Semin Liver Dis 2020; 40(04): 411-426
DOI: 10.1055/s-0040-1717096
Review Article

Cell Therapy for Liver Disease: From Promise to Reality

Sheeba Khan
1   National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom
2   Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
3   Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
,
Reenam S. Khan
1   National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom
2   Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
3   Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
,
Philip N. Newsome
1   National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom
2   Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
3   Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
› Author Affiliations

Abstract

Over the last decade, there has been a considerable progress in the development of cell therapy products for the treatment of liver diseases. The quest to generate well-defined homogenous cell populations with defined mechanism(s) of action has enabled the progression from use of autologous bone marrow stem cells comprising of heterogeneous cell populations to allogeneic cell types such as monocyte-derived macrophages, regulatory T cells, mesenchymal stromal cells, macrophages, etc. There is growing evidence regarding the multiple molecular mechanisms pivotal to various therapeutic effects and hence, careful selection of cell therapy product for the desired putative effects is crucial. In this review, we have presented an overview of the cell therapies that have been developed thus far, with preclinical and clinical evidence for their use in liver disease. Limitations associated with these therapies have also been discussed. Despite the advances made, there remain multiple challenges to overcome before cell therapies can be considered as viable treatment options, and these include larger scale clinical trials, scalable production of cells according to good manufacturing practice standards, pathways for delivery of cell therapy within hospital environments, and costs associated with the production.



Publication History

Article published online:
24 December 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Marcellin P, Kutala BK. Liver diseases: a major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int 2018; 38 (Suppl. 01) 2-6
  • 2 Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70 (01) 151-171
  • 3 Dienstag JL, Cosimi AB. Liver transplantation--a vision realized. N Engl J Med 2012; 367 (16) 1483-1485
  • 4 Houlihan DD, Newsome PN. Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology 2008; 135 (02) 438-450
  • 5 Forbes SJ, Newsome PN. New horizons for stem cell therapy in liver disease. J Hepatol 2012; 56 (02) 496-499
  • 6 Dhawan A, Puppi J, Hughes RD, Mitry RR. Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol 2010; 7 (05) 288-298
  • 7 Hansel MC, Gramignoli R, Skvorak KJ. et al. The history and use of human hepatocytes for the treatment of liver diseases: the first 100 patients. Curr Protoc Toxicol 2014; 62: 1-23
  • 8 Asonuma K, Gilbert JC, Stein JE, Takeda T, Vacanti JP. Quantitation of transplanted hepatic mass necessary to cure the Gunn rat model of hyperbilirubinemia. J Pediatr Surg 1992; 27: 298-301
  • 9 Palakkan AA, Hay DC, Anil Kumar PR, Kumary TV, Ross JA. Liver tissue engineering and cell sources: issues and challenges. Liver Int 2013; 33 (05) 666-676
  • 10 Chambers SM, Studer L. Cell fate plug and play: direct reprogramming and induced pluripotency. Cell 2011; 145 (06) 827-830
  • 11 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 (04) 663-676
  • 12 Takahashi K, Tanabe K, Ohnuki M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131 (05) 861-872
  • 13 Vlahos K, Sourris K, Mayberry R. et al. Generation of iPSC lines from peripheral blood mononuclear cells from 5 healthy adults. Stem Cell Res (Amst) 2019; 34: 101380
  • 14 Khan AA, Habeeb A, Parveen N. et al. Peritoneal transplantation of human fetal hepatocytes for the treatment of acute fatty liver of pregnancy: a case report. Trop Gastroenterol 2004; 25 (03) 141-143
