Subscribe to RSS
DOI: 10.1055/s-0040-1720146
Photochemical and Photocatalytic Deracemization Reactions
Abstract
Under photochemical conditions using an appropriate chiral catalyst, racemic mixtures of compounds can be converted into enantioenriched mixtures through distinguished pathways known as photochemical and photocatalytic deracemization reactions. In this graphical review, we highlight photochemical deracemization reactions that proceed in the presence of light as the key element along with a suitable chiral photocatalyst.
#
Key words
photochemical deracemization - chiral compounds - enantioenrichment - photocatalyst - photoredoxBiographical Sketches
Seyed Parsa Hashemian was born in 2003 in Karaj, Iran. He is currently a B.Sc. student in chemistry at Kharazmi University, Tehran, Iran. His research focuses on photochemical deracemization reactions, a field he finds particularly interesting and intends to pursue further.
Seyed Mohammad Arabi Zanjani was born in 2002 in Tehran, Iran. Currently, he is an undergraduate student of chemistry at Kharazmi University, Tehran, Iran. In 2023, he joined the research group of Prof. Teimouri. His current research interests include multi-component reactions and photochemical reactions.
Tara Afshar Moghadam was born in 2002 in Tehran, Iran. At present, she is an undergraduate student of chemistry at Kharazmi University, Tehran, Iran. Her research interests encompass photochemical reactions and their pharmaceutical applications.
Mohammad Bagher Teimouri was born in 1975 and studied chemistry at Tabriz University, Iran. He subsequently completed his Ph.D. in 2004 with Prof. Ahmad Shaabani at Shahid Beheshti University. After being an assistant professor at the Iran Polymer and Petrochemical Institute, he moved to Kharazmi University as an associate professor, where he was promoted to full professor in 2022. His research focuses on the development of new multicomponent reactions (MCRs), especially on isocyanide-based and enaminone-based MCRs, MCRs in/on water, stereoselective transformations and the synthesis of novel functional dyes.
The resolution of racemic mixtures into their constituent enantiomers is a very important area of research for chemists. The valuable applications and advanced properties of enantiomerically pure compounds in pharmaceuticals, catalysis, and materials, in comparison with their racemates, is one of the main reasons for this pursuit, leading chemists toward new pathways and reactions conditions, aiming to enhance the efficiency of deracemization reactions.
In this graphical review, we focus on photochemical deracemization reactions that occur using light as the critical element in the presence of suitable chiral photocatalysts. Due to the high-atom economy and efficient enantioenrichment of photocatalytic deracemization reactions in most cases, it has become a preferred technique among other methods for deracemization reactions.
Photons and chiral photocatalysts, as key components of these reactions, can make specific stereocenters of racemic compounds editable. This phenomenon occurs via the utilization of light to overcome thermodynamic constraints. Furthermore, the chiral photocatalyst cooperates with photons and facilitates the pathway for molecules to reach the excited state, which includes planar intermediates. The excited state plateau is also capable of inhibiting microscopic reversibility, which is a serious kinetic obstacle in deracemization reactions. In the next step, according to the particular mechanism of the reaction, the achiral intermediate can convert into both enantiomers, albeit the formation of one enantiomer is favorable over the other.
Considerable advancements have occurred in the field of photochemical and photocatalytic deracemization over the past few years. In this graphical review, we have attempted to compile these studies along with some early reports on photochemical deracemization, and organize the topic into logical classifications. We have thus classified these photochemical deracemization reactions into two major categories based on their different mechanisms: Energy-transfer-based (EnT) photocatalysis and photoredox catalysis. Consequently, each substrate is divided according to the photocatalyst applied.
In EnT-based photocatalysis, chiral photocatalysts can interact with each enantiomer in different ways to enable the stereoablative step that involves a prochiral intermediate, which is subsequently re-converted via an enantioselective transformation. Generally, the major enantiomer in the final enantiomeric mixture would be that which leads to steric hindrance with the chiral photocatalyst and results in a disfavored catalytic cycle, alongside a favored catalytic cycle which operates via the other enantiomer.
On the other hand, in photoredox catalysis, chiral organometallic complexes are mainly used, and the mechanism usually proceeds through different steps consisting of single-electron transfer (SET), hydrogen atom transfer (HAT) and enantioselective proton transfer (PT). It must be pointed out that in this mechanism each substrate can follow a specific and unique pathway based on its structural features. In some photoredox-based catalysis deracemization reactions, in addition to using the appropriate chiral photocatalyst, it may be necessary to use another additive.
#
Conflict of Interest
The authors declare no conflict of interest.
-
References
- 1a Huang M, Pan T, Jiang X, Luo S. J. Am. Chem. Soc. 2023; 145: 10917
- 1b Yang C, Inoue Y. Nature 2018; 564: 197
- 1c Su Y, Zou Y, Xiao W. Chin. J. Org. Chem. 2022; 42: 3201
- 1d Blackmond DG. Angew. Chem. Int. Ed. 2009; 48: 2648
- 1e Wendlandt AE. Science 2019; 366: 304
- 2a Ouannes C, Beugelmans R, Roussi G. J. Am. Chem. Soc. 1973; 95: 8472
- 2b Drucker CS, Toscano VG, Weiss RG. J. Am. Chem. Soc. 1973; 95: 6482
- 2c Balavoine G, Juge S, Kagan HB. Tetrahedron Lett. 1973; 14: 4159
- 2d Tsuneishi H, Hakushi T, Inoue Y. J. Chem. Soc., Perkin Trans. 2 1996; 1601
- 2e Wang J, Lv X, Jiang Z. Chem. Eur. J. 2023; 29: e202204029
- 2f Großkopf J, Kratz T, Rigotti T, Bach T. Chem. Rev. 2022; 122: 1626
- 3a Hölzl-Hobmeier A, Bauer A, Silva AV, Huber SM, Bannwarth C, Bach T. Nature 2018; 564: 240
- 3b Plaza M, Jandl C, Bach T. Angew. Chem. Int. Ed. 2020; 59: 12785
- 3c Großkopf J, Bach T. Angew. Chem. Int. Ed. 2023; 62: e202308241
- 3d Alonso R, Bach T. Angew. Chem. 2014; 53: 4368
- 3e Gotthardt H, Hammond GS. Chem. Ber. 1975; 108: 657
- 3f Shepard MS, Carreira EM. J. Am. Chem. Soc. 1997; 119: 2597
- 4a Plaza M, Großkopf J, Breitenlechner S, Bannwarth C, Bach T. J. Am. Chem. Soc. 2021; 143: 11209
- 4b Burg F, Bach T. J. Org. Chem. 2019; 84: 8815
- 4c Fackler P, Huber SM, Bach T. J. Am. Chem. Soc. 2012; 134: 12869
- 4d Ye J, Ma S. Org. Chem. Front. 2014; 1: 1210
- 4e Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
- 5a Kratz T, Steinbach P, Breitenlechner S, Storch G, Bannwarth C, Bach T. J. Am. Chem. Soc. 2022; 144: 10133
- 5b Tröster A, Bauer A, Jandl C, Bach T. Angew. Chem. Int. Ed. 2019; 58: 3538
- 5c Li X, Kutta RJ, Jandl C, Bauer A, Nuernberger P, Bach T. Angew. Chem. Int. Ed. 2020; 59: 21640
- 5d Perkin WH, Pope WJ, Wallach O. J. Chem. Soc. Trans. 1909; 95: 1789
- 5e Inoue Y, Yokoyama T, Yamasaki N, Tai A. Nature 1989; 341: 225
- 5f Inoue Y, Ikeda H, Kaneda M, Sumimura T, Everitt SR. L, Wada T. J. Am. Chem. Soc. 2000; 122: 406
- 6a Wimberger L, Kratz T, Bach T. Synthesis 2019; 51: 4417
- 6b Legros J, Dehli JR, Bolm C. Adv. Synth. Catal. 2005; 347: 19
- 6c Tozawa K, Makino K, Tanaka Y, Nakamura K, Inagaki A, Tabata H, Oshitari T, Natsugari H, Kuroda N, Kanemaru K, Oda Y, Takahashi H. J. Org. Chem. 2023; 88: 6955
- 6d Aurisicchio C, Baciocchi E, Gerini MF, Lanzalunga O. Org. Lett. 2007; 9: 1939
- 6e Vos BW, Jenks WS. J. Am. Chem. Soc. 2002; 124: 2544
- 7a Huang M, Zhang L, Pan T, Luo S. Science 2022; 375: 869
- 7b Fu N, Zhang L, Luo S. Org. Biomol. Chem. 2018; 16: 510
- 7c Hofbeck T, Yersin H. Inorg. Chem. 2010; 49: 9290
- 7d Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 8a Großkopf J, Plaza M, Seitz A, Breitenlechner S, Storch G, Bach T. J. Am. Chem. Soc. 2021; 143: 21241
- 8b Kutta RJ, Großkopf J, van Staalduinen N, Seitz A, Pracht P, Breitenlechner S, Bannwarth C, Nuernberger P, Bach T. J. Am. Chem. Soc. 2023; 145: 2354
- 8c Großkopf J, Heidecker AA, Bach T. Angew. Chem. Int. Ed. 2023; 62: e202305274
- 9a Großkopf J, Plaza M, Kutta RJ, Nuernberger P, Bach T. Angew. Chem. Int. Ed. 2023; 62: e202313606
- 9b Borthwick AD. Chem. Rev. 2012; 112: 3641
- 9c Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 9d Dormán G, Nakamura H, Pulsipher A, Prestwich GD. Chem. Rev. 2016; 116: 15284
- 9e Lancaster JR, Smilowitz R, Turro NJ, Koberstein JT. Photochem. Photobiol. 2014; 90: 394
- 10a Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Science 2019; 366: 364
- 10b Shi Q, Ye J. Angew. Chem. Int. Ed. 2020; 59: 4998
- 10c Zhang C, Gao AZ, Nie X, Ye C.-X, Ivlev SI, Chen S, Meggers E. J. Am. Chem. Soc. 2021; 143: 13393
- 10d Steinlandt PS, Zuo W, Harms K, Meggers E. Chem. Eur. J. 2019; 25: 15333
- 11a Zhang Z, Hu X. Angew. Chem. Int. Ed. 2021; 60: 22833
- 11b Gu Z, Zhang L, Li H, Cao S, Yin Y, Zhao X, Ban X, Jiang Z. Angew. Chem. Int. Ed. 2022; 61: e202211241
- 11c Lin L, Bai X, Ye X, Zhao X, Tan C.-H, Jiang Z. Angew. Chem. Int. Ed. 2017; 56: 13842
- 11d Yin Y, Li Y, Goncalves TP, Zhan Q, Wang G, Zhao X, Qiao B, Huang K.-W, Jiang Z. J. Am. Chem. Soc. 2020; 142: 19451
- 11e Kong M, Tan Y, Zhao X, Qiao B, Tan C.-H, Cao S, Jiang Z. J. Am. Chem. Soc. 2021; 143: 4024
- 12a Onneken C, Morack T, Sokolova O, Niemeyer N, Mück-Lichtenfeld C, Daniliuc CG, Neugebauer J, Gilmour R. Nature 2023; 621: 753
- 12b Chen Q, Zhu Y, Shi X, Huang R, Jiang C, Zhang K, Liu G. Chem. Sci. 2023; 14: 1715
- 12c DeHovitz JS, Hyster TK. ACS Catal. 2022; 12: 8911
- 12d Xiong W, Li S, Fu B, Wang J, Wang Q, Yang W. Org. Lett. 2019; 21: 4173
- 12e Murugesan K, Donabauer K, Narobe R, Derdau V, Bauer A, König B. ACS Catal. 2022; 12: 3974
Corresponding Author
Publication History
Received: 25 May 2024
Accepted after revision: 07 August 2024
Article published online:
14 October 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Huang M, Pan T, Jiang X, Luo S. J. Am. Chem. Soc. 2023; 145: 10917
- 1b Yang C, Inoue Y. Nature 2018; 564: 197
- 1c Su Y, Zou Y, Xiao W. Chin. J. Org. Chem. 2022; 42: 3201
- 1d Blackmond DG. Angew. Chem. Int. Ed. 2009; 48: 2648
- 1e Wendlandt AE. Science 2019; 366: 304
- 2a Ouannes C, Beugelmans R, Roussi G. J. Am. Chem. Soc. 1973; 95: 8472
- 2b Drucker CS, Toscano VG, Weiss RG. J. Am. Chem. Soc. 1973; 95: 6482
- 2c Balavoine G, Juge S, Kagan HB. Tetrahedron Lett. 1973; 14: 4159
- 2d Tsuneishi H, Hakushi T, Inoue Y. J. Chem. Soc., Perkin Trans. 2 1996; 1601
- 2e Wang J, Lv X, Jiang Z. Chem. Eur. J. 2023; 29: e202204029
- 2f Großkopf J, Kratz T, Rigotti T, Bach T. Chem. Rev. 2022; 122: 1626
- 3a Hölzl-Hobmeier A, Bauer A, Silva AV, Huber SM, Bannwarth C, Bach T. Nature 2018; 564: 240
- 3b Plaza M, Jandl C, Bach T. Angew. Chem. Int. Ed. 2020; 59: 12785
- 3c Großkopf J, Bach T. Angew. Chem. Int. Ed. 2023; 62: e202308241
- 3d Alonso R, Bach T. Angew. Chem. 2014; 53: 4368
- 3e Gotthardt H, Hammond GS. Chem. Ber. 1975; 108: 657
- 3f Shepard MS, Carreira EM. J. Am. Chem. Soc. 1997; 119: 2597
- 4a Plaza M, Großkopf J, Breitenlechner S, Bannwarth C, Bach T. J. Am. Chem. Soc. 2021; 143: 11209
- 4b Burg F, Bach T. J. Org. Chem. 2019; 84: 8815
- 4c Fackler P, Huber SM, Bach T. J. Am. Chem. Soc. 2012; 134: 12869
- 4d Ye J, Ma S. Org. Chem. Front. 2014; 1: 1210
- 4e Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
- 5a Kratz T, Steinbach P, Breitenlechner S, Storch G, Bannwarth C, Bach T. J. Am. Chem. Soc. 2022; 144: 10133
- 5b Tröster A, Bauer A, Jandl C, Bach T. Angew. Chem. Int. Ed. 2019; 58: 3538
- 5c Li X, Kutta RJ, Jandl C, Bauer A, Nuernberger P, Bach T. Angew. Chem. Int. Ed. 2020; 59: 21640
- 5d Perkin WH, Pope WJ, Wallach O. J. Chem. Soc. Trans. 1909; 95: 1789
- 5e Inoue Y, Yokoyama T, Yamasaki N, Tai A. Nature 1989; 341: 225
- 5f Inoue Y, Ikeda H, Kaneda M, Sumimura T, Everitt SR. L, Wada T. J. Am. Chem. Soc. 2000; 122: 406
- 6a Wimberger L, Kratz T, Bach T. Synthesis 2019; 51: 4417
- 6b Legros J, Dehli JR, Bolm C. Adv. Synth. Catal. 2005; 347: 19
- 6c Tozawa K, Makino K, Tanaka Y, Nakamura K, Inagaki A, Tabata H, Oshitari T, Natsugari H, Kuroda N, Kanemaru K, Oda Y, Takahashi H. J. Org. Chem. 2023; 88: 6955
- 6d Aurisicchio C, Baciocchi E, Gerini MF, Lanzalunga O. Org. Lett. 2007; 9: 1939
- 6e Vos BW, Jenks WS. J. Am. Chem. Soc. 2002; 124: 2544
- 7a Huang M, Zhang L, Pan T, Luo S. Science 2022; 375: 869
- 7b Fu N, Zhang L, Luo S. Org. Biomol. Chem. 2018; 16: 510
- 7c Hofbeck T, Yersin H. Inorg. Chem. 2010; 49: 9290
- 7d Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 8a Großkopf J, Plaza M, Seitz A, Breitenlechner S, Storch G, Bach T. J. Am. Chem. Soc. 2021; 143: 21241
- 8b Kutta RJ, Großkopf J, van Staalduinen N, Seitz A, Pracht P, Breitenlechner S, Bannwarth C, Nuernberger P, Bach T. J. Am. Chem. Soc. 2023; 145: 2354
- 8c Großkopf J, Heidecker AA, Bach T. Angew. Chem. Int. Ed. 2023; 62: e202305274
- 9a Großkopf J, Plaza M, Kutta RJ, Nuernberger P, Bach T. Angew. Chem. Int. Ed. 2023; 62: e202313606
- 9b Borthwick AD. Chem. Rev. 2012; 112: 3641
- 9c Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 9d Dormán G, Nakamura H, Pulsipher A, Prestwich GD. Chem. Rev. 2016; 116: 15284
- 9e Lancaster JR, Smilowitz R, Turro NJ, Koberstein JT. Photochem. Photobiol. 2014; 90: 394
- 10a Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Science 2019; 366: 364
- 10b Shi Q, Ye J. Angew. Chem. Int. Ed. 2020; 59: 4998
- 10c Zhang C, Gao AZ, Nie X, Ye C.-X, Ivlev SI, Chen S, Meggers E. J. Am. Chem. Soc. 2021; 143: 13393
- 10d Steinlandt PS, Zuo W, Harms K, Meggers E. Chem. Eur. J. 2019; 25: 15333
- 11a Zhang Z, Hu X. Angew. Chem. Int. Ed. 2021; 60: 22833
- 11b Gu Z, Zhang L, Li H, Cao S, Yin Y, Zhao X, Ban X, Jiang Z. Angew. Chem. Int. Ed. 2022; 61: e202211241
- 11c Lin L, Bai X, Ye X, Zhao X, Tan C.-H, Jiang Z. Angew. Chem. Int. Ed. 2017; 56: 13842
- 11d Yin Y, Li Y, Goncalves TP, Zhan Q, Wang G, Zhao X, Qiao B, Huang K.-W, Jiang Z. J. Am. Chem. Soc. 2020; 142: 19451
- 11e Kong M, Tan Y, Zhao X, Qiao B, Tan C.-H, Cao S, Jiang Z. J. Am. Chem. Soc. 2021; 143: 4024
- 12a Onneken C, Morack T, Sokolova O, Niemeyer N, Mück-Lichtenfeld C, Daniliuc CG, Neugebauer J, Gilmour R. Nature 2023; 621: 753
- 12b Chen Q, Zhu Y, Shi X, Huang R, Jiang C, Zhang K, Liu G. Chem. Sci. 2023; 14: 1715
- 12c DeHovitz JS, Hyster TK. ACS Catal. 2022; 12: 8911
- 12d Xiong W, Li S, Fu B, Wang J, Wang Q, Yang W. Org. Lett. 2019; 21: 4173
- 12e Murugesan K, Donabauer K, Narobe R, Derdau V, Bauer A, König B. ACS Catal. 2022; 12: 3974