (02) 489-491
  • 180 Römling U, Wingender J, Müller H, Tümmler B. A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 1994; 60 (06) 1734-1738
  • 181 Tümmler B, Koopmann U, Grothues D, Weissbrodt H, Steinkamp G, von der Hardt H. Nosocomial acquisition of Pseudomonas aeruginosa by cystic fibrosis patients. J Clin Microbiol 1991; 29 (06) 1265-1267
  • 182 Denton M, Littlewood JM, Brownlee KG, Conway SP, Todd NJ. Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis unit. Lancet 1996; 348 (9041): 1596-1597
  • 183 Armstrong D, Bell S, Robinson M. et al. Evidence for spread of a clonal strain of Pseudomonas aeruginosa among cystic fibrosis clinics. J Clin Microbiol 2003; 41 (05) 2266-2267
  • 184 Jones AM, Govan JR, Doherty CJ. et al. Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis clinic. Lancet 2001; 358 (9281): 557-558
  • 185 Cheng K, Smyth RL, Govan JR. et al. Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 1996; 348 (9028): 639-642
  • 186 Scott FW, Pitt TL. Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J Med Microbiol 2004; 53 (Pt 7): 609-615
  • 187 Lee AC, Jones AL. Multi-resistant Pseudomonas aeruginosa ST235 in cystic fibrosis. Paediatr Respir Rev 2018; 27: 18-20
  • 188 Malhotra S, Hayes Jr D, Wozniak DJ. Cystic fibrosis and Pseudomonas aeruginosa: the host-microbe interface. Clin Microbiol Rev 2019; 32 (03) 32
  • 189 Stefani S, Campana S, Cariani L. et al. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis. Int J Med Microbiol 2017; 307 (06) 353-362
  • 190 Parkins MD, Somayaji R, Waters VJ. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev 2018; 31 (04) 31
  • 191 Almeida MM, Freitas MT, Folescu TW. et al. Carbapenem-resistant Pseudomonas aeruginosa in chronic lung infection: current resistance profile and hypermutability in patients with cystic fibrosis. Curr Microbiol 2021; 78 (02) 696-704
  • 192 Duong J, Booth SC, McCartney NK, Rabin HR, Parkins MD, Storey DG. Phenotypic and genotypic comparison of epidemic and non-epidemic strains of Pseudomonas aeruginosa from individuals with cystic fibrosis. PLoS One 2015; 10 (11) e0143466
  • 193 Colque CA, Albarracín Orio AG, Feliziani S. et al. Hypermutator Pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients. Antimicrob Agents Chemother 2020; 64 (05) 64
  • 194 Sanz-García F, Alvarez-Ortega C, Olivares-Pacheco J, Blanco P, Martínez JL, Hernando-Amado S. Analysis of the Pseudomonas aeruginosa aminoglycoside differential resistomes allows defining genes simultaneously involved in intrinsic antibiotic resistance and virulence. Antimicrob Agents Chemother 2019; 63 (05) 63
  • 195 Schechner V, Gottesman T, Schwartz O. et al. Pseudomonas aeruginosa bacteremia upon hospital admission: risk factors for mortality and influence of inadequate empirical antimicrobial therapy. Diagn Microbiol Infect Dis 2011; 71 (01) 38-45
  • 196 Sostarich AM, Zolldann D, Haefner H, Luetticken R, Schulze-Roebecke R, Lemmen SW. Impact of multiresistance of gram-negative bacteria in bloodstream infection on mortality rates and length of stay. Infection 2008; 36 (01) 31-35
  • 197 Marra AR, Bar K, Bearman GM, Wenzel RP, Edmond MB. Systemic inflammatory response syndrome in adult patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa . J Infect 2006; 53 (01) 30-35
  • 198 Kang CI, Kim SH, Kim HB. et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 2003; 37 (06) 745-751
  • 199 Dantas RC, Ferreira ML, Gontijo-Filho PP, Ribas RM. Pseudomonas aeruginosa bacteraemia: independent risk factors for mortality and impact of resistance on outcome. J Med Microbiol 2014; 63 (Pt 12): 1679-1687
  • 200 Manfredi R, Nanetti A, Ferri M, Chiodo F. Pseudomonas spp. complications in patients with HIV disease: an eight-year clinical and microbiological survey. Eur J Epidemiol 2000; 16 (02) 111-118
  • 201 Meynard JL, Barbut F, Guiguet M. et al. Pseudomonas aeruginosa infection in human immunodeficiency virus infected patients. J Infect 1999; 38 (03) 176-181
  • 202 Madeddu G, Porqueddu EM, Cambosu F. et al. Bacterial community acquired pneumonia in HIV-infected inpatients in the highly active antiretroviral therapy era. Infection 2008; 36 (03) 231-236
  • 203 López-Palomo C, Martín-Zamorano M, Benítez E. et al. Pneumonia in HIV-infected patients in the HAART era: incidence, risk, and impact of the pneumococcal vaccination. J Med Virol 2004; 72 (04) 517-524
  • 204 Franzetti F, Grassini A, Piazza M. et al. Nosocomial bacterial pneumonia in HIV-infected patients: risk factors for adverse outcome and implications for rational empiric antibiotic therapy. Infection 2006; 34 (01) 9-16
  • 205 Asgari S, McLaren PJ, Peake J. et al; Swiss Pediatric Sepsis Study. Exome sequencing reveals primary immunodeficiencies in children with community-acquired Pseudomonas aeruginosa sepsis. Front Immunol 2016; 7: 357
  • 206 Flinn A, McDermott M, Butler KM. A child with septic shock and purpura. JAMA Pediatr 2016; 170 (04) 391-392
  • 207 Sanz J, Cano I, González-Barberá EM. et al. Bloodstream infections in adult patients undergoing cord blood transplantation from unrelated donors after myeloablative conditioning regimen. Biol Blood Marrow Transplant 2015; 21 (04) 755-760
  • 208 Kolar M, Sauer P, Faber E. et al. Prevalence and spread of Pseudomonas aeruginosa and Klebsiella pneumoniae strains in patients with hematological malignancies. New Microbiol 2009; 32 (01) 67-76
  • 209 Jeddi R, Ghédira H, Ben Amor R. et al. Risk factors of septic shock in patients with hematologic malignancies and Pseudomonas infections. Hematology 2011; 16 (03) 160-165
  • 210 Trecarichi EM, Pagano L, Candoni A. et al; HeMABIS Registry—SEIFEM Group, Italy. Current epidemiology and antimicrobial resistance data for bacterial bloodstream infections in patients with hematologic malignancies: an Italian multicentre prospective survey. Clin Microbiol Infect 2015; 21 (04) 337-343
  • 211 See I, Freifeld AG, Magill SS. Causative organisms and associated antimicrobial resistance in healthcare-associated, central line-associated bloodstream infections from oncology settings, 2009-2012. Clin Infect Dis 2016; 62 (10) 1203-1209
  • 212 Tofas P, Samarkos M, Piperaki ET. et al. Pseudomonas aeruginosa bacteraemia in patients with hematologic malignancies: risk factors, treatment and outcome. Diagn Microbiol Infect Dis 2017; 88 (04) 335-341
  • 213 Irfan S, Idrees F, Mehraj V, Habib F, Adil S, Hasan R. Emergence of carbapenem resistant Gram negative and vancomycin resistant Gram positive organisms in bacteremic isolates of febrile neutropenic patients: a descriptive study. BMC Infect Dis 2008; 8: 80
  • 214 Chen CY, Tien FM, Sheng WH. et al. Clinical and microbiological characteristics of bloodstream infections among patients with haematological malignancies with and without neutropenia at a medical centre in northern Taiwan, 2008-2013. Int J Antimicrob Agents 2017; 49 (03) 272-281