  • 15 Bird TG, Lorenzini S, Forbes SJ. Activation of stem cells in hepatic diseases. Cell Tissue Res 2008; 331 (01) 283-300
  • 16 Choi SM, Kim Y, Shim JS. et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 2013; 57 (06) 2458-2468
  • 17 Schwartz RE, Trehan K, Andrus L. et al. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci U S A 2012; 109 (07) 2544-2548
  • 18 Bhatia SN, Underhill GH, Zaret KS, Fox IJ. Cell and tissue engineering for liver disease. Sci Transl Med 2014; 6 (245) 245sr2
  • 19 Sauer V, Roy-Chowdhury N, Guha C, Roy-Chowdhury J. Induced pluripotent stem cells as a source of hepatocytes. Curr Pathobiol Rep 2014; 2 (01) 11-20
  • 20 Chen YF, Tseng CY, Wang HW, Kuo HC, Yang VW, Lee OK. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology 2012; 55 (04) 1193-1203
  • 21 Park S, In Hwang S, Kim J. et al. The therapeutic potential of induced hepatocyte-like cells generated by direct reprogramming on hepatic fibrosis. Stem Cell Res Ther 2019; 10 (01) 21
  • 22 Asgari S, Moslem M, Bagheri-Lankarani K, Pournasr B, Miryounesi M, Baharvand H. Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Rev Rep 2013; 9 (04) 493-504
  • 23 Choi SM, Kim Y, Liu H, Chaudhari P, Ye Z, Jang Y-Y. Liver engraftment potential of hepatic cells derived from patient-specific induced pluripotent stem cells. Cell Cycle 2011; 10 (15) 2423-2427
  • 24 Takayama K, Inamura M, Kawabata K. et al. Generation of metabolically functioning hepatocytes from human pluripotent stem cells by FOXA2 and HNF1α transduction. J Hepatol 2012; 57 (03) 628-636
  • 25 Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: from liver transplantation to cell factory. J Hepatol 2015; 62 (01) S157-S169
  • 26 Cheng K, Benten D, Bhargava K. et al. Hepatic targeting and biodistribution of human fetal liver stem/progenitor cells and adult hepatocytes in mice. Hepatology 2009; 50 (04) 1194-1203
  • 27 Gupta S, Rajvanshi P, Sokhi R. et al. Entry and integration of transplanted hepatocytes in rat liver plates occur by disruption of hepatic sinusoidal endothelium. Hepatology 1999; 29 (02) 509-519
  • 28 Dhawan A. Clinical human hepatocyte transplantation: current status and challenges. Liver Transpl 2015; 21 (Suppl. 01) S39-S44
  • 29 Han B, Lu Y, Meng B, Qu B. Cellular loss after allogenic hepatocyte transplantation. Transplantation 2009; 87 (01) 1-5
  • 30 Gore A, Li Z, Fung HL. et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011; 471 (7336): 63-67
  • 31 Corbett JL, Duncan SA. iPSC-derived hepatocytes as a platform for disease modeling and drug discovery. Front Med (Lausanne) 2019; 6 (265) 265
  • 32 Hannoun Z, Steichen C, Dianat N, Weber A, Dubart-Kupperschmitt A. The potential of induced pluripotent stem cell derived hepatocytes. J Hepatol 2016; 65 (01) 182-199
  • 33 Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 2011; 475 (7356): 390-393
  • 34 Huang P, He Z, Ji S. et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 2011; 475 (7356): 386-389
  • 35 Zhu S, Rezvani M, Harbell J. et al. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature 2014; 508 (7494): 93-97
  • 36 Wagner W, Ho AD. Mesenchymal stem cell preparations--comparing apples and oranges. Stem Cell Rev 2007; 3 (04) 239-248
  • 37 Wilson A, Hodgson-Garms M, Frith JE, Genever P. Multiplicity of mesenchymal stromal cells: finding the right route to therapy. Front Immunol 2019; 10 (1112): 1112
  • 38 Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J 2018; 18 (03) e264-e277
  • 39 Terai S, Tsuchiya A. Status of and candidates for cell therapy in liver cirrhosis: overcoming the “point of no return” in advanced liver cirrhosis. J Gastroenterol 2017; 52 (02) 129-140
  • 40 Wang L-T, Ting C-H, Yen M-L. et al. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 2016; 23 (01) 76
  • 41 van Laar JM, Tyndall A. Adult stem cells in the treatment of autoimmune diseases. Rheumatology (Oxford) 2006; 45 (10) 1187-1193
  • 42 Xu G, Zhang L, Ren G. et al. Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Res 2007; 17 (03) 240-248
  • 43 Ren G, Zhang L, Zhao X. et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008; 2 (02) 141-150
