Subscribe to RSS
DOI: 10.1055/s-0041-1739306
Viral Respiratory Infections: New Tools for a Rapid Diagnosis

Abstract
Respiratory tract infection is one of the most common diseases in human worldwide. Many viruses are implicated in these infections, including emerging viruses, such as the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Identification of the causative viral pathogens of respiratory tract infections is important to select a correct management of patients, choose an appropriate treatment, and avoid unnecessary antibiotics use. Different diagnostic approaches present variable performance in terms of accuracy, sensitivity, specificity, and time-to-result, that have to be acknowledged to be able to choose the right diagnostic test at the right time, in the right patient. This review describes currently available rapid diagnostic strategies and syndromic approaches for the detection of viruses commonly responsible for respiratory diseases.
Publication History
Article published online:
16 December 2021
© 2021. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Sheffield, Forum of International Respiratory Societies. The Global Impact of Respiratory Disease. 2012 Accessed August 26, 2021 at: https://www.fi
- 2 Wang X, Li Y, O'Brien KL. et al; Respiratory Virus Global Epidemiology Network. Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study. Lancet Glob Health 2020; 8 (04) e497-e510
- 3 Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J Pathol 2015; 235 (02) 185-195
- 4 Kenmoe S, Kengne-Nde C, Ebogo-Belobo JT, Mbaga DS, Modiyinji AF, Njouom R. Systematic review and meta-analysis of the prevalence of common respiratory viruses in children <2 years with bronchiolitis in the preCOVID-19 pandemic era. PLoS One 2020; 15 (11) e0242302
- 5 van Doorn HR, Yu H. Viral Respiratory Infections. Hunter's Tropical Medicine and Emerging Infectious Disease: Ninth Edition. 2013; 269-274
- 6 Hodinka RL. Respiratory RNA viruses. Microbiol Spectr 2016 Aug;4(04):
- 7 Lynch III JP, Fishbein M, Echavarria M. Adenovirus. Semin Respir Crit Care Med 2011; 32 (04) 494-511
- 8 Popescu CM, Ursache AL, Feketea G. et al. Are community acquired respiratory viral infections an underestimated burden in hematology patients?. Microorganisms 2019; 7 (11) E521
- 9 Cantan B, Luyt CE, Martin-Loeches I. Influenza infections and emergent viral infections in intensive care unit. Semin Respir Crit Care Med 2019; 40 (04) 488-497
- 10 Llibre JM, Hung CC, Brinson C. et al. Efficacy, safety, and tolerability of dolutegravir-rilpivirine for the maintenance of virological suppression in adults with HIV-1: phase 3, randomised, non-inferiority SWORD-1 and SWORD-2 studies. Lancet (London, England) 2018; 391 (10123): 839-849
- 11 Dumkow LE, Worden LJ, Rao SN. OUP accepted manuscript. J Antimicrob Chemother 2021; 76 (Suppl. 03) iii4-iii11
- 12 Solomon DA, Sherman AC, Kanjilal S. Influenza in the COVID-19 Era. JAMA 2020; 324 (13) 1342-1343
- 13 Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med 2020; 173 (05) 362-367
- 14 Havers FP, Hicks LA, Chung JR. et al. Outpatient antibiotic prescribing for acute respiratory infections during influenza seasons. JAMA Netw Open 2018; 1 (02) e180243
- 15 Lu S, Lin S, Zhang H, Liang L, Shen S. Methods of respiratory virus detection: advances towards point-of-care for early intervention. Micromachines (Basel) 2021; 12 (06) 697
- 16 Merckx J, Wali R, Schiller I. et al. Diagnostic accuracy of novel and traditional rapid tests for influenza infection compared with reverse transcriptase polymerase chain reaction. Ann Intern Med 2017; 167 (06) 394-409
- 17 Vos LM, Bruning AHL, Reitsma JB. et al. Rapid molecular tests for influenza, respiratory syncytial virus, and other respiratory viruses: a systematic review of diagnostic accuracy and clinical impact studies. Clin Infect Dis 2019; 69 (07) 1243-1253