  • 215 Blennow O, Ljungman P, Sparrelid E, Mattsson J, Remberger M. Incidence, risk factors, and outcome of bloodstream infections during the pre-engraftment phase in 521 allogeneic hematopoietic stem cell transplantations. Transpl Infect Dis 2014; 16 (01) 106-114
  • 216 Stoma I, Karpov I, Milanovich N, Uss A, Iskrov I. Risk factors for mortality in patients with bloodstream infections during the pre-engraftment period after hematopoietic stem cell transplantation. Blood Res 2016; 51 (02) 102-106
  • 217 Wang L, Wang Y, Fan X, Tang W, Hu J. Prevalence of resistant gram-negative Bacilli in bloodstream infection in febrile neutropenia patients undergoing hematopoietic stem cell transplantation: a single center retrospective cohort study. Medicine (Baltimore) 2015; 94 (45) e1931
  • 218 Kikuchi M, Akahoshi Y, Nakano H. et al. Risk factors for pre- and post-engraftment bloodstream infections after allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2015; 17 (01) 56-65
  • 219 Luo A, Zhong Z, Wan Q, Ye Q. The distribution and resistance of pathogens among solid organ transplant recipients with Pseudomonas aeruginosa infections. Med Sci Monit 2016; 22: 1124-1130
  • 220 Camargo LF, Marra AR, Pignatari AC. et al; Brazilian SCOPE Study Group. Nosocomial bloodstream infections in a nationwide study: comparison between solid organ transplant patients and the general population. Transpl Infect Dis 2015; 17 (02) 308-313
  • 221 Singh N, Gayowski T, Rihs JD, Wagener MM, Marino IR. Evolving trends in multiple-antibiotic-resistant bacteria in liver transplant recipients: a longitudinal study of antimicrobial susceptibility patterns. Liver Transpl 2001; 7 (01) 22-26
  • 222 Palmer SM, Alexander BD, Sanders LL. et al. Significance of blood stream infection after lung transplantation: analysis in 176 consecutive patients. Transplantation 2000; 69 (11) 2360-2366
  • 223 McCarthy K. Pseudomonas aeruginosa: evolution of antimicrobial resistance and implications for therapy. Semin Respir Crit Care Med 2015; 36 (01) 44-55
  • 224 Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002; 165 (07) 867-903
  • 225 Ruppé É, Woerther PL, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 2015; 5 (01) 61
  • 226 Rello J, Mariscal D, March F. et al. Recurrent Pseudomonas aeruginosa pneumonia in ventilated patients: relapse or reinfection?. Am J Respir Crit Care Med 1998; 157 (3, Pt 1): 912-916
  • 227 Fink MP, Snydman DR, Niederman MS. et al; The Severe Pneumonia Study Group. Treatment of severe pneumonia in hospitalized patients: results of a multicenter, randomized, double-blind trial comparing intravenous ciprofloxacin with imipenem-cilastatin. Antimicrob Agents Chemother 1994; 38 (03) 547-557
  • 228 El Amari EB, Chamot E, Auckenthaler R, Pechère JC, Van Delden C. Influence of previous exposure to antibiotic therapy on the susceptibility pattern of Pseudomonas aeruginosa bacteremic isolates. Clin Infect Dis 2001; 33 (11) 1859-1864
  • 229 Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?. Clin Infect Dis 2002; 34 (05) 634-640
  • 230 Horcajada JP, Montero M, Oliver A. et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 2019; 32 (04) 32
  • 231 Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37 (01) 177-192
  • 232 Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol 2009; 58 (Pt 9): 1133-1148
  • 233 Lynch III JP, Zhanel GG, Clark NM. Emergence of antimicrobial resistance among Pseudomonas aeruginosa: implications for therapy. Semin Respir Crit Care Med 2017; 38 (03) 326-345
  • 234 Magiorakos AP, Srinivasan A, Carey RB. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18 (03) 268-281
  • 235 Willmann M, Bezdan D, Zapata L. et al. Analysis of a long-term outbreak of XDR Pseudomonas aeruginosa: a molecular epidemiological study. J Antimicrob Chemother 2015; 70 (05) 1322-1330
  • 236 Edelstein MV, Skleenova EN, Shevchenko OV. et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect Dis 2013; 13 (10) 867-876
  • 237 Viedma E, Juan C, Villa J. et al. VIM-2-producing multidrug-resistant Pseudomonas aeruginosa ST175 clone, Spain. Emerg Infect Dis 2012; 18 (08) 1235-1241
  • 238 García-Castillo M, Del Campo R, Morosini MI. et al. Wide dispersion of ST175 clone despite high genetic diversity of carbapenem-nonsusceptible Pseudomonas aeruginosa clinical strains in 16 Spanish hospitals. J Clin Microbiol 2011; 49 (08) 2905-2910
  • 239 Cabot G, Zamorano L, Moyà B. et al. Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob Agents Chemother 2016; 60 (03) 1767-1778
  • 240 Aaron SD, Vandemheen KL, Ramotar K. et al. Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA 2010; 304 (19) 2145-2153
  • 241 López-Causapé C, Rojo-Molinero E, Mulet X. et al. Clonal dissemination, emergence of mutator lineages and antibiotic resistance evolution in Pseudomonas aeruginosa cystic fibrosis chronic lung infection. PLoS One 2013; 8 (08) e71001
  • 242 Obritsch MD, Fish DN, MacLaren R, Jung R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother 2004; 48 (12) 4606-4610
  • 243 López-Dupla M, Martínez JA, Vidal F. et al. Previous ciprofloxacin exposure is associated with resistance to beta-lactam antibiotics in subsequent Pseudomonas aeruginosa bacteremic isolates. Am J Infect Control 2009; 37 (09) 753-758
  • 244 Barron MA, Richardson K, Jeffres M, McCollister B. Risk factors and influence of carbapenem exposure on the development of carbapenem resistant Pseudomonas aeruginosa bloodstream infections and infections at sterile sites. Springerplus 2016; 5 (01) 755
  • 245 Apisarnthanarak A, Jitpokasem S, Mundy LM. Associations between carbapenem use, carbapenem-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii . Infect Control Hosp Epidemiol 2013; 34 (11) 1235-1237
  • 246 Souli M, Galani I, Giamarellou H. Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Euro Surveill 2008; 13 (47) 13
  • 247 Master RN, Clark RB, Karlowsky JA, Ramirez J, Bordon JM. Analysis of resistance, cross-resistance and antimicrobial combinations for Pseudomonas aeruginosa isolates from 1997 to 2009. Int J Antimicrob Agents 2011; 38 (04) 291-295
  • 248 Rosenthal VD, Maki DG, Mehta A. et al; International Nosocomial Infection Control Consortium Members. International Nosocomial Infection Control Consortium report, data summary for 2002-2007, issued January 2008. Am J Infect Control 2008; 36 (09) 627-637
  • 249 Rosenthal VD, Bijie H, Maki DG. et al; INICC Members. International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004-2009. Am J Infect Control 2012; 40 (05) 396-407
  • 250 Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalized in intensive care units in United States and European hospitals (2009-2011). Diagn Microbiol Infect Dis 2014; 78 (04) 443-448