  • 44 Groh ME, Maitra B, Szekely E, Koç ON. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 2005; 33 (08) 928-934
  • 45 Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105 (04) 1815-1822
  • 46 Lee RH, Pulin AA, Seo MJ. et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5 (01) 54-63
  • 47 Ren G, Su J, Zhang L. et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 2009; 27 (08) 1954-1962
  • 48 Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 2013; 13 (04) 392-402
  • 49 Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 2010; 5 (04) e10088
  • 50 Alfaifi M, Eom YW, Newsome PN, Baik SK. Mesenchymal stromal cell therapy for liver diseases. J Hepatol 2018; 68 (06) 1272-1285
  • 51 Berardis S, Dwisthi Sattwika P, Najimi M, Sokal EM. Use of mesenchymal stem cells to treat liver fibrosis: current situation and future prospects. World J Gastroenterol 2015; 21 (03) 742-758
  • 52 Parekkadan B, van Poll D, Megeed Z. et al. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochem Biophys Res Commun 2007; 363 (02) 247-252
  • 53 Chen S, Xu L, Lin N, Pan W, Hu K, Xu R. Activation of Notch1 signaling by marrow-derived mesenchymal stem cells through cell-cell contact inhibits proliferation of hepatic stellate cells. Life Sci 2011; 89 (25–26): 975-981
  • 54 Cernigliaro V, Peluso R, Zedda B. et al. Evolving cell-based and cell-free clinical strategies for treating severe human liver diseases. Cells 2020; 9 (02) E386
  • 55 Bensidhoum M, Chapel A, Francois S. et al. Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 2004; 103 (09) 3313-3319
  • 56 Delorme B, Ringe J, Gallay N. et al. Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 2008; 111 (05) 2631-2635
  • 57 Vigneswara V, Alfaifi M, Hedegaard D. et al. PS090 - Cd362+ human mesenchymal stromal cells reduce hepatic inflammation and induce M2 macrophage polarisation in murine models of primary sclerosing cholangitis. J Hepatol 2016; 64 (02) S179
  • 58 de Witte SFH, Franquesa M, Baan CC, Hoogduijn MJ. Toward development of iMesenchymal stem cells for immunomodulatory therapy. Front Immunol 2016; 6: 648-648
  • 59 Lee C-W, Chen Y-F, Wu H-H, Lee OK. Historical perspectives and advances in mesenchymal stem cell research for the treatment of liver diseases. Gastroenterology 2018; 154 (01) 46-56
  • 60 de Witte SFH, Luk F, Sierra Parraga JM. et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells 2018; 36 (04) 602-615
  • 61 Galleu A, Riffo-Vasquez Y, Trento C. et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med 2017; 9 (416) 7828
  • 62 Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 2011; 29 (01) 5-10
  • 63 Chang W, Song B-W, Hwang K-C. Mesenchymal stem cell survival in infarcted myocardium: adhesion and anti-death signals. Stem Cells Cancer Stem Cells 2013; 10: 35-43
  • 64 Majka M, Sułkowski M, Badyra B, Musiałek P. Concise review: mesenchymal stem cells in cardiovascular regeneration: emerging research directions and clinical applications. Stem Cells Transl Med 2017; 6 (10) 1859-1867
  • 65 Mafi R, Hindocha S, Mafi P, Griffin M, Khan WS. Sources of adult mesenchymal stem cells applicable for musculoskeletal applications - a systematic review of the literature. Open Orthop J 2011; 5 (Suppl. 02) 242-248
  • 66 Cho J, D'Antuono M, Glicksman M, Wang J, Jonklaas J. A review of clinical trials: mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. Am J Stem Cells 2018; 7 (04) 82-93
  • 67 Javan MR, Khosrojerdi A, Moazzeni SM. New insights into implementation of mesenchymal stem cells in cancer therapy: prospects for anti-angiogenesis treatment. Front Oncol 2019; 9 (840) 840
  • 68 Dulamea A. Mesenchymal stem cells in multiple sclerosis - translation to clinical trials. J Med Life 2015; 8 (01) 24-27
  • 69 Kharaziha P, Hellström PM, Noorinayer B. et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur J Gastroenterol Hepatol 2009; 21 (10) 1199-1205
  • 70 Stabler CT, Lecht S, Lazarovici P, Lelkes PI. Mesenchymal stem cells for therapeutic applications in pulmonary medicine. Br Med Bull 2015; 115 (01) 45-56
