Semin Thromb Hemost 2021; 47(02): 183-191
DOI: 10.1055/s-0041-1723769
Review Article

Heterogeneity in Bleeding Tendency and Arthropathy Development in Individuals with Hemophilia

Aisling M. Rehill
1   Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
,
Seán McCluskey
1   Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
2   National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
,
James S. O'Donnell
1   Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
2   National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
3   St James' Hospital, Dublin, Ireland
,
Michael Dockal
4   Baxalta Innovations GmbH, A Member of the Takeda Group of Companies, Vienna, Austria
,
Roger J.S. Preston
1   Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
2   National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
,
on behalf of the iPATH Study Group › Author Affiliations
Funding This publication has emanated from research supported in part by a research grant from Science Foundation (SFI) under the SFI Strategic Partnership Programme Grant number 16/SPP3303 and research support for the Irish Personalized Approach to the Treatment of Hemophilia project from Shire US Inc., a member of the Takeda group of companies, Lexington, MA, USA.

Abstract

People with hemophilia (PWH) have an increased tendency to bleed, often into their joints, causing debilitating joint disease if left untreated. To reduce the incidence of bleeding events, PWH receive prophylactic replacement therapy with recombinant factor VIII (FVIII) or FIX. Bleeding events in PWH are typically proportional to their plasma FVIII or IX levels; however, in many PWH, bleeding tendency and the likelihood of developing arthropathy often varies independently of endogenous factor levels. Consequently, many PWH suffer repeated bleeding events before correct dosing of replacement factor can be established. Diagnostic approaches to define an individual's bleeding tendency remain limited. Multiple modulators of bleeding phenotype in PWH have been proposed, including the type of disease-causing variant, age of onset of bleeding episodes, plasma modifiers of blood coagulation or clot fibrinolysis pathway activity, interindividual differences in platelet reactivity, and endothelial anticoagulant activity. In this review, we summarize current knowledge of established factors modulating bleeding tendency and discuss emerging concepts of additional biological elements that may contribute to variable bleeding tendency in PWH. Finally, we consider how variance in responses to new gene therapies may also necessitate consideration of patient-specific tailoring of treatment. Cumulatively, these studies highlight the need to reconsider the current “one size fits all” approach to treatment regimens for PWH and consider therapies guided by the bleeding phenotype of each individual PWH at the onset of therapy. Further characterization of the biological bases of bleeding heterogeneity in PWH, combined with the development of novel diagnostic assays to identify those factors that modulate bleeding risk in PWH, will be required to meet these aspirations.

Authors' Contributions

All authors were involved in writing and reviewing the paper.




Publication History

Article published online:
26 February 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Rodvien R, Mielke Jr CH. Role of platelets in hemostasis and thrombosis. West J Med 1976; 125 (03) 181-186
  • 2 Clemetson KJ. Platelets and primary haemostasis. Thromb Res 2012; 129 (03) 220-224
  • 3 Estevez B, Du X. New concepts and mechanisms of platelet activation signaling. Physiology (Bethesda) 2017; 32 (02) 162-177
  • 4 Dahlbäck B. Blood coagulation. Lancet 2000; 355 (9215): 1627-1632
  • 5 Smith SA, Travers RJ, Morrissey JH. How it all starts: initiation of the clotting cascade. Crit Rev Biochem Mol Biol 2015; 50 (04) 326-336
  • 6 Dahlbäck B, Villoutreix BO. Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure-function relationships and molecular recognition. Arterioscler Thromb Vasc Biol 2005; 25 (07) 1311-1320
  • 7 Hoyer LW. Hemophilia A. N Engl J Med 1994; 330 (01) 38-47
  • 8 Franchini M, Mannucci PM. Modifiers of clinical phenotype in severe congenital hemophilia. Thromb Res 2017; 156: 60-64
  • 9 Aznar JA, Magallón M, Querol F, Gorina E, Tusell JM. A. AJ. The orthopaedic status of severe haemophiliacs in Spain. Haemophilia 2000; 6 (03) 170-176
  • 10 Aledort LM, Haschmeyer RH, Pettersson H. The Orthopaedic Outcome Study Group. A longitudinal study of orthopaedic outcomes for severe factor-VIII-deficient haemophiliacs. J Intern Med 1994; 236 (04) 391-399
  • 11 Santagostino E, Mancuso ME, Tripodi A. et al. Severe hemophilia with mild bleeding phenotype: molecular characterization and global coagulation profile. J Thromb Haemost 2010; 8 (04) 737-743
  • 12 Carcao MD, van den Berg HM, Ljung R, Mancuso ME. PedNet and the Rodin Study Group. Correlation between phenotype and genotype in a large unselected cohort of children with severe hemophilia A. Blood 2013; 121 (19) 3946-3952 , S1
  • 13 Oldenburg J, Schröder J, Schmitt C, Brackmann HH, Schwaab R. Small deletion/insertion mutations within poly-A runs of the factor VIII gene mitigate the severe haemophilia A phenotype. Thromb Haemost 1998; 79 (02) 452-453
  • 14 Franchini M, Lippi G. Factor V Leiden and hemophilia. Thromb Res 2010; 125 (02) 119-123
  • 15 Nowak-Göttl U, Escuriola C, Kurnik K. et al. Haemophilia and thrombophilia. What do we learn about combined inheritance of both genetic variations?. Hamostaseologie 2003; 23 (01) 36-40
  • 16 Nogami K, Shima M. Phenotypic heterogeneity of hemostasis in severe hemophilia. Semin Thromb Hemost 2015; 41 (08) 826-831
  • 17 van den Berg HM, De Groot PH, Fischer K. Phenotypic heterogeneity in severe hemophilia. J Thromb Haemost 2007; 5 (Suppl. 01) 151-156
  • 18 Riedl J, Ay C, Pabinger I. Platelets and hemophilia: a review of the literature. Thromb Res 2017; 155: 131-139
  • 19 Hang MX, Blanchette VS, Pullenayegum E, McLimont M, Feldman BM. Canadian Hemophilia Primary Prophylaxis Study Group. Age at first joint bleed and bleeding severity in boys with severe hemophilia A: Canadian Hemophilia Primary Prophylaxis Study. J Thromb Haemost 2011; 9 (05) 1067-1069
  • 20 Onwuzurike N, Warrier I, Lusher JM. Types of bleeding seen during the first 30 months of life in children with severe haemophilia A and B. Haemophilia 1996; 2 (03) 137-140
  • 21 van Dijk K, Fischer K, van der Bom JG, Grobbee DE, van den Berg HM. Variability in clinical phenotype of severe haemophilia: the role of the first joint bleed. Haemophilia 2005; 11 (05) 438-443
  • 22 Kreuz W, Escuriola Ettingshausen C, Funk M. et al. Prevention of joint damage in hemophilic children with early prophylaxis. Orthopade 1999; 28 (04) 341-346
  • 23 Fischer K, van der Bom JG, Mauser-Bunschoten EP. et al. The effects of postponing prophylactic treatment on long-term outcome in patients with severe hemophilia. Blood 2002; 99 (07) 2337-2341
  • 24 Astermark J, Petrini P, Tengborn L, Schulman S, Ljung R, Berntorp E. Primary prophylaxis in severe haemophilia should be started at an early age but can be individualized. Br J Haematol 1999; 105 (04) 1109-1113
  • 25 Mannucci PM, Franchini M. Is haemophilia B less severe than haemophilia A?. Haemophilia 2013; 19 (04) 499-502
  • 26 Castaman G, Matino D. Hemophilia A and B: molecular and clinical similarities and differences. Haematologica 2019; 104 (09) 1702-1709
  • 27 Iorio A, Fischer K, Blanchette V, Rangarajan S, Young G, Morfini M. Pharmacokinetic (PK) Expert Working Group of the International Prophylaxis Study Group (the IPSG). Tailoring treatment of haemophilia B: accounting for the distribution and clearance of standard and extended half-life FIX concentrates. Thromb Haemost 2017; 117 (06) 1023-1030
  • 28 Cheung WF, van den Born J, Kühn K, Kjellén L, Hudson BG, Stafford DW. Identification of the endothelial cell binding site for factor IX. Proc Natl Acad Sci U S A 1996; 93 (20) 11068-11073
  • 29 Stafford DW. Extravascular FIX and coagulation. Thromb J 2016; 14 (Suppl. 01) 35
  • 30 Tagariello G, Iorio A, Santagostino E. et al; Italian Association Hemophilia Centre (AICE). Comparison of the rates of joint arthroplasty in patients with severe factor VIII and IX deficiency: an index of different clinical severity of the 2 coagulation disorders. Blood 2009; 114 (04) 779-784
  • 31 Melchiorre D, Linari S, Manetti M. et al. Clinical, instrumental, serological and histological findings suggest that hemophilia B may be less severe than hemophilia A. Haematologica 2016; 101 (02) 219-225
  • 32 Goodeve AC, Preston FE, Peake IR. Factor VIII gene rearrangements in patients with severe haemophilia A. Lancet 1994; 343 (8893): 329-330
  • 33 Oldenburg J. Mutation profiling in haemophilia A. Thromb Haemost 2001; 85 (04) 577-579
  • 34 Belvini D, Salviato R, Radossi P. et al; AICE HB Study Group. Molecular genotyping of the Italian cohort of patients with hemophilia B. Haematologica 2005; 90 (05) 635-642
  • 35 Yu T, Dai J, Liu H. et al. Spectrum of F9 mutations in Chinese haemophilia B patients: identification of 20 novel mutations. Pathology 2012; 44 (04) 342-347
  • 36 Franchini M, Mannucci PM. Haemophilia B is clinically less severe than haemophilia A: further evidence. Blood Transfus 2018; 16 (02) 121-122
  • 37 Mancuso ME, Chantarangkul V, Cannavò A. et al. Is hemophilia B less severe than hemophilia A? Results of global coagulation assays. Blood 2013; 122 (21) 2352
  • 38 van 't Veer C, Golden NJ, Kalafatis M, Simioni P, Bertina RM, Mann KG. An in vitro analysis of the combination of hemophilia A and factor V(LEIDEN). Blood 1997; 90 (08) 3067-3072
  • 39 Lee DH, Walker IR, Teitel J. et al. Effect of the factor V Leiden mutation on the clinical expression of severe hemophilia A. Thromb Haemost 2000; 83 (03) 387-391
  • 40 Schlachterman A, Schuettrumpf J, Liu JH. et al. Factor V Leiden improves in vivo hemostasis in murine hemophilia models. J Thromb Haemost 2005; 3 (12) 2730-2737
  • 41 Negrier C, Berruyer M, Durin A, Philippe N, Dechavanne M. Increased thrombin generation in a child with a combined factor IX and protein C deficiency. Blood 1993; 81 (03) 690-695
  • 42 Tardy-Poncet B, Piot M, Chapelle C, Berger C, Tardy B. Difference in TFPI levels between haemophilia A and B patients. Haemophilia 2011; 17 (02) 312-313
  • 43 Maroney SA, Cooley BC, Ferrel JP. et al. Absence of hematopoietic tissue factor pathway inhibitor mitigates bleeding in mice with hemophilia. Proc Natl Acad Sci U S A 2012; 109 (10) 3927-3931
  • 44 Waters EK, Sigh J, Friedrich U, Hilden I, Sørensen BB. Concizumab, an anti-tissue factor pathway inhibitor antibody, induces increased thrombin generation in plasma from haemophilia patients and healthy subjects measured by the thrombin generation assay. Haemophilia 2017; 23 (05) 769-776
  • 45 Polderdijk SGI, Baglin TP, Huntington JA. Targeting activated protein C to treat hemophilia. Curr Opin Hematol 2017; 24 (05) 446-452
  • 46 Polderdijk SG, Adams TE, Ivanciu L, Camire RM, Baglin TP, Huntington JA. Design and characterization of an APC-specific serpin for the treatment of hemophilia. Blood 2017; 129 (01) 105-113
  • 47 Waters EK, Genga RM, Schwartz MC. et al. Aptamer ARC19499 mediates a procoagulant hemostatic effect by inhibiting tissue factor pathway inhibitor. Blood 2011; 117 (20) 5514-5522
  • 48 Dockal M, Hartmann R, Knappe S. et al. Effect of increased tissue factor pathway inhibitor (TFPI) levels on factor Xa inhibition and global hemostasis in the presence of TFPI-antagonistic aptamer BAX 499. Blood 2012; 120 (21) 2207-2207
  • 49 Shapiro AD, Angchaisuksiri P, Astermark J. et al. Subcutaneous concizumab prophylaxis in hemophilia A and hemophilia A/B with inhibitors: phase 2 trial results. Blood 2019; 134 (22) 1973-1982
  • 50 Hilden I, Lauritzen B, Sørensen BB. et al. Hemostatic effect of a monoclonal antibody mAb 2021 blocking the interaction between FXa and TFPI in a rabbit hemophilia model. Blood 2012; 119 (24) 5871-5878
  • 51 Chowdary P, Lethagen S, Friedrich U. et al. Safety and pharmacokinetics of anti-TFPI antibody (concizumab) in healthy volunteers and patients with hemophilia: a randomized first human dose trial. J Thromb Haemost 2015; 13 (05) 743-754
  • 52 van Loon J, Dehghan A, Weihong T. et al. Genome-wide association studies identify genetic loci for low von Willebrand factor levels. Eur J Hum Genet 2016; 24 (07) 1035-1040
  • 53 Choi M, Scholl UI, Ji W. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 2009; 106 (45) 19096-19101
  • 54 van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet 2014; 30 (09) 418-426
  • 55 Santagostino E, Mancuso ME, Tripodi A. et al. Severe hemophilia with mild bleeding phenotype: molecular characterization and global coagulation profile. J Thromb Haemost 2010; 8 (04) 737-743
  • 56 Trossaërt M, Regnault V, Sigaud M, Boisseau P, Fressinaud E, Lecompte T. Mild hemophilia A with factor VIII assay discrepancy: using thrombin generation assay to assess the bleeding phenotype. J Thromb Haemost 2008; 6 (03) 486-493
  • 57 Dargaud Y, Béguin S, Lienhart A. et al. Evaluation of thrombin generating capacity in plasma from patients with haemophilia A and B. Thromb Haemost 2005; 93 (03) 475-480
  • 58 Chantarangkul V, Clerici M, Bressi C, Giesen PL, Tripodi A. Thrombin generation assessed as endogenous thrombin potential in patients with hyper- or hypo-coagulability. Haematologica 2003; 88 (05) 547-554
  • 59 Beltrán-Miranda CP, Khan A, Jaloma-Cruz AR, Laffan MA. P. B-MC. Thrombin generation and phenotypic correlation in haemophilia A. Haemophilia 2005; 11 (04) 326-334
  • 60 Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol 2005; 129 (03) 307-321
  • 61 Medved L, Nieuwenhuizen W. Molecular mechanisms of initiation of fibrinolysis by fibrin. Thromb Haemost 2003; 89 (03) 409-419
  • 62 Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev 2015; 29 (01) 17-24
  • 63 Sprengers ED, Kluft C. Plasminogen activator inhibitors. Blood 1987; 69 (02) 381-387
  • 64 Nesheim M, Bajzar L. The discovery of TAFI. J Thromb Haemost 2005; 3 (10) 2139-2146
  • 65 Foley JH, Kim PY, Mutch NJ, Gils A. Insights into thrombin activatable fibrinolysis inhibitor function and regulation. J Thromb Haemost 2013; 11 (Suppl. 01) 306-315
  • 66 Grünewald M, Siegemund A, Grünewald A, Konegan A, Koksch M, Griesshammer M. Paradoxical hyperfibrinolysis is associated with a more intensely haemorrhagic phenotype in severe congenital haemophilia. Haemophilia 2002; 8 (06) 768-775
  • 67 Abdul S, Boender J, Malfliet JJMC. et al; WIN study group. Plasma levels of plasminogen activator inhibitor-1 and bleeding phenotype in patients with von Willebrand disease. Haemophilia 2017; 23 (03) 437-443
  • 68 Carpenter SL, Mathew P. Alpha2-antiplasmin and its deficiency: fibrinolysis out of balance. Haemophilia 2008; 14 (06) 1250-1254
  • 69 Stagaard R, Ley CD, Almholt K, Olsen LH, Knudsen T, Flick MJ. Absence of functional compensation between coagulation factor VIII and plasminogen in double-knockout mice. Blood Adv 2018; 2 (22) 3126-3136
  • 70 Bajzar L, Morser J, Nesheim M. TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem 1996; 271 (28) 16603-16608
  • 71 Broze Jr GJ, Higuchi DA. Coagulation-dependent inhibition of fibrinolysis: role of carboxypeptidase-U and the premature lysis of clots from hemophilic plasma. Blood 1996; 88 (10) 3815-3823
  • 72 Foley JH, Nesheim ME, Rivard GE, Brummel-Ziedins KE. Thrombin activatable fibrinolysis inhibitor activation and bleeding in haemophilia A. Haemophilia 2012; 18 (03) e316-e322
  • 73 Foley JH, Nesheim ME. Soluble thrombomodulin partially corrects the premature lysis defect in FVIII-deficient plasma by stimulating the activation of thrombin activatable fibrinolysis inhibitor. J Thromb Haemost 2009; 7 (03) 453-459
  • 74 Mosnier LO, Lisman T, van den Berg HM, Nieuwenhuis HK, Meijers JC, Bouma BN. The defective down regulation of fibrinolysis in haemophilia A can be restored by increasing the TAFI plasma concentration. Thromb Haemost 2001; 86 (04) 1035-1039
  • 75 Mosnier LO, Bouma BN. Regulation of fibrinolysis by thrombin activatable fibrinolysis inhibitor, an unstable carboxypeptidase B that unites the pathways of coagulation and fibrinolysis. Arterioscler Thromb Vasc Biol 2006; 26 (11) 2445-2453
  • 76 Sakata Y, Loskutoff DJ, Gladson CL, Hekman CM, Griffin JH. Mechanism of protein C-dependent clot lysis: role of plasminogen activator inhibitor. Blood 1986; 68 (06) 1218-1223
  • 77 Walsh PN, Rainsford SG, Biggs R. Platelet coagulant activities and clinical severity in haemophilia. Thromb Diath Haemorrh 1973; 29 (03) 722-729
  • 78 Herault JP, Peyrou V, Savi P, Bernat A, Herbert JM. Effect of SR121566A, a potent GP IIb-IIIa antagonist on platelet-mediated thrombin generation in vitro and in vivo. Thromb Haemost 1998; 79 (02) 383-388
  • 79 Wegert W, Graff J, Kaiser D, Breddin HK, Klinkhardt U, Harder S. Effects of antiplatelet agents on platelet-induced thrombin generation. Int J Clin Pharmacol Ther 2002; 40 (04) 135-141
  • 80 Siegemund T, Petros S, Siegemund A, Scholz U, Engelmann L. Thrombin generation in severe haemophilia A and B: the endogenous thrombin potential in platelet-rich plasma. Thromb Haemost 2003; 90 (05) 781-786
  • 81 van Bladel ER, Roest M, de Groot PG, Schutgens REG. Up-regulation of platelet activation in hemophilia A. Haematologica 2011; 96 (06) 888-895
  • 82 Jensen MS, Larsen OH, Christiansen K, Fenger-Eriksen C, Ingerslev J, Sørensen B. Platelet activation and aggregation: the importance of thrombin activity–a laboratory model. Haemophilia 2013; 19 (03) 403-408
  • 83 Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord 2015; 15: 130
  • 84 van Hinsbergh VWM. Endothelium–role in regulation of coagulation and inflammation. Semin Immunopathol 2012; 34 (01) 93-106
  • 85 Burley K, Whyte CS, Westbury SK. et al; NIHR BioResource. Altered fibrinolysis in autosomal dominant thrombomodulin-associated coagulopathy. Blood 2016; 128 (14) 1879-1883
  • 86 Dargaud Y, Scoazec JY, Wielders SJ. et al. Characterization of an autosomal dominant bleeding disorder caused by a thrombomodulin mutation. Blood 2015; 125 (09) 1497-1501
  • 87 Langdown J, Luddington RJ, Huntington JA, Baglin TP. A hereditary bleeding disorder resulting from a premature stop codon in thrombomodulin (p.Cys537Stop). Blood 2014; 124 (12) 1951-1956
  • 88 Perrin GQ, Herzog RW, Markusic DM. Update on clinical gene therapy for hemophilia. Blood 2019; 133 (05) 407-414
  • 89 Rangarajan S, Walsh L, Lester W. et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med 2017; 377 (26) 2519-2530
  • 90 George LA, Sullivan SK, Giermasz A. et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med 2017; 377 (23) 2215-2227
  • 91 Miesbach W, Meijer K, Coppens M. et al. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B. Blood 2018; 131 (09) 1022-1031
  • 92 Pasi KJ, Rangarajan S, Mitchell N. et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A. N Engl J Med 2020; 382 (01) 29-40
  • 93 Hurlbut GD, Ziegler RJ, Nietupski JB. et al. Preexisting immunity and low expression in primates highlight translational challenges for liver-directed AAV8-mediated gene therapy. Mol Ther 2010; 18 (11) 1983-1994
  • 94 Nathwani AC, Reiss UM, Tuddenham EG. et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 2014; 371 (21) 1994-2004
  • 95 Samelson-Jones BJ, Arruda VR. Protein-engineered coagulation factors for hemophilia gene therapy. Mol Ther Methods Clin Dev 2018; 12: 184-201
  • 96 Doshi BS, Arruda VR. Gene therapy for hemophilia: what does the future hold?. Ther Adv Hematol 2018; 9 (09) 273-293