  • 251 Walkty A, Lagace-Wiens P, Adam H. et al. Antimicrobial susceptibility of 2906 Pseudomonas aeruginosa clinical isolates obtained from patients in Canadian hospitals over a period of 8 years: results of the Canadian Ward surveillance study (CANWARD), 2008-2015. Diagn Microbiol Infect Dis 2017; 87 (01) 60-63
  • 252 Sader HS, Huband MD, Castanheira M, Flamm RK. Pseudomonas aeruginosa antimicrobial susceptibility results from four years (2012 to 2015) of the International Network for Optimal Resistance Monitoring Program in the United States. Antimicrob Agents Chemother 2017; 61 (03) 61
  • 253 Sader HS, Castanheira M, Duncan LR, Flamm RK. Antimicrobial susceptibility of Enterobacteriaceae and Pseudomonas aeruginosa isolates from United States Medical Centers stratified by infection type: results from the International Network for Optimal Resistance Monitoring (INFORM) Surveillance Program, 2015-2016. Diagn Microbiol Infect Dis 2018; 92 (01) 69-74
  • 254 Gill JS, Arora S, Khanna SP, Kumar KH. Prevalence of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa from a tertiary level intensive care unit. J Glob Infect Dis 2016; 8 (04) 155-159
  • 255 Aguilar-Rodea P, Zúñiga G, Rodríguez-Espino BA. et al. Identification of extensive drug resistant Pseudomonas aeruginosa strains: new clone ST1725 and high-risk clone ST233. PLoS One 2017; 12 (03) e0172882
  • 256 von Wintersdorff CJ, Penders J, Stobberingh EE. et al. High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands. Emerg Infect Dis 2014; 20 (04) 649-657
  • 257 Castanheira M, Mills JC, Farrell DJ, Jones RN. Mutation-driven β-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from U.S. hospitals. Antimicrob Agents Chemother 2014; 58 (11) 6844-6850
  • 258 Ayoub Moubareck C, Hammoudi Halat D, Akkawi C. et al. Role of outer membrane permeability, efflux mechanism, and carbapenemases in carbapenem-nonsusceptible Pseudomonas aeruginosa from Dubai hospitals: results of the first cross-sectional survey. Int J Infect Dis 2019; 84: 143-150
  • 259 Nordmann P, Poirel L. Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clin Infect Dis 2019; 69 (Suppl. 07) S521-S528
  • 260 Escandon-Vargas K, Reyes S, Gutierrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2017; 15 (03) 277-297
  • 261 Cabot G, López-Causapé C, Ocampo-Sosa AA. et al. Deciphering the resistome of the widespread Pseudomonas aeruginosa sequence type 175 international high-risk clone through whole-genome sequencing. Antimicrob Agents Chemother 2016; 60 (12) 7415-7423
  • 262 Katchanov J, Asar L, Klupp EM. et al. Carbapenem-resistant Gram-negative pathogens in a German university medical center: prevalence, clinical implications and the role of novel β-lactam/β-lactamase inhibitor combinations. PLoS One 2018; 13 (04) e0195757
  • 263 Leroy O, d'Escrivan T, Devos P, Dubreuil L, Kipnis E, Georges H. Hospital-acquired pneumonia in critically ill patients: factors associated with episodes due to imipenem-resistant organisms. Infection 2005; 33 (03) 129-135
  • 264 Terahara F, Nishiura H. Carbapenem-resistant Pseudomonas aeruginosa and carbapenem use in Japan: an ecological study. J Int Med Res 2019; 47 (10) 4711-4722
  • 265 Hu F, Zhu D, Wang F, Wang M. Current status and trends of antibacterial resistance in China. Clin Infect Dis 2018; 67 (Suppl. 02) S128-S134
  • 266 Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54 (03) 969-976
  • 267 Mehrad B, Clark NM, Zhanel GG, Lynch III JP. Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest 2015; 147 (05) 1413-1421
  • 268 Girlich D, Naas T, Nordmann P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2004; 48 (06) 2043-2048
  • 269 Fajardo A, Hernando-Amado S, Oliver A, Ball G, Filloux A, Martinez JL. Characterization of a novel Zn2+-dependent intrinsic imipenemase from Pseudomonas aeruginosa . J Antimicrob Chemother 2014; 69 (11) 2972-2978
  • 270 Lynch III JP, Clark NM, Zhanel GG. Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum β-lactamases and carbapenemases). Expert Opin Pharmacother 2013; 14 (02) 199-210
  • 271 Nordmann P, Ronco E, Naas T, Duport C, Michel-Briand Y, Labia R. Characterization of a novel extended-spectrum beta-lactamase from Pseudomonas aeruginosa . Antimicrob Agents Chemother 1993; 37 (05) 962-969
  • 272 Kolayli F, Gacar G, Karadenizli A, Sanic A, Vahaboglu H. Study Group. PER-1 is still widespread in Turkish hospitals among Pseudomonas aeruginosa and Acinetobacter spp. FEMS Microbiol Lett 2005; 249 (02) 241-245
  • 273 Claeys G, Verschraegen G, de Baere T, Vaneechoutte M. PER-1 beta-lactamase-producing Pseudomonas aeruginosa in an intensive care unit. J Antimicrob Chemother 2000; 45 (06) 924-925
  • 274 Luzzaro F, Mantengoli E, Perilli M. et al. Dynamics of a nosocomial outbreak of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum beta-lactamase. J Clin Microbiol 2001; 39 (05) 1865-1870
  • 275 Mugnier P, Dubrous P, Casin I, Arlet G, Collatz E. A TEM-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa . Antimicrob Agents Chemother 1996; 40 (11) 2488-2493
  • 276 Marchandin H, Jean-Pierre H, De Champs C. et al. Production of a TEM-24 plasmid-mediated extended-spectrum beta-lactamase by a clinical isolate of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2000; 44 (01) 213-216
  • 277 Poirel L, Ronco E, Naas T, Nordmann P. Extended-spectrum β-lactamase TEM-4 in Pseudomonas aeruginosa . Clin Microbiol Infect 1999; 5 (10) 651-652
  • 278 Naas T, Poirel L, Karim A, Nordmann P. Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa . FEMS Microbiol Lett 1999; 176 (02) 411-419
  • 279 Girlich D, Naas T, Leelaporn A, Poirel L, Fennewald M, Nordmann P. Nosocomial spread of the integron-located VEB-1-like cassette encoding an extended-spectrum beta-lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis 2002; 34 (05) 603-611
  • 280 Poirel L, Rotimi VO, Mokaddas EM, Karim A, Nordmann P. VEB-1-like extended-spectrum beta-lactamases in Pseudomonas aeruginosa, Kuwait. Emerg Infect Dis 2001; 7 (03) 468-470
  • 281 Aubert D, Girlich D, Naas T, Nagarajan S, Nordmann P. Functional and structural characterization of the genetic environment of an extended-spectrum beta-lactamase blaVEB gene from a Pseudomonas aeruginosa isolate obtained in India. Antimicrob Agents Chemother 2004; 48 (09) 3284-3290
  • 282 Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu Y. Detection of extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2006; 50 (09) 2990-2995
  • 283 Naas T, Philippon L, Poirel L, Ronco E, Nordmann P. An SHV-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa . Antimicrob Agents Chemother 1999; 43 (05) 1281-1284
  • 284 Chanawong A, M'Zali FH, Heritage J, Lulitanond A, Hawkey PM. SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum beta-lactamases in Gram-negative bacteria isolated in a university hospital in Thailand. J Antimicrob Chemother 2001; 48 (06) 839-852