  • 71 Campbell A, Brieva T, Raviv L. et al. Concise review: process development considerations for cell therapy. Stem Cells Transl Med 2015; 4 (10) 1155-1163
  • 72 Miyamura K. Insurance approval of mesenchymal stem cell for acute GVHD in Japan: need of follow up for some remaining concerns. Int J Hematol 2016; 103 (02) 155-164
  • 73 Panés J, García-Olmo D, Van Assche G. ADMIRE CD Study Group Collaborators. et al; Long-term efficacy and safety of stem cell therapy (Cx601) for complex perianal fistulas in patients with Crohn's disease. Gastroenterology 2018; 154 (05) 1334.e4-1342.e4
  • 74 Wang Y-H, Wu D-B, Chen B, Chen E-Q, Tang H. Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther 2018; 9 (01) 227-227
  • 75 Suk KT, Yoon JH, Kim MY. et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: phase 2 trial. Hepatology 2016; 64 (06) 2185-2197
  • 76 Wang L, Li J, Liu H. et al. Pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. J Gastroenterol Hepatol 2013; 28 (Suppl. 01) 85-92
  • 77 Shi M, Zhang Z, Xu R. et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med 2012; 1 (10) 725-731
  • 78 Wiemann SU, Satyanarayana A, Tsahuridu M. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J 2002; 16 (09) 935-942
  • 79 King A, Houlihan DD, Kavanagh D. et al. Sphingosine-1-phosphate prevents egress of hematopoietic stem cells from liver to reduce fibrosis. Gastroenterology 2017; 153 (01) 233.e16-248.e16
  • 80 Moore JK, Stutchfield BM, Forbes SJ. Systematic review: the effects of autologous stem cell therapy for patients with liver disease. Aliment Pharmacol Ther 2014; 39 (07) 673-685
  • 81 Newsome PN, Fox R, King AL. et al. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol Hepatol 2018; 3 (01) 25-36
  • 82 D'Avola D, Fernández-Ruiz V, Carmona-Torre F. et al. Phase 1-2 pilot clinical trial in patients with decompensated liver cirrhosis treated with bone marrow-derived endothelial progenitor cells. Transl Res 2017; 188: 80.e2-91.e2
  • 83 Spahr L, Chalandon Y, Terraz S. et al. Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial. PLoS One 2013; 8 (01) e53719
  • 84 Nikeghbalian S, Pournasr B, Aghdami N. et al. Autologous transplantation of bone marrow-derived mononuclear and CD133(+) cells in patients with decompensated cirrhosis. Arch Iran Med 2011; 14 (01) 12-17
  • 85 Kim JK, Kim S-J, Kim Y. et al. Long-term follow-up of patients after autologous bone marrow cell infusion for decompensated liver cirrhosis. Cell Transplant 2017; 26 (06) 1059-1066
  • 86 Kim JK, Park YN, Kim JS. et al. Autologous bone marrow infusion activates the progenitor cell compartment in patients with advanced liver cirrhosis. Cell Transplant 2010; 19 (10) 1237-1246
  • 87 Couto BG, Goldenberg RC, da Fonseca LM. et al. Bone marrow mononuclear cell therapy for patients with cirrhosis: a Phase 1 study. Liver Int 2011; 31 (03) 391-400
  • 88 Mohamadnejad M, Namiri M, Bagheri M. et al. Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis. World J Gastroenterol 2007; 13 (24) 3359-3363
  • 89 Gordon MY, Levičar N, Pai M. et al. Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor. Stem Cells 2006; 24 (07) 1822-1830
  • 90 Yannaki E, Anagnostopoulos A, Kapetanos D. et al. Lasting amelioration in the clinical course of decompensated alcoholic cirrhosis with boost infusions of mobilized peripheral blood stem cells. Exp Hematol 2006; 34 (11) 1583-1587
  • 91 Jenkins SJ, Ruckerl D, Cook PC. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 2011; 332 (6035): 1284-1288
  • 92 Mitchell AJ, Roediger B, Weninger W. Monocyte homeostasis and the plasticity of inflammatory monocytes. Cell Immunol 2014; 291 (1–2): 22-31
  • 93 Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012; 122 (03) 787-795
  • 94 Liaskou E, Zimmermann HW, Li KK. et al. Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics. Hepatology 2013; 57: 385-398
  • 95 Triantafyllou E, Woollard KJ, McPhail MJW, Antoniades CG, Possamai LA. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front Immunol 2018; 9: 2948-2948
  • 96 Mossanen JC, Krenkel O, Ergen C. et al. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology 2016; 64 (05) 1667-1682