- 18 Murdoch DR, Werno AM. et al. Microbiological Diagnosis of Respiratory Illness: Recent Advances. Kendig's Disorders of the Respiratory Tract in Children. 2019; 396-405.e3
- 19 APHL. Appropriate Collection and Handling of Respiratory Specimens. 2019 Accessed August 29, 2021 at: www.aphl.org
- 20 European Centre for Disease Prevention and Control (CDC). Interim Guidance for Antigen Testing for SARS-CoV-2. 2020: 1-8 Accessed September 20, 2021 at: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antigen-tests-guidelines.html
- 21 Robinson JL, Lee BE, Kothapalli S, Craig WR, Fox JD. Use of throat swab or saliva specimens for detection of respiratory viruses in children. Clin Infect Dis 2008; 46 (07) e61-e64
- 22 CDC. Information for clinicians on influenza virus testing |CDC|. Accessed September 17, 2021 at: https://www.cdc.gov/flu/professionals/diagnosis/index.htm
- 23 Drain PK, Hyle EP, Noubary F. et al. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect Dis 2014; 14 (03) 239-249
- 24 Dinnes J, Deeks JJ, Berhane S. et al; Cochrane COVID-19 Diagnostic Test Accuracy Group. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2021; 3 (03) CD013705
- 25 Khan AH, Shakeel S, Hooda K, Siddiqui K, Jafri L. Best practices in the implementation of a point of care testing program: experience from a tertiary care hospital in a developing country. EJIFCC 2019; 30 (03) 288-302
- 26 ECDC. Options for the use of rapid antigen tests for COVID-19 in the EU/EEA and the UK. 2020 Accessed September 20, 2021 at: https://www.biochemia-medica.com/en/journal/29/2/10.11613/BM.2019.021001
- 27 Yeolekar LR, Damle RG, Kamat AN, Khude MR, Simha V, Pandit AN. Respiratory viruses in acute respiratory tract infections in Western India. Indian J Pediatr 2008; 75 (04) 341-345
- 28 Mesquita FDS, Oliveira DBL, Crema D. et al. Teste rápido de detecção de antígenos para o diagnóstico do Vírus Sincicial Respiratório como ferramenta de diagnóstico. J Pediatr (Rio J) 2017; 93 (03) 246-252
- 29 Centers for Disease Control and Prevention. Rapid Influenza Diagnostic Tests. Influenza; 2017. Accessed September 17, 2021 at: https://www.cdc.gov/flu/professionals/diagnosis/table-ridt.html
- 30 Torjesen I. COVID-19: how the UK is using lateral flow tests in the pandemic. BMJ 2021; 372: n287
- 31 Fernandez-Montero A, Argemi J, Rodríguez JA, Ariño AH, Moreno-Galarraga L. Validation of a rapid antigen test as a screening tool for SARS-CoV-2 infection in asymptomatic populations. Sensitivity, specificity and predictive values. EClinicalMedicine; 2021;37. Accessed September 27, 2021 at: http://www.thelancet.com/article/S2589537021002340/fulltext
- 32 Drexler JF, Helmer A, Kirberg H. et al. Poor clinical sensitivity of rapid antigen test for influenza A pandemic (H1N1) 2009 virus. Emerg Infect Dis 2009; 15 (10) 1662-1664
- 33 Marimón JM, Navarro-Marí JM. Rapid diagnostic test for respiratory infections. Enfermedades Infecc y Microbiol Clin (English ed) 2017; 35 (02) 108-115
- 34 US Food and Drug Administration. (US FDA). In Vitro Diagnostics EUAs—Antigen Diagnostic Tests for SARS-CoV-2 | FDA. 2021 Accessed September 17, 2021 at: https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-antigen-diagnostic-tests-sars-cov-2
- 35 Chartrand C, Tremblay N, Renaud C, Papenburg J. Diagnostic accuracy of rapid antigen detection tests for respiratory syncytial virus infection: systematic review and meta-analysis. J Clin Microbiol 2015; 53 (12) 3738-3749
- 36 Basile K, Kok J, Dwyer DE. Point-of-care diagnostics for respiratory viral infections. Expert Rev Mol Diagn 2018; 18 (01) 75-83
- 37 Landry ML. Developments in immunologic assays for respiratory viruses. Clin Lab Med 2009; 29 (04) 635-647
- 38 Bruning AHL, de Kruijf WB, van Weert HCPM. et al. Diagnostic performance and clinical feasibility of a point-of-care test for respiratory viral infections in primary health care. Fam Pract 2017; 34 (05) 558-563