  • 285 Poirel L, Lebessi E, Castro M, Fèvre C, Foustoukou M, Nordmann P. Nosocomial outbreak of extended-spectrum beta-lactamase SHV-5-producing isolates of Pseudomonas aeruginosa in Athens, Greece. Antimicrob Agents Chemother 2004; 48 (06) 2277-2279
  • 286 Mansour W, Dahmen S, Poirel L. et al. Emergence of SHV-2a extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa in a university hospital in Tunisia. Microb Drug Resist 2009; 15 (04) 295-301
  • 287 Uemura S, Yokota S, Mizuno H. et al. Acquisition of a transposon encoding extended-spectrum beta-lactamase SHV-12 by Pseudomonas aeruginosa isolates during the clinical course of a burn patient. Antimicrob Agents Chemother 2010; 54 (09) 3956-3959
  • 288 Poirel L, Weldhagen GF, De Champs C, Nordmann P. A nosocomial outbreak of Pseudomonas aeruginosa isolates expressing the extended-spectrum beta-lactamase GES-2 in South Africa. J Antimicrob Chemother 2002; 49 (03) 561-565
  • 289 Dubois V, Poirel L, Marie C, Arpin C, Nordmann P, Quentin C. Molecular characterization of a novel class 1 integron containing bla(GES-1) and a fused product of aac3-Ib/aac6′-Ib' gene cassettes in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2002; 46 (03) 638-645
  • 290 Mavroidi A, Tzelepi E, Tsakris A, Miriagou V, Sofianou D, Tzouvelekis LS. An integron-associated beta-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum beta-lactamase IBC-1. J Antimicrob Chemother 2001; 48 (05) 627-630
  • 291 Castanheira M, Mendes RE, Walsh TR, Gales AC, Jones RN. Emergence of the extended-spectrum beta-lactamase GES-1 in a Pseudomonas aeruginosa strain from Brazil: report from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 2004; 48 (06) 2344-2345
  • 292 Botelho J, Grosso F, Peixe L. Unravelling the genome of a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235 reveals an integrative conjugative element housing a blaGES-6 carbapenemase. J Antimicrob Chemother 2018; 73 (01) 77-83
  • 293 Poirel L, Brinas L, Verlinde A, Ide L, Nordmann P. BEL-1, a novel clavulanic acid-inhibited extended-spectrum beta-lactamase, and the class 1 integron In120 in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2005; 49 (09) 3743-3748
  • 294 Poirel L, Docquier JD, De Luca F. et al. BEL-2, an extended-spectrum beta-lactamase with increased activity toward expanded-spectrum cephalosporins in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2010; 54 (01) 533-535
  • 295 Glupczynski Y, Bogaerts P, Deplano A. et al. Detection and characterization of class A extended-spectrum-beta-lactamase-producing Pseudomonas aeruginosa isolates in Belgian hospitals. J Antimicrob Chemother 2010; 65 (05) 866-871
  • 296 Tian GB, Adams-Haduch JM, Bogdanovich T, Wang HN, Doi Y. PME-1, an extended-spectrum β-lactamase identified in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2011; 55 (06) 2710-2713
  • 297 Zowawi HM, Ibrahim E, Syrmis MW, Wailan AM, AbdulWahab A, Paterson DL. PME-1-producing Pseudomonas aeruginosa in Qatar. Antimicrob Agents Chemother 2015; 59 (06) 3692-3693
  • 298 Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa . Infect Chemother 2015; 47 (02) 81-97
  • 299 Correa A, Del Campo R, Perenguez M. et al. Dissemination of high-risk clones of extensively drug-resistant Pseudomonas aeruginosa in Colombia. Antimicrob Agents Chemother 2015; 59 (04) 2421-2425
  • 300 Castanheira M, Deshpande LM, Costello A, Davies TA, Jones RN. Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009-11 in 14 European and Mediterranean countries. J Antimicrob Chemother 2014; 69 (07) 1804-1814
  • 301 Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa . Antimicrob Agents Chemother 1991; 35 (01) 147-151
  • 302 Tada T, Miyoshi-Akiyama T, Shimada K, Shimojima M, Kirikae T. IMP-43 and IMP-44 metallo-β-lactamases with increased carbapenemase activities in multidrug-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother 2013; 57 (09) 4427-4432
  • 303 Poirel L, Naas T, Nicolas D. et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 2000; 44 (04) 891-897
  • 304 Lauretti L, Riccio ML, Mazzariol A. et al. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 1999; 43 (07) 1584-1590
  • 305 Cornaglia G, Mazzariol A, Lauretti L, Rossolini GM, Fontana R. Hospital outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-1, a novel transferable metallo-beta-lactamase. Clin Infect Dis 2000; 31 (05) 1119-1125
  • 306 Kazmierczak KM, Rabine S, Hackel M. et al. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa . Antimicrob Agents Chemother 2015; 60 (02) 1067-1078
  • 307 Wright LL, Turton JF, Livermore DM, Hopkins KL, Woodford N. Dominance of international ‘high-risk clones’ among metallo-β-lactamase-producing Pseudomonas aeruginosa in the UK. J Antimicrob Chemother 2015; 70 (01) 103-110
  • 308 Correa A, Montealegre MC, Mojica MF. et al. First report of a Pseudomonas aeruginosa isolate coharboring KPC and VIM carbapenemases. Antimicrob Agents Chemother 2012; 56 (10) 5422-5423
  • 309 Martínez T, Vázquez GJ, Aquino EE, Ramírez-Ronda R, Robledo IE. First report of a Pseudomonas aeruginosa clinical isolate co-harbouring KPC-2 and IMP-18 carbapenemases. Int J Antimicrob Agents 2012; 39 (06) 542-543
  • 310 Vanegas JM, Cienfuegos AV, Ocampo AM. et al. Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellín, Colombia. J Clin Microbiol 2014; 52 (11) 3978-3986
  • 311 Toleman MA, Simm AM, Murphy TA. et al. Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother 2002; 50 (05) 673-679
  • 312 Zavascki AP, Gaspareto PB, Martins AF, Gonçalves AL, Barth AL. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-beta-lactamase in a teaching hospital in southern Brazil. J Antimicrob Chemother 2005; 56 (06) 1148-1151
  • 313 Kalluf KO, Arend LN, Wuicik TE, Pilonetto M, Tuon FF. Molecular epidemiology of SPM-1-producing Pseudomonas aeruginosa by rep-PCR in hospitals in Parana, Brazil. Infect Genet Evol 2017; 49: 130-133
  • 314 Salabi AE, Toleman MA, Weeks J, Bruderer T, Frei R, Walsh TR. First report of the metallo-beta-lactamase SPM-1 in Europe. Antimicrob Agents Chemother 2010; 54 (01) 582
  • 315 Hopkins KL, Meunier D, Findlay J. et al. SPM-1 metallo-β-lactamase-producing Pseudomonas aeruginosa ST277 in the UK. J Med Microbiol 2016; 65 (07) 696-697
  • 316 Jones RN, Biedenbach DJ, Sader HS, Fritsche TR, Toleman MA, Walsh TR. Emerging epidemic of metallo-beta-lactamase-mediated resistances. Diagn Microbiol Infect Dis 2005; 51 (02) 77-84
  • 317 Picão RC, Poirel L, Gales AC, Nordmann P. Diversity of beta-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolates causing bloodstream infections in Brazil. Antimicrob Agents Chemother 2009; 53 (09) 3908-3913
  • 318 Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob Agents Chemother 2004; 48 (12) 4654-4661
  • 319 Wendel AF, Brodner AH, Wydra S. et al. Genetic characterization and emergence of the metallo-β-lactamase GIM-1 in Pseudomonas spp. and Enterobacteriaceae during a long-term outbreak. Antimicrob Agents Chemother 2013; 57 (10) 5162-5165
  • 320 Al Naiemi N, Duim B, Bart A. A CTX-M extended-spectrum beta-lactamase in Pseudomonas aeruginosa and Stenotrophomonas maltophilia . J Med Microbiol 2006; 55 (Pt 11): 1607-1608
  • 321 Celenza G, Pellegrini C, Caccamo M, Segatore B, Amicosante G, Perilli M. Spread of bla(CTX-M-type) and bla(PER-2) beta-lactamase genes in clinical isolates from Bolivian hospitals. J Antimicrob Chemother 2006; 57 (05) 975-978
  • 322 Picão RC, Poirel L, Gales AC, Nordmann P. Further identification of CTX-M-2 extended-spectrum beta-lactamase in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2009; 53 (05) 2225-2226
  • 323 Qing Y, Cao KY, Fang ZL. et al. Outbreak of PER-1 and diversity of β-lactamases among ceftazidime-resistant Pseudomonas aeruginosa clinical isolates. J Med Microbiol 2014; 63 (Pt 3): 386-392
  • 324 Ballaben AS, Galetti R, Andrade LN. et al. Plasmid carrying bla CTX-M-2 and bla GES-1 in extensively drug-resistant Pseudomonas aeruginosa from cerebrospinal fluid. Antimicrob Agents Chemother 2019; 63 (07) 63
  • 325 Ogbolu DO, Alli OAT, Webber MA, Oluremi AS, Oloyede OM. CTX-M-15 is established in most multidrug-resistant uropathogenic Enterobacteriaceae and Pseudomonaceae from hospitals in Nigeria. Eur J Microbiol Immunol (Bp) 2018; 8 (01) 20-24
  • 326 Pollini S, Maradei S, Pecile P. et al. FIM-1, a new acquired metallo-β-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob Agents Chemother 2013; 57 (01) 410-416
  • 327 Villegas MV, Lolans K, Correa A, Kattan JN, Lopez JA, Quinn JP. Colombian Nosocomial Resistance Study Group. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother 2007; 51 (04) 1553-1555
  • 328 Wolter DJ, Khalaf N, Robledo IE. et al. Surveillance of carbapenem-resistant Pseudomonas aeruginosa isolates from Puerto Rican medical center hospitals: dissemination of KPC and IMP-18 beta-lactamases. Antimicrob Agents Chemother 2009; 53 (04) 1660-1664
  • 329 Akpaka PE, Swanston WH, Ihemere HN. et al. Emergence of KPC-producing Pseudomonas aeruginosa in Trinidad and Tobago. J Clin Microbiol 2009; 47 (08) 2670-2671
  • 330 Cuzon G, Naas T, Villegas MV, Correa A, Quinn JP, Nordmann P. Wide dissemination of Pseudomonas aeruginosa producing beta-lactamase blaKPC-2 gene in Colombia. Antimicrob Agents Chemother 2011; 55 (11) 5350-5353
  • 331 Ramírez DG, Nicola F, Zarate S, Relloso S, Smayevsky J, Arduino S. Emergence of Pseudomonas aeruginosa with KPC-type carbapenemase in a teaching hospital: an 8-year study. J Med Microbiol 2013; 62 (Pt 10): 1565-1570
  • 332 Ge C, Wei Z, Jiang Y, Shen P, Yu Y, Li L. Identification of KPC-2-producing Pseudomonas aeruginosa isolates in China. J Antimicrob Chemother 2011; 66 (05) 1184-1186
  • 333 Yong D, Toleman MA, Giske CG. et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009; 53 (12) 5046-5054
  • 334 Jovcic B, Lepsanovic Z, Suljagic V. et al. Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother 2011; 55 (08) 3929-3931
  • 335 Flateau C, Janvier F, Delacour H. et al. Recurrent pyelonephritis due to NDM-1 metallo-beta-lactamase producing Pseudomonas aeruginosa in a patient returning from Serbia, France, 2012. Euro Surveill 2012; 17 (45) 17
  • 336 Khajuria A, Praharaj AK, Kumar M, Grover N. Emergence of NDM - 1 in the clinical isolates of Pseudomonas aeruginosa in India. J Clin Diagn Res 2013; 7 (07) 1328-1331
  • 337 Carattoli A, Fortini D, Galetti R. et al. Isolation of NDM-1-producing Pseudomonas aeruginosa sequence type ST235 from a stem cell transplant patient in Italy, May 2013. Euro Surveill 2013; 18 (46) 18
  • 338 Zafer MM, Amin M, El Mahallawy H, Ashour MS, Al Agamy M. First report of NDM-1-producing Pseudomonas aeruginosa in Egypt. Int J Infect Dis 2014; 29: 80-81
  • 339 Kulkova N, Babalova M, Sokolova J, Krcmery V. First report of New Delhi metallo-β-lactamase-1-producing strains in Slovakia. Microb Drug Resist 2015; 21 (01) 117-120
  • 340 Farajzadeh Sheikh A, Shahin M, Shokoohizadeh L, Ghanbari F, Solgi H, Shahcheraghi F. Emerge of NDM-1-producing multidrug-resistant Pseudomonas aeruginosa and co-harboring of Carbapenemase genes in South of Iran. Iran J Public Health 2020; 49 (05) 959-967
  • 341 Liew SM, Rajasekaram G, Puthucheary SD, Chua KH. Detection of VIM-2-, IMP-1- and NDM-1-producing multidrug-resistant Pseudomonas aeruginosa in Malaysia. J Glob Antimicrob Resist 2018; 13: 271-273
  • 342 Yong D, Toleman MA, Bell J. et al. Genetic and biochemical characterization of an acquired subgroup B3 metallo-β-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob Agents Chemother 2012; 56 (12) 6154-6159
  • 343 Rhomberg PR, Jones RN. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program: a 10-year experience in the United States (1999-2008). Diagn Microbiol Infect Dis 2009; 65 (04) 414-426
  • 344 Zilberberg MD, Shorr AF. Prevalence of multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae among specimens from hospitalized patients with pneumonia and bloodstream infections in the United States from 2000 to 2009. J Hosp Med 2013; 8 (10) 559-563
  • 345 Zhanel GG, DeCorby M, Adam H. et al; Canadian Antimicrobial Resistance Alliance. Prevalence of antimicrobial-resistant pathogens in Canadian hospitals: results of the Canadian Ward Surveillance Study (CANWARD 2008). Antimicrob Agents Chemother 2010; 54 (11) 4684-4693
  • 346 Labarca JA, Salles MJ, Seas C, Guzmán-Blanco M. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in the nosocomial setting in Latin America. Crit Rev Microbiol 2016; 42 (02) 276-292
  • 347 Zhang Y, Chen XL, Huang AW. et al. Mortality attributable to carbapenem-resistant Pseudomonas aeruginosa bacteremia: a meta-analysis of cohort studies. Emerg Microbes Infect 2016; 5: e27
  • 348 Doi Y. Treatment options for carbapenem-resistant Gram-negative bacterial infections. Clin Infect Dis 2019; 69 (Suppl. 07) S565-S575
  • 349 Bonomo RA, Burd EM, Conly J. et al. Carbapenemase-producing organisms: a global scourge. Clin Infect Dis 2018; 66 (08) 1290-1297
  • 350 Walters MS, Grass JE, Bulens SN. et al. Carbapenem-resistant Pseudomonas aeruginosa at US Emerging Infections Program Sites, 2015. Emerg Infect Dis 2019; 25 (07) 1281-1288
  • 351 McCann E, Srinivasan A, DeRyke CA. et al. Carbapenem-nonsusceptible gram-negative pathogens in ICU and non-ICU settings in US hospitals in 2017: a multicenter study. Open Forum Infect Dis 2018; 5 (10) ofy241
  • 352 Khadem T, Stevens V, Holt K, Hoffmann C, Dumyati G, Brown J. Risk factors for carbapenem-nonsusceptible Pseudomonas aeruginosa: case-control study. Diagn Microbiol Infect Dis 2017; 89 (02) 146-150
  • 353 Valderrama SL, González PF, Caro MA. et al. Risk factors for hospital-acquired bacteremia due to carbapenem-resistant Pseudomonas aeruginosa in a Colombian hospital. Biomedica 2016; 36 (00) 69-77
  • 354 Voor In 't Holt AF, Severin JA, Lesaffre EM, Vos MC. A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother 2014; 58 (05) 2626-2637
  • 355 Zhanel GG, Chung P, Adam H. et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014; 74 (01) 31-51
  • 356 van Duin D, Bonomo RA. Ceftazidime/Avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis 2016; 63 (02) 234-241
  • 357 Wi YM, Greenwood-Quaintance KE, Schuetz AN. et al. Activity of ceftolozane-tazobactam against carbapenem-resistant, non-carbapenemase-producing Pseudomonas aeruginosa and associated resistance mechanisms. Antimicrob Agents Chemother 2017; 62 (01) 62
  • 358 Hirsch EB, Brigman HV, Zucchi PC. et al. Ceftolozane-tazobactam and ceftazidime-avibactam activity against β-lactam-resistant Pseudomonas aeruginosa and extended-spectrum β-lactamase-producing Enterobacterales clinical isolates from U.S. medical centres. J Glob Antimicrob Resist 2020; 22: 689-694
  • 359 Zhanel GG, Lawson CD, Adam H. et al. Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination. Drugs 2013; 73 (02) 159-177
  • 360 Zasowski EJ, Rybak JM, Rybak MJ. The β-lactams strike back: ceftazidime-avibactam. Pharmacotherapy 2015; 35 (08) 755-770
  • 361 Falcone M, Paterson D. Spotlight on ceftazidime/avibactam: a new option for MDR Gram-negative infections. J Antimicrob Chemother 2016; 71 (10) 2713-2722
  • 362 Stone GG, Bradford PA, Newell P, Wardman A. In vitro activity of ceftazidime-avibactam against isolates in a phase 3 open-label clinical trial for complicated intra-abdominal and urinary tract infections caused by ceftazidime-nonsusceptible gram-negative pathogens. Antimicrob Agents Chemother 2017; 61 (02) e01820-e01816
  • 363 Abboud MI, Damblon C, Brem J. et al. Interaction of avibactam with class B metallo-β-lactamases. Antimicrob Agents Chemother 2016; 60 (10) 5655-5662
  • 364 Goodlet KJ, Nicolau DP, Nailor MD. Ceftolozane/tazobactam and ceftazidime/avibactam for the treatment of complicated intra-abdominal infections. Ther Clin Risk Manag 2016; 12: 1811-1826
  • 365 Miller B, Popejoy MW, Hershberger E, Steenbergen JN, Alverdy J. Characteristics and outcomes of complicated intra-abdominal infections involving Pseudomonas aeruginosa from a randomized, double-blind, phase 3 ceftolozane-tazobactam study. Antimicrob Agents Chemother 2016; 60 (07) 4387-4390
  • 366 Fraile-Ribot PA, Cabot G, Mulet X. et al. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa . J Antimicrob Chemother 2018; 73 (03) 658-663
  • 367 Shortridge D, Pfaller MA, Castanheira M, Flamm RK. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2013-2016) as part of the surveillance program: program to assess ceftolozane-tazobactam susceptibility. Microb Drug Resist 2018; 24 (05) 563-577
  • 368 Carvalhaes CG, Castanheira M, Sader HS, Flamm RK, Shortridge D. Antimicrobial activity of ceftolozane-tazobactam tested against gram-negative contemporary (2015-2017) isolates from hospitalized patients with pneumonia in US medical centers. Diagn Microbiol Infect Dis 2019; 94 (01) 93-102
  • 369 Liao CH, Lee NY, Tang HJ. et al. Antimicrobial activities of ceftazidime-avibactam, ceftolozane-tazobactam, and other agents against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolated from intensive care units in Taiwan: results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan in 2016. Infect Drug Resist 2019; 12: 545-552
  • 370 Grupper M, Sutherland C, Nicolau DP. Multicenter evaluation of ceftazidime-avibactam and ceftolozane-tazobactam inhibitory activity against meropenem-nonsusceptible Pseudomonas aeruginosa from blood, respiratory tract, and wounds. Antimicrob Agents Chemother 2017; 61 (10) 61
  • 371 Castanheira M, Doyle TB, Smith CJ, Mendes RE, Sader HS. Combination of MexAB-OprM overexpression and mutations in efflux regulators, PBPs and chaperone proteins is responsible for ceftazidime/avibactam resistance in Pseudomonas aeruginosa clinical isolates from US hospitals. J Antimicrob Chemother 2019; 74 (09) 2588-2595
  • 372 Mikhail S, Singh NB, Kebriaei R. et al. Evaluation of the synergy of ceftazidime-avibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa . Antimicrob Agents Chemother 2019; 63 (08) 63
  • 373 Berrazeg M, Jeannot K, Ntsogo Enguéné VY. et al. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob Agents Chemother 2015; 59 (10) 6248-6255
  • 374 Torres A, Zhong N, Pachl J. et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis 2018; 18 (03) 285-295
  • 375 Zhanel GG, Lawrence CK, Adam H. et al. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs 2018; 78 (01) 65-98
  • 376 Iannaccone M, Boattini M, Bianco G, Cavallo R, Costa C. Meropenem/vaborbactam-based combinations against KPC-producing Klebsiella pneumoniae and multidrug-resistant Pseudomonas aeruginosa . Int J Antimicrob Agents 2020; 56 (02) 106066
  • 377 Karlowsky JA, Lob SH, Kazmierczak KM, Young K, Motyl MR, Sahm DF. In-vitro activity of imipenem/relebactam and key β-lactam agents against Gram-negative bacilli isolated from lower respiratory tract infection samples of intensive care unit patients - SMART Surveillance United States 2015-2017. Int J Antimicrob Agents 2020; 55 (01) 105841
  • 378 Motsch J, Murta de Oliveira C, Stus V. et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin Infect Dis 2020; 70 (09) 1799-1808
  • 379 Jones RN, Guzman-Blanco M, Gales AC. et al. Susceptibility rates in Latin American nations: report from a regional resistance surveillance program (2011). Braz J Infect Dis 2013; 17 (06) 672-681
  • 380 Hakki M, Humphries RM, Hemarajata P. et al. Fluoroquinolone prophylaxis selects for meropenem-nonsusceptible Pseudomonas aeruginosa in patients with hematologic malignancies and hematopoietic cell transplant recipients. Clin Infect Dis 2019; 68 (12) 2045-2052
  • 381 Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. J Med Microbiol 2019; 68 (01) 1-10
  • 382 Denton M, Kerr K, Mooney L. et al. Transmission of colistin-resistant Pseudomonas aeruginosa between patients attending a pediatric cystic fibrosis center. Pediatr Pulmonol 2002; 34 (04) 257-261
  • 383 Ahmed MN, Porse A, Sommer MOA, Høiby N, Ciofu O. Evolution of antibiotic resistance in biofilm and planktonic Pseudomonas aeruginosa populations exposed to subinhibitory levels of ciprofloxacin. Antimicrob Agents Chemother 2018; 62 (08) 62
  • 384 Holbrook SYL, Garneau-Tsodikova S. Evaluation of aminoglycoside and carbapenem resistance in a collection of drug-resistant Pseudomonas aeruginosa clinical isolates. Microb Drug Resist 2018; 24 (07) 1020-1030
  • 385 Laudadio E, Cedraro N, Mangiaterra G. et al. Natural alkaloid berberine activity against Pseudomonas aeruginosa MexXY-mediated aminoglycoside resistance: in silico and in vitro studies. J Nat Prod 2019; 82 (07) 1935-1944
  • 386 Lau CH, Hughes D, Poole K. MexY-promoted aminoglycoside resistance in Pseudomonas aeruginosa: involvement of a putative proximal binding pocket in aminoglycoside recognition. MBio 2014; 5 (02) e01068
  • 387 Xia Y, Wang D, Pan X. et al. TpiA is a key metabolic enzyme that affects virulence and resistance to aminoglycoside antibiotics through CrcZ in Pseudomonas aeruginosa . MBio 2020; 11 (01) 11
  • 388 Guo Q, Wei Y, Xia B. et al. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa . Sci Rep 2016; 6: 19141
  • 389 García-Salguero C, Rodríguez-Avial I, Picazo JJ, Culebras E. Can plazomicin alone or in combination be a therapeutic option against carbapenem-resistant Acinetobacter baumannii?. Antimicrob Agents Chemother 2015; 59 (10) 5959-5966
  • 390 Walkty A, Adam H, Baxter M. et al. In vitro activity of plazomicin against 5,015 gram-negative and gram-positive clinical isolates obtained from patients in Canadian hospitals as part of the CANWARD study, 2011-2012. Antimicrob Agents Chemother 2014; 58 (05) 2554-2563
  • 391 Zhanel GG, Lawson CD, Zelenitsky S. et al. Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin. Expert Rev Anti Infect Ther 2012; 10 (04) 459-473
  • 392 Cox G, Ejim L, Stogios PJ. et al. Plazomicin retains antibiotic activity against most aminoglycoside modifying enzymes. ACS Infect Dis 2018; 4 (06) 980-987
  • 393 Walkty A, Karlowsky JA, Baxter MR, Adam HJ, Zhanel GG. In vitro activity of plazomicin against gram-negative and gram-positive bacterial pathogens isolated from patients in Canadian Hospitals from 2013 to 2017 as part of the CANWARD Surveillance Study. Antimicrob Agents Chemother 2018; 63 (01) e02068-18
  • 394 Del Barrio-Tofiño E, Zamorano L, Cortes-Lara S. et al; GEMARA-SEIMC/REIPI Pseudomonas study Group. Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. J Antimicrob Chemother 2019; 74 (07) 1825-1835
  • 395 Lee JY, Na IY, Park YK, Ko KS. Genomic variations between colistin-susceptible and -resistant Pseudomonas aeruginosa clinical isolates and their effects on colistin resistance. J Antimicrob Chemother 2014; 69 (05) 1248-1256
  • 396 Lee JY, Song JH, Ko KS. Identification of nonclonal Pseudomonas aeruginosa isolates with reduced colistin susceptibility in Korea. Microb Drug Resist 2011; 17 (02) 299-304
  • 397 Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 2014; 5: 643
  • 398 Landman D, Bratu S, Alam M, Quale J. Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B. J Antimicrob Chemother 2005; 55 (06) 954-957
  • 399 Grabein B, Graninger W, Rodríguez Baño J, Dinh A, Liesenfeld DB. Intravenous fosfomycin-back to the future. Systematic review and meta-analysis of the clinical literature. Clin Microbiol Infect 2017; 23 (06) 363-372
  • 400 Zhanel GG, Zhanel MA, Karlowsky JA. Intravenous fosfomycin: an assessment of its potential for use in the treatment of systemic infections in Canada. Can J Infect Dis Med Microbiol 2018; 2018: 8912039
  • 401 Matzi V, Lindenmann J, Porubsky C. et al. Extracellular concentrations of fosfomycin in lung tissue of septic patients. J Antimicrob Chemother 2010; 65 (05) 995-998
  • 402 Putensen C, Ellger B, Sakka SG. et al. Current clinical use of intravenous fosfomycin in ICU patients in two European countries. Infection 2019; 47 (05) 827-836
  • 403 Gibb AP, Tribuddharat C, Moore RA. et al. Nosocomial outbreak of carbapenem-resistant Pseudomonas aeruginosa with a new bla(IMP) allele, bla(IMP-7). Antimicrob Agents Chemother 2002; 46 (01) 255-258
  • 404 Pitout JD, Chow BL, Gregson DB, Laupland KB, Elsayed S, Church DL. Molecular epidemiology of metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Calgary Health Region: emergence of VIM-2-producing isolates. J Clin Microbiol 2007; 45 (02) 294-298
  • 405 Mataseje LF, Bryce E, Roscoe D. et al; Canadian Nosocomial Infection Surveillance Program. Carbapenem-resistant Gram-negative bacilli in Canada 2009-10: results from the Canadian Nosocomial Infection Surveillance Program (CNISP). J Antimicrob Chemother 2012; 67 (06) 1359-1367
  • 406 Traugott KA, Echevarria K, Maxwell P, Green K, Lewis II JS. Monotherapy or combination therapy? The Pseudomonas aeruginosa conundrum. Pharmacotherapy 2011; 31 (06) 598-608
  • 407 Bliziotis IA, Petrosillo N, Michalopoulos A, Samonis G, Falagas ME. Impact of definitive therapy with beta-lactam monotherapy or combination with an aminoglycoside or a quinolone for Pseudomonas aeruginosa bacteremia. PLoS One 2011; 6 (10) e26470
  • 408 Hilf M, Yu VL, Sharp J, Zuravleff JJ, Korvick JA, Muder RR. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med 1989; 87 (05) 540-546
  • 409 Lodise Jr TP, Patel N, Kwa A. et al. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 2007; 51 (10) 3510-3515
  • 410 Garnacho-Montero J, Sa-Borges M, Sole-Violan J. et al. Optimal management therapy for Pseudomonas aeruginosa ventilator-associated pneumonia: an observational, multicenter study comparing monotherapy with combination antibiotic therapy. Crit Care Med 2007; 35 (08) 1888-1895
  • 411 Tannous E, Lipman S, Tonna A. et al. Time above the MIC of piperacillin-tazobactam as a predictor of outcome in Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2020; 64 (08) 64
  • 412 Lodise Jr TP, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 2007; 44 (03) 357-363
  • 413 Yang H, Zhang C, Zhou Q, Wang Y, Chen L. Clinical outcomes with alternative dosing strategies for piperacillin/tazobactam: a systematic review and meta-analysis. PLoS One 2015; 10 (01) e0116769
  • 414 Cotrina-Luque J, Gil-Navarro MV, Acosta-García H. et al. Continuous versus intermittent piperacillin/tazobactam infusion in infection due to or suspected Pseudomonas aeruginosa . Int J Clin Pharm 2016; 38 (01) 70-79
  • 415 Louie A, Bied A, Fregeau C. et al. Impact of different carbapenems and regimens of administration on resistance emergence for three isogenic Pseudomonas aeruginosa strains with differing mechanisms of resistance. Antimicrob Agents Chemother 2010; 54 (06) 2638-2645
  • 416 Heyland DK, Dodek P, Muscedere J, Day A, Cook D. Canadian Critical Care Trials Group. Randomized trial of combination versus monotherapy for the empiric treatment of suspected ventilator-associated pneumonia. Crit Care Med 2008; 36 (03) 737-744
  • 417 Eklöf J, Gliese KM, Ingebrigtsen TS, Bodtger U, Jensen JS. Antibiotic treatment adequacy and death among patients with Pseudomonas aeruginosa airway infection. PLoS One 2019; 14 (12) e0226935
  • 418 Vardakas KZ, Tansarli GS, Bliziotis IA, Falagas ME. β-Lactam plus aminoglycoside or fluoroquinolone combination versus β-lactam monotherapy for Pseudomonas aeruginosa infections: a meta-analysis. Int J Antimicrob Agents 2013; 41 (04) 301-310
  • 419 Paulsson M, Granrot A, Ahl J. et al. Antimicrobial combination treatment including ciprofloxacin decreased the mortality rate of Pseudomonas aeruginosa bacteraemia: a retrospective cohort study. Eur J Clin Microbiol Infect Dis 2017; 36 (07) 1187-1196
  • 420 Bowers DR, Liew YX, Lye DC, Kwa AL, Hsu LY, Tam VH. Outcomes of appropriate empiric combination versus monotherapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2013; 57 (03) 1270-1274
  • 421 Peña C, Suarez C, Ocampo-Sosa A. et al; Spanish Network for Research in Infectious Diseases (REIPI). Effect of adequate single-drug vs combination antimicrobial therapy on mortality in Pseudomonas aeruginosa bloodstream infections: a post hoc analysis of a prospective cohort. Clin Infect Dis 2013; 57 (02) 208-216
  • 422 Hu Y, Li L, Li W. et al. Combination antibiotic therapy versus monotherapy for Pseudomonas aeruginosa bacteraemia: a meta-analysis of retrospective and prospective studies. Int J Antimicrob Agents 2013; 42 (06) 492-496
  • 423 Vidal F, Mensa J, Almela M. et al. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment: analysis of 189 episodes. Arch Intern Med 1996; 156 (18) 2121-2126
  • 424 Siegman-Igra Y, Ravona R, Primerman H, Giladi M. Pseudomonas aeruginosa bacteremia: an analysis of 123 episodes, with particular emphasis on the effect of antibiotic therapy. Int J Infect Dis 1998; 2 (04) 211-215
  • 425 Chamot E, Boffi El Amari E, Rohner P, Van Delden C. Effectiveness of combination antimicrobial therapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2003; 47 (09) 2756-2764
  • 426 Drusano GL, Bonomo RA, Bahniuk N. et al. Resistance emergence mechanism and mechanism of resistance suppression by tobramycin for cefepime for Pseudomonas aeruginosa . Antimicrob Agents Chemother 2012; 56 (01) 231-242
  • 427 Louie A, Grasso C, Bahniuk N. et al. The combination of meropenem and levofloxacin is synergistic with respect to both Pseudomonas aeruginosa kill rate and resistance suppression. Antimicrob Agents Chemother 2010; 54 (06) 2646-2654
  • 428 Siqueira VL, Cardoso RF, Caleffi-Ferracioli KR. et al. Structural changes and differentially expressed genes in Pseudomonas aeruginosa exposed to meropenem-ciprofloxacin combination. Antimicrob Agents Chemother 2014; 58 (07) 3957-3967
  • 429 Kumar A, Zarychanski R, Light B. et al; Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis. Crit Care Med 2010; 38 (09) 1773-1785
  • 430 Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 2010; 38 (08) 1651-1664
  • 431 Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 2012; 25 (03) 450-470
  • 432 Kalil AC, Metersky ML, Klompas M. et al. Executive summary: management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63 (05) 575-582
  • 433 Chastre J, Wolff M, Fagon JY. et al; PneumA Trial Group. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 2003; 290 (19) 2588-2598
  • 434 Hedrick TL, McElearney ST, Smith RL, Evans HL, Pruett TL, Sawyer RG. Duration of antibiotic therapy for ventilator-associated pneumonia caused by non-fermentative gram-negative bacilli. Surg Infect (Larchmt) 2007; 8 (06) 589-597
  • 435 Abbara S, Pitsch A, Jochmans S. et al. Impact of a multimodal strategy combining a new standard of care and restriction of carbapenems, fluoroquinolones and cephalosporins on antibiotic consumption and resistance of Pseudomonas aeruginosa in a French intensive care unit. Int J Antimicrob Agents 2019; 53 (04) 416-422
  • 436 Elborn JS, Vataire AL, Fukushima A. et al. Comparison of inhaled antibiotics for the treatment of chronic Pseudomonas aeruginosa lung infection in patients with cystic fibrosis: systematic literature review and network meta-analysis. Clin Ther 2016; 38 (10) 2204-2226
  • 437 Tay GT, Reid DW, Bell SC. Inhaled antibiotics in cystic fibrosis (CF) and non-CF bronchiectasis. Semin Respir Crit Care Med 2015; 36 (02) 267-286
  • 438 Quon BS, Goss CH, Ramsey BW. Inhaled antibiotics for lower airway infections. Ann Am Thorac Soc 2014; 11 (03) 425-434
  • 439 Falagas ME, Trigkidis KK, Vardakas KZ. Inhaled antibiotics beyond aminoglycosides, polymyxins and aztreonam: a systematic review. Int J Antimicrob Agents 2015; 45 (03) 221-233
  • 440 Kofteridis DP, Alexopoulou C, Valachis A. et al. Aerosolized plus intravenous colistin versus intravenous colistin alone for the treatment of ventilator-associated pneumonia: a matched case-control study. Clin Infect Dis 2010; 51 (11) 1238-1244
  • 441 Michalopoulos A, Fotakis D, Virtzili S. et al. Aerosolized colistin as adjunctive treatment of ventilator-associated pneumonia due to multidrug-resistant Gram-negative bacteria: a prospective study. Respir Med 2008; 102 (03) 407-412
  • 442 Florescu DF, Qiu F, McCartan MA, Mindru C, Fey PD, Kalil AC. What is the efficacy and safety of colistin for the treatment of ventilator-associated pneumonia? A systematic review and meta-regression. Clin Infect Dis 2012; 54 (05) 670-680
  • 443 Lu Q, Luo R, Bodin L. et al; Nebulized Antibiotics Study Group. Efficacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii . Anesthesiology 2012; 117 (06) 1335-1347
  • 444 Abdellatif S, Trifi A, Daly F, Mahjoub K, Nasri R, Ben Lakhal S. Efficacy and toxicity of aerosolised colistin in ventilator-associated pneumonia: a prospective, randomised trial. Ann Intensive Care 2016; 6 (01) 26
  • 445 Wunderink RG. Point: Should inhaled antibiotic therapy be routinely used for the treatment of bacterial lower respiratory tract infections in the ICU setting? Yes. Chest 2017; 151 (04) 737-739
  • 446 Kollef MH. Counterpoint: Should inhaled antibiotic therapy be routinely used for the treatment of bacterial lower respiratory tract infections in the ICU setting? No. Chest 2017; 151 (04) 740-743
  • 447 Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol 2016; 306 (01) 48-58
  • 448 Chang RYK, Chen K, Wang J. et al. Proof-of-principle study in a murine lung infection model of antipseudomonal activity of phage PEV20 in a dry-powder formulation. Antimicrob Agents Chemother 2018; 62 (02) 62
  • 449 Oechslin F, Piccardi P, Mancini S. et al. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas Aeruginosa infection in endocarditis and reduces virulence. J Infect Dis 2017; 215 (05) 703-712
  • 450 Abd El-Aziz AM, Elgaml A, Ali YM. Bacteriophage therapy increases complement-mediated lysis of bacteria and enhances bacterial clearance after acute lung infection with multidrug-resistant Pseudomonas aeruginosa . J Infect Dis 2019; 219 (09) 1439-1447
  • 451 Jeon J, Yong D. Two novel bacteriophages improve survival in Galleria mellonella infection and mouse acute pneumonia models infected with extensively drug-resistant Pseudomonas aeruginosa . Appl Environ Microbiol 2019; 85 (09) 85
  • 452 Wright A, Hawkins CH, Anggård EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 2009; 34 (04) 349-357
  • 453 Maddocks S, Fabijan AP, Ho J. et al. Bacteriophage therapy of ventilator-associated pneumonia and empyema caused by Pseudomonas aeruginosa . Am J Respir Crit Care Med 2019; 200 (09) 1179-1181