  • 97 Patel AA, Zhang Y, Fullerton JN. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 2017; 214 (07) 1913-1923
  • 98 Thomas JA, Pope C, Wojtacha D. et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 2011; 53 (06) 2003-2015
  • 99 Moroni F, Dwyer BJ, Graham C. et al. Safety profile of autologous macrophage therapy for liver cirrhosis. Nat Med 2019; 25 (10) 1560-1565
  • 100 Abbas AK, Benoist C, Bluestone JA. et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol 2013; 14 (04) 307-308
  • 101 Perdigoto AL, Chatenoud L, Bluestone JA, Herold KC. Inducing and administering Tregs to treat human disease. Front Immunol 2016; 6 (654) 654
  • 102 Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008; 8 (07) 523-532
  • 103 Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155 (03) 1151-1164
  • 104 Jeffery HC, Braitch MK, Brown S, Oo YH. Clinical potential of regulatory T cell therapy in liver diseases: an overview and current perspectives. Front Immunol 2016; 7: 334-334
  • 105 Zhang W, Sharma R, Ju S-T. et al. Deficiency in regulatory T cells results in development of antimitochondrial antibodies and autoimmune cholangitis. Hepatology 2009; 49 (02) 545-552
  • 106 Chen YY, Jeffery HC, Hunter S. et al. Human intrahepatic regulatory T cells are functional, require IL-2 from effector cells for survival, and are susceptible to Fas ligand-mediated apoptosis. Hepatology 2016; 64 (01) 138-150
  • 107 Romano M, Fanelli G, Albany CJ, Giganti G, Lombardi G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front Immunol 2019; 10 (43) 43
  • 108 Tang Q, Bluestone JA. Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harb Perspect Med 2013; 3 (11) a015552
  • 109 Trzonkowski P, Bieniaszewska M, Juścińska J. et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells. Clin Immunol 2009; 133 (01) 22-26
  • 110 Ten Brinke A, Martinez-Llordella M, Cools N. et al. Ways forward for tolerance-inducing cellular therapies- an AFACTT perspective. Front Immunol 2019; 10: 181
  • 111 Gliwiński M, Iwaszkiewicz-Grześ D, Trzonkowski P. Cell-based therapies with T regulatory cells. BioDrugs 2017; 31 (04) 335-347
  • 112 Tang Q, Vincenti F. Transplant trials with Tregs: perils and promises. J Clin Invest 2017; 127 (07) 2505-2512
  • 113 Todo S, Yamashita K, Goto R. et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology 2016; 64 (02) 632-643
  • 114 Oo YH, Ackrill S, Cole R. et al. Liver homing of clinical grade Tregs after therapeutic infusion in patients with autoimmune hepatitis. JHEP Rep 2019; 1 (04) 286-296
  • 115 Miliotou AN, Papadopoulou LC. CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol 2018; 19 (01) 5-18
  • 116 Safinia N, Grageda N, Scottà C. et al. Cell therapy in organ transplantation: our experience on the clinical translation of regulatory T cells. Front Immunol 2018; 9: 354-354
  • 117 Zhang R, Zhang Z, Liu Z. et al. Adoptive cell transfer therapy for hepatocellular carcinoma. Front Med 2019; 13 (01) 3-11
  • 118 Gao H, Li K, Tu H. et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 2014; 20 (24) 6418-6428
  • 119 Baumhoer D, Tornillo L, Stadlmann S, Roncalli M, Diamantis EK, Terracciano LM. Glypican 3 expression in human nonneoplastic, preneoplastic, and neoplastic tissues: a tissue microarray analysis of 4,387 tissue samples. Am J Clin Pathol 2008; 129 (06) 899-906
  • 120 Patel JM, Dale GA, Vartabedian VF, Dey P, Selvaraj P. Cancer CARtography: charting out a new approach to cancer immunotherapy. Immunotherapy 2014; 6 (06) 675-678
  • 121 Zhang Q, Zhang Z, Peng M, Fu S, Xue Z, Zhang R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: from bench to bedside. OncoImmunology 2016; 5 (12) e1251539
  • 122 Vasanthakumar S, Sasikala P, Padma M, Balachandar V. EpCAM as a novel therapeutic target for hepatocellular carcinoma. J Oncological Sciences 2017; 3 (02) 71-76
  • 123 Wang Y, Chen M, Wu Z. et al. CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial. OncoImmunology 2018; 7 (07) e1440169-e1440169
  • 124 Guo Y, Feng K, Liu Y. et al. Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res 2018; 24 (06) 1277-1286
