Subscribe to RSS
DOI: 10.1055/s-0040-1720146
Photochemical and Photocatalytic Deracemization Reactions
Abstract
Under photochemical conditions using an appropriate chiral catalyst, racemic mixtures of compounds can be converted into enantioenriched mixtures through distinguished pathways known as photochemical and photocatalytic deracemization reactions. In this graphical review, we highlight photochemical deracemization reactions that proceed in the presence of light as the key element along with a suitable chiral photocatalyst.
Key words
photochemical deracemization - chiral compounds - enantioenrichment - photocatalyst - photoredoxPublication History
Received: 25 May 2024
Accepted after revision: 07 August 2024
Article published online:
14 October 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Huang M, Pan T, Jiang X, Luo S. J. Am. Chem. Soc. 2023; 145: 10917
- 1b Yang C, Inoue Y. Nature 2018; 564: 197
- 1c Su Y, Zou Y, Xiao W. Chin. J. Org. Chem. 2022; 42: 3201
- 1d Blackmond DG. Angew. Chem. Int. Ed. 2009; 48: 2648
- 1e Wendlandt AE. Science 2019; 366: 304
- 2a Ouannes C, Beugelmans R, Roussi G. J. Am. Chem. Soc. 1973; 95: 8472
- 2b Drucker CS, Toscano VG, Weiss RG. J. Am. Chem. Soc. 1973; 95: 6482
- 2c Balavoine G, Juge S, Kagan HB. Tetrahedron Lett. 1973; 14: 4159
- 2d Tsuneishi H, Hakushi T, Inoue Y. J. Chem. Soc., Perkin Trans. 2 1996; 1601
- 2e Wang J, Lv X, Jiang Z. Chem. Eur. J. 2023; 29: e202204029
- 2f Großkopf J, Kratz T, Rigotti T, Bach T. Chem. Rev. 2022; 122: 1626
- 3a Hölzl-Hobmeier A, Bauer A, Silva AV, Huber SM, Bannwarth C, Bach T. Nature 2018; 564: 240
- 3b Plaza M, Jandl C, Bach T. Angew. Chem. Int. Ed. 2020; 59: 12785
- 3c Großkopf J, Bach T. Angew. Chem. Int. Ed. 2023; 62: e202308241
- 3d Alonso R, Bach T. Angew. Chem. 2014; 53: 4368
- 3e Gotthardt H, Hammond GS. Chem. Ber. 1975; 108: 657
- 3f Shepard MS, Carreira EM. J. Am. Chem. Soc. 1997; 119: 2597
- 4a Plaza M, Großkopf J, Breitenlechner S, Bannwarth C, Bach T. J. Am. Chem. Soc. 2021; 143: 11209
- 4b Burg F, Bach T. J. Org. Chem. 2019; 84: 8815
- 4c Fackler P, Huber SM, Bach T. J. Am. Chem. Soc. 2012; 134: 12869
- 4d Ye J, Ma S. Org. Chem. Front. 2014; 1: 1210
- 4e Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
- 5a Kratz T, Steinbach P, Breitenlechner S, Storch G, Bannwarth C, Bach T. J. Am. Chem. Soc. 2022; 144: 10133
- 5b Tröster A, Bauer A, Jandl C, Bach T. Angew. Chem. Int. Ed. 2019; 58: 3538
- 5c Li X, Kutta RJ, Jandl C, Bauer A, Nuernberger P, Bach T. Angew. Chem. Int. Ed. 2020; 59: 21640
- 5d Perkin WH, Pope WJ, Wallach O. J. Chem. Soc. Trans. 1909; 95: 1789
- 5e Inoue Y, Yokoyama T, Yamasaki N, Tai A. Nature 1989; 341: 225
- 5f Inoue Y, Ikeda H, Kaneda M, Sumimura T, Everitt SR. L, Wada T. J. Am. Chem. Soc. 2000; 122: 406
- 6a Wimberger L, Kratz T, Bach T. Synthesis 2019; 51: 4417
- 6b Legros J, Dehli JR, Bolm C. Adv. Synth. Catal. 2005; 347: 19
- 6c Tozawa K, Makino K, Tanaka Y, Nakamura K, Inagaki A, Tabata H, Oshitari T, Natsugari H, Kuroda N, Kanemaru K, Oda Y, Takahashi H. J. Org. Chem. 2023; 88: 6955
- 6d Aurisicchio C, Baciocchi E, Gerini MF, Lanzalunga O. Org. Lett. 2007; 9: 1939
- 6e Vos BW, Jenks WS. J. Am. Chem. Soc. 2002; 124: 2544
- 7a Huang M, Zhang L, Pan T, Luo S. Science 2022; 375: 869
- 7b Fu N, Zhang L, Luo S. Org. Biomol. Chem. 2018; 16: 510
- 7c Hofbeck T, Yersin H. Inorg. Chem. 2010; 49: 9290
- 7d Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 8a Großkopf J, Plaza M, Seitz A, Breitenlechner S, Storch G, Bach T. J. Am. Chem. Soc. 2021; 143: 21241
- 8b Kutta RJ, Großkopf J, van Staalduinen N, Seitz A, Pracht P, Breitenlechner S, Bannwarth C, Nuernberger P, Bach T. J. Am. Chem. Soc. 2023; 145: 2354
- 8c Großkopf J, Heidecker AA, Bach T. Angew. Chem. Int. Ed. 2023; 62: e202305274
- 9a Großkopf J, Plaza M, Kutta RJ, Nuernberger P, Bach T. Angew. Chem. Int. Ed. 2023; 62: e202313606
- 9b Borthwick AD. Chem. Rev. 2012; 112: 3641
- 9c Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 9d Dormán G, Nakamura H, Pulsipher A, Prestwich GD. Chem. Rev. 2016; 116: 15284
- 9e Lancaster JR, Smilowitz R, Turro NJ, Koberstein JT. Photochem. Photobiol. 2014; 90: 394
- 10a Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Science 2019; 366: 364
- 10b Shi Q, Ye J. Angew. Chem. Int. Ed. 2020; 59: 4998
- 10c Zhang C, Gao AZ, Nie X, Ye C.-X, Ivlev SI, Chen S, Meggers E. J. Am. Chem. Soc. 2021; 143: 13393
- 10d Steinlandt PS, Zuo W, Harms K, Meggers E. Chem. Eur. J. 2019; 25: 15333
- 11a Zhang Z, Hu X. Angew. Chem. Int. Ed. 2021; 60: 22833
- 11b Gu Z, Zhang L, Li H, Cao S, Yin Y, Zhao X, Ban X, Jiang Z. Angew. Chem. Int. Ed. 2022; 61: e202211241
- 11c Lin L, Bai X, Ye X, Zhao X, Tan C.-H, Jiang Z. Angew. Chem. Int. Ed. 2017; 56: 13842
- 11d Yin Y, Li Y, Goncalves TP, Zhan Q, Wang G, Zhao X, Qiao B, Huang K.-W, Jiang Z. J. Am. Chem. Soc. 2020; 142: 19451
- 11e Kong M, Tan Y, Zhao X, Qiao B, Tan C.-H, Cao S, Jiang Z. J. Am. Chem. Soc. 2021; 143: 4024
- 12a Onneken C, Morack T, Sokolova O, Niemeyer N, Mück-Lichtenfeld C, Daniliuc CG, Neugebauer J, Gilmour R. Nature 2023; 621: 753
- 12b Chen Q, Zhu Y, Shi X, Huang R, Jiang C, Zhang K, Liu G. Chem. Sci. 2023; 14: 1715
- 12c DeHovitz JS, Hyster TK. ACS Catal. 2022; 12: 8911
- 12d Xiong W, Li S, Fu B, Wang J, Wang Q, Yang W. Org. Lett. 2019; 21: 4173
- 12e Murugesan K, Donabauer K, Narobe R, Derdau V, Bauer A, König B. ACS Catal. 2022; 12: 3974