- 39 Pavelka M, Van-Zandvoort K, Abbott S. et al. The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia. Science 2021; 372 (6542): 635-641
- 40 Strömer A, Rose R, Schäfer M. et al. Performance of a point-of-care test for the rapid detection of sars-cov-2 antigen. Microorganisms 2020; 9 (01) 1-11
- 41 Lambert-Niclot S, Cuffel A, Le Pape S. et al. Evaluation of a rapid diagnostic assay for detection of sars-cov-2 antigen in nasopharyngeal swabs. J Clin Microbiol 2020; 58 (08) e00977-20
- 42 Scohy A, Anantharajah A, Bodéus M, Kabamba-Mukadi B, Verroken A, Rodriguez-Villalobos H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J Clin Virol 2020; 129: 104455
- 43 Linares M, Pérez-Tanoira R, Carrero A. et al. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. J Clin Virol 2020; 133: 104659
- 44 Drain PK, Ampajwala M, Chappel C. et al. A rapid, high-sensitivity SARS-CoV-2 nucleocapsid immunoassay to aid diagnosis of acute COVID-19 at the point of care: a clinical performance study. Infect Dis Ther 2021; 10 (02) 753-761
- 45 Kohmer N, Toptan T, Pallas C. et al. The comparative clinical performance of four SARS-CoV-2 rapid antigen tests and their correlation to infectivity in vitro. J Clin Med 2021; 10 (02) 328
- 46 Alteri C, Cento V, Vecchi M. et al; SCoVA Study Group. Nasopharyngeal SARS-CoV-2 load at hospital admission as a predictor of mortality. Clin Infect Dis 2021; 72 (10) 1868-1869
- 47 Liu Y, Yan LM, Wan L. et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis 2020; 20 (06) 656-657
- 48 Cento V, Renica S, Matarazzo E. et al; On Behalf Of The S Co Va Study Group. Frontline screening for sars-cov-2 infection at emergency department admission by third generation rapid antigen test: Can we spare rt-qpcr?. Viruses 2021; 13 (05) 818
- 49 Mak GC, Lau SS, Wong KK. et al. Analytical sensitivity and clinical sensitivity of the three rapid antigen detection kits for detection of SARS-CoV-2 virus. J Clin Virol 2020; 133: 104684
- 50 Cerutti F, Burdino E, Milia MG. et al. Urgent need of rapid tests for SARS CoV-2 antigen detection: Evaluation of the SD-Biosensor antigen test for SARS-CoV-2. J Clin Virol 2020; 132: 104654
- 51 Porte L, Legarraga P, Vollrath V. et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. Int J Infect Dis 2020; 99: 328-333
- 52 Toptan T, Eckermann L, Pfeiffer AE. et al. Evaluation of a SARS-CoV-2 rapid antigen test: Potential to help reduce community spread?. J Clin Virol 2021; 135: 104713
- 53 WHO. Regulation and Prequalification. World Health Organization; 2021. Accessed September 20, 2021 at: https://www.who.int/teams/regulation-prequalification/eul
- 54 Beck ET, Henrickson KJ. Molecular diagnosis of respiratory viruses. Future Microbiol 2010; 5 (06) 901-916
- 55 Mahony JB. Detection of respiratory viruses by molecular methods. Clin Microbiol Rev 2008; 21 (04) 716-747
- 56 Pérez-Ruiz M, Pedrosa-Corral I, Sanbonmatsu-Gámez S, Navarro-Marí M. Laboratory detection of respiratory viruses by automated techniques. Open Virol J 2012; 6 (01) 151-159
- 57 Centres for Disease Control and Prevention. Nucleic Acid Amplification Tests (NAATs) | CDC. 2021 Accessed September 20, 2021 at: https://www.cdc.gov/coronavirus/2019-ncov/lab/naats.html
- 58 Kuypers J, Wright N, Ferrenberg J. et al. Comparison of real-time PCR assays with fluorescent-antibody assays for diagnosis of respiratory virus infections in children. J Clin Microbiol 2006; 44 (07) 2382-2388
- 59 Templeton KE, Scheltinga SA, Beersma MFC, Kroes ACM, Claas ECJ. Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza a and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4. J Clin Microbiol 2004; 42 (04) 1564-1569
- 60 Weinberg GA, Erdman DD, Edwards KM. et al; New Vaccine Surveillance Network Study Group. Superiority of reverse-transcription polymerase chain reaction to conventional viral culture in the diagnosis of acute respiratory tract infections in children. J Infect Dis 2004; 189 (04) 706-710
- 61 Templeton KE, Scheltinga SA, van den Eeden WC, Graffelman AW, van den Broek PJ, Claas EC. KE T. Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin Infect Dis 2005; 41 (03) 345-351
- 62 Valle L, Amicizia D, Bacilieri S. et al. Performance testing of two new one-step real time PCR assays for detection of human influenza and avian influenza viruses isolated in humans and respiratory syncytial virus. J Prev Med Hyg 2006; 47 (04) 127-133
- 63 Salez N, Vabret A, Leruez-Ville M. et al. Evaluation of four commercial multiplex molecular tests for the diagnosis of acute respiratory infections. PLoS One 2015; 10 (06) e0130378
- 64 Das S, Dunbar S, Tang Y-W. Laboratory diagnosis of respiratory tract infections in children—the state of the art. Front Microbiol 2018; 9 (OCT): 2478
- 65 Dhesi Z, Enne VI, O'Grady J, Gant V, Livermore DM. Rapid and point-of-care testing in respiratory tract infections: an antibiotic guardian?. ACS Pharmacol Transl Sci 2020; 3 (03) 401-417
- 66 Barlam TF, Cosgrove SE, Abbo LM. et al. Executive summary: implementing an antibiotic stewardship program: guidelines by the infectious diseases society of America and the society for healthcare epidemiology of America. Clin Infect Dis 2016; 62 (10) 1197-1202
- 67 Charlton CL, Babady E, Ginocchio CC. et al. Practical guidance for clinical microbiology laboratories: Viruses causing acute respiratory tract infections. Clin Microbiol Rev 2018; 32 (01) e00042-18
- 68 Parker J, Fowler N, Walmsley ML. et al. Analytical sensitivity comparison between singleplex real-time PCR and a multiplex PCR platform for detecting respiratory viruses. PLoS One 2015; 10 (11) e0143164
- 69 Andrés C, Piñana M, Vila J. et al. The high genetic similarity between rhinoviruses and enteroviruses remains as a pitfall for molecular diagnostic tools: a three-year overview. Infect Genet Evol 2019; 75: 103996
- 70 WHO. CDC. Enterovirus surveillance guidelines for enterovirus surveillance in support of the Polio Eradication Initiative. 2015 Accessed September 18, 2021 at: http://www.euro.who.int/pubrequest
- 71 Eşki A, Öztürk GK, Gülen F, Çiçek C, Demir E. Risk factors for infuenza virus related severe lower respiratory tract infection in children. Pediatr Infect Dis J 2019; 38 (11) 1090
- 72 Rehder KJ, Wilson EA, Zimmerman KO, Cunningham CK, Turner DA. Detection of multiple respiratory viruses associated with mortality and severity of illness in children. Pediatr Crit Care Med 2015; 16 (07) e201-e206
- 73 Wishaupt JO, van der Ploeg T, de Groot R, Versteegh FGA, Hartwig NG. Single- and multiple viral respiratory infections in children: disease and management cannot be related to a specific pathogen. BMC Infect Dis 2017; 17 (01) 62
- 74 Diaz-Decaro JD, Green NM, Godwin HA. Critical evaluation of FDA-approved respiratory multiplex assays for public health surveillance. Expert Rev Mol Diagn 2018; 18 (07) 631-643
- 75 Nascimento-Carvalho CM, Ruuskanen O. Clinical significance of multiple respiratory virus detection. Pediatr Infect Dis J 2016; 35 (03) 338-339
- 76 Zhang S, Zhang W, Tang Y-W. Molecular diagnosis of viral respiratory infections. Curr Infect Dis Rep 2011; 13 (02) 149-158
- 77 Gazeau P, Vallet S, Ansart S. et al. Rapid multiplex PCR assays in patients with respiratory viral infections: is semi-quantitative data useful? A pilot study. Braz J Microbiol 2021; 52 (03) 1173-1179
- 78 Vallières E, Renaud C. Clinical and economical impact of multiplex respiratory virus assays. Diagn Microbiol Infect Dis 2013; 76 (03) 255-261
- 79 Saarela E, Tapiainen T, Kauppila J. et al. Impact of multiplex respiratory virus testing on antimicrobial consumption in adults in acute care: a randomized clinical trial. Clin Microbiol Infect 2020; 26 (04) 506-511
- 80 Shengchen D, Gu X, Fan G. et al. Evaluation of a molecular point-of-care testing for viral and atypical pathogens on intravenous antibiotic duration in hospitalized adults with lower respiratory tract infection: a randomized clinical trial. Clin Microbiol Infect 2019; 25 (11) 1415-1421
- 81 Brendish NJ, Malachira AK, Armstrong L. et al. Routine molecular point-of-care testing for respiratory viruses in adults presenting to hospital with acute respiratory illness (ResPOC): a pragmatic, open-label, randomised controlled trial. Lancet Respir Med 2017; 5 (05) 401-411
- 82 Brendish NJ, Malachira AK, Beard KR, Ewings S, Clark TW. Impact of turnaround time on outcome with point-of-care testing for respiratory viruses: a post hoc analysis from a randomised controlled trial. Eur Respir J 2018; 52 (02) 1800555
- 83 Kim YK, Lee JH, Kim SY. et al. Rapid molecular tests for detecting respiratory pathogens reduced the use of antibiotics in children. Antibiotics (Basel) 2021; 10 (03) 283
- 84 Kitano T, Nishikawa H, Suzuki R. et al. The impact analysis of a multiplex PCR respiratory panel for hospitalized pediatric respiratory infections in Japan. J Infect Chemother 2020; 26 (01) 82-85
- 85 Subramony A, Zachariah P, Krones A, Whittier S, Saiman L. Impact of multiplex polymerase chain reaction testing for respiratory pathogens on healthcare resource utilization for pediatric inpatients. J Pediatr 2016; 173: 196-201.e2
- 86 Giordano G, Blanchini F, Bruno R. et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat Med 2020; 26 (06) 855-860
- 87 Ravi N, Cortade DL, Ng E, Wang SX. Diagnostics for SARS-CoV-2 detection: a comprehensive review of the FDA-EUA COVID-19 testing landscape. Biosens Bioelectron 2020; 165: 112454
- 88 Shu B, Kirby MK, Davis WG. et al. Multiplex real-time reverse transcription PCR for influenza a virus, influenza b virus, and severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis 2021; 27 (07) 1821-1830
- 89 US Centers for Disease Control and Prevention (CDC). Influenza SARS-CoV-2 multiplex assay and required supplies. 2021 Accessed September 22, 2021 at: https://www.cdc.gov/coronavirus/2019-ncov/lab/multiplex.html
- 90 Mostafa HH, Carroll KC, Hicken R. et al. Multicenter evaluation of the cepheid xpert xpress SARS-CoV-2/Flu/RSV test. J Clin Microbiol 2021; 59 (03) e02955-20
- 91 Kabir MA, Ahmed R, Iqbal SMA. et al. Diagnosis for COVID-19: current status and future prospects. Expert Rev Mol Diagn 2021; 21 (03) 269-288
- 92 Tang JW, Bialasiewicz S, Dwyer DE. et al. Where have all the viruses gone? Disappearance of seasonal respiratory viruses during the COVID-19 pandemic. J Med Virol 2021; 93 (07) 4099-4101
- 93 Mancini F, Barbanti F, Scaturro M. et al; Istituto Superiore di Sanità (ISS) COVID-19 Team. Multiplex real-time reverse-transcription polymerase chain reaction assays for diagnostic testing of severe acute respiratory syndrome coronavirus 2 and seasonal influenza viruses: A challenge of the phase 3 pandemic setting. J Infect Dis 2021; 223 (05) 765-774
- 94 Candel FJ, Barreiro P, San Román J. et al. Recommendations for use of antigenic tests in the diagnosis of acute SARS-CoV-2 infection in the second pandemic wave: attitude in different clinical settings. Rev Esp Quimioter 2020; 33 (06) 466-484
- 95 World Health Organization (WHO). WHO COVID-19: case definitions: updated in public health surveillance for COVID-19. 2020 Accessed September 29, 2021 at: https://apps.who.int/iris/bitstream/handle/10665/337834/WHO-2019-nCoV-Surveillance_Case_Definition-2020.2-eng.pdf?sequence=1&isAllowed=y
- 96 World Health Organization (WHO). Recommendations for national SARS-CoV-2 testing strategies and diagnostic capacities. 2021 Accessed September 29, 2021 at: https://www.who.int/publications/i/item/WHO-2019-nCoV-lab-testing-2021.1-eng
- 97 World Health Organization (WHO). Maintaining surveillance of influenza and monitoring SARS-CoV-2—adapting Global Influenza surveillance and Response System (GISRS) and sentinel systems during the COVID-19 pandemic. 2020 Accessed September 29, 2021 at: https://www.who.int/publications/i/item/maintaining-surveillance-of-influenza-and-monitoring-sars-cov-2-adapting-global-influenza-surveillance-and-response-system-(gisrs)-and-sentinel-systems-during-the-covid-19-pandemic
- 98 Notomi T, Mori Y, Tomita N, Kanda H. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol 2015; 53 (01) 1-5
- 99 Kashir J, Yaqinuddin A. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Med Hypotheses 2020; 141: 109786
- 100 Poon LLM, Leung CSW, Tashiro M. et al. Rapid detection of the severe acute respiratory syndrome (SARS) coronavirus by a loop-mediated isothermal amplification assay. Clin Chem 2004; 50 (06) 1050-1052
- 101 Pyrc K, Milewska A, Potempa J. Development of loop-mediated isothermal amplification assay for detection of human coronavirus-NL63. J Virol Methods 2011; 175 (01) 133-136
- 102 Mori Y, Nagamine K, Tomita N, Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 2001; 289 (01) 150-154
- 103 Shirato K, Yano T, Senba S. et al. Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virol J 2014; 11 (01) 139
- 104 Shirato K, Semba S, El-Kafrawy SA. et al. Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus. J Virol Methods 2018; 258: 41-48
- 105 Hong TC, Mai QL, Cuong DV. et al. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J Clin Microbiol 2004; 42 (05) 1956-1961
- 106 Njiru ZK. Loop-mediated isothermal amplification technology: towards point of care diagnostics. PLoS Negl Trop Dis 2012; 6 (06) e1572
- 107 Huang P, Wang H, Cao Z. et al. A rapid and specific assay for the detection of MERS-CoV. Front Microbiol 2018; 9 (MAY): 1101
- 108 Food and Drug Administration. Coronavirus (COVID-19) Update: FDA Authorizes First Point-of-Care Antibody Test for COVID-19. FDA News Release. 2020. Accessed September 17, 2021 at: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-point-care-antibody-test-covid-19
- 109 Ahn SJ, Baek YH, Lloren KKS. et al. Rapid and simple colorimetric detection of multiple influenza viruses infecting humans using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. BMC Infect Dis 2019; 19 (01) 676
- 110 Reta DH, Tessema TS, Ashenef AS. et al. Molecular and immunological diagnostic techniques of medical viruses. Int J Microbiol 2020; 2020: 8832728
- 111 Chiu C. Cutting-edge infectious disease diagnostics with CRISPR. Cell Host Microbe 2018; 23 (06) 702-704
- 112 Jolany Vangah S, Katalani C, Booneh HA, Hajizade A, Sijercic A, Ahmadian G. CRISPR-based diagnosis of infectious and noninfectious diseases. Biol Proced Online 2020; 22 (01) 22
- 113 Bhattacharyya RP, Thakku SG, Hung DT. Harnessing CRISPR Effectors for Infectious Disease Diagnostics. ACS Infect Dis 2018; 4 (09) 1278-1282
- 114 Kocak DD, Gersbach CA. From CRISPR scissors to virus sensors. Nature 2018; 557 (7704): 168-169
- 115 Broughton JP, Deng X, Yu G. et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol 2020; 38 (07) 870-874
- 116 Huang CH, Lee KC, Doudna JA. Applications of CRISPR-Cas enzymes in cancer therapeutics and detection. Trends Cancer 2018; 4 (07) 499-512
- 117 Ribeiro BV, Cordeiro TAR, Oliveira e Freitas GR, Ferreira LF, Franco DL. Biosensors for the detection of respiratory viruses: a review. Talanta Open 2020; 2: 100007
- 118 Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. . Sensors (Switzerland) 2021; 21 (04) 1-35
- 119 Zhao Z, Huang C, Huang Z. et al. Advancements in electrochemical biosensing for respiratory virus detection: a review. TrAC. Trends Analyt Chem 2021; 139: 116253
- 120 Campos-Ferreira D, Visani V, Córdula C. et al. COVID-19 challenges: from SARS-CoV-2 infection to effective point-of-care diagnosis by electrochemical biosensing platforms. Biochem Eng J 2021; 176: 108200
- 121 Kashefi-Kheyrabadi L, Nguyen HV, Go A. et al. Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosens Bioelectron 2021; 195: 113649
- 122 Chaibun T, Puenpa J, Ngamdee T. et al. Rapid electrochemical detection of coronavirus SARS-CoV-2. Nat Commun 2021; 12 (01) 802