  • 125 Katz SC, Burga RA, McCormack E. et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res 2015; 21 (14) 3149-3159
  • 126 Newick K, Moon E, Albelda SM. Chimeric antigen receptor T-cell therapy for solid tumors. Mol Ther Oncolytics 2016; 3: 16006-16006
  • 127 Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973; 137 (05) 1142-1162
  • 128 Crispe IN. Liver antigen-presenting cells. J Hepatol 2011; 54 (02) 357-365
  • 129 Grohmann U, Bianchi R, Belladonna ML. et al. IL-12 acts selectively on CD8 α- dendritic cells to enhance presentation of a tumor peptide in vivo. J Immunol 1999; 163 (06) 3100-3105
  • 130 Medzhitov R, Janeway Jr C. Innate immune recognition: mechanisms and pathways. Immunol Rev 2000; 173: 89-97
  • 131 Boonstra A, Asselin-Paturel C, Gilliet M. et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 2003; 197 (01) 101-109
  • 132 Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 2002; 99 (01) 351-358
  • 133 Dou L, Ono Y, Chen YF, Thomson AW, Chen XP. Hepatic dendritic cells, the tolerogenic liver environment, and liver disease. Semin Liver Dis 2018; 38 (02) 170-180
  • 134 Thomson AW, Lu L, Murase N, Demetris AJ, Rao AS, Starzl TE. Microchimerism, dendritic cell progenitors and transplantation tolerance. Stem Cells 1995; 13 (06) 622-639
  • 135 Bamboat ZM, Stableford JA, Plitas G. et al. Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol 2009; 182 (04) 1901-1911
  • 136 Gallè MB, DeFranco RM, Kerjaschki D. et al. Ordered array of dendritic cells and CD8+ lymphocytes in portal infiltrates in chronic hepatitis C. Histopathology 2001; 39 (04) 373-381
  • 137 Bardadin KA, Desmet VJ. Interdigitating and dendritic reticulum cells in chronic active hepatitis. Histopathology 1984; 8 (04) 657-667
  • 138 Rontogianni D, Gerber H, Zimmermann A. Primary biliary cirrhosis (PBC): antigen-presenting cells differ in their distribution in early and late stage PBC and involve the ductal, but not the ductular compartment. Histol Histopathol 1994; 9 (02) 211-220
  • 139 Heier EC, Meier A, Julich-Haertel H. et al. Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis. J Hepatol 2017; 66 (06) 1241-1250
  • 140 Pradere J-P, Kluwe J, De Minicis S. et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 2013; 58 (04) 1461-1473
  • 141 Handa P, Kowdley KV. Dendritic cells in NASH: friend or foe?. Ann Hepatol 2013; 12 (03) 508-509
  • 142 Bryant CE, Sutherland S, Kong B, Papadimitrious MS, Fromm PD, Hart DNJ. Dendritic cells as cancer therapeutics. Semin Cell Dev Biol 2019; 86: 77-88
  • 143 Constantino J, Gomes C, Falcão A, Neves BM, Cruz MT. Dendritic cell-based immunotherapy: a basic review and recent advances. Immunol Res 2017; 65 (04) 798-810
  • 144 Lee WC, Wang HC, Jeng LB. et al. Effective treatment of small murine hepatocellular carcinoma by dendritic cells. Hepatology 2001; 34 (05) 896-905
  • 145 Su S, Zhou H, Xue M. et al. Anti-tumor efficacy of a hepatocellular carcinoma vaccine based on dendritic cells combined with tumor-derived autophagosomes in murine models. Asian Pac J Cancer Prev 2013; 14 (05) 3109-3116
  • 146 Wang Q, Luan W, Warren L. et al. Autologous tumor cell lysate-loaded dendritic cell vaccine inhibited tumor progression in an orthotopic murine model for hepatocellular carcinoma. Ann Surg Oncol 2016; 23 (Suppl. 05) 574-582
  • 147 Kayashima H, Toshima T, Okano S. et al. Intratumoral neoadjuvant immunotherapy using IL-12 and dendritic cells is an effective strategy to control recurrence of murine hepatocellular carcinoma in immunosuppressed mice. J Immunol 2010; 185 (01) 698-708
  • 148 Chen M, Li YG, Zhang DZ. et al. Therapeutic effect of autologous dendritic cell vaccine on patients with chronic hepatitis B: a clinical study. World J Gastroenterol 2005; 11 (12) 1806-1808
  • 149 Luo J, Li J, Chen RL. et al. Autologus dendritic cell vaccine for chronic hepatitis B carriers: a pilot, open label, clinical trial in human volunteers. Vaccine 2010; 28 (13) 2497-2504
  • 150 Ladhams A, Schmidt C, Sing G. et al. Treatment of non-resectable hepatocellular carcinoma with autologous tumor-pulsed dendritic cells. J Gastroenterol Hepatol 2002; 17 (08) 889-896
  • 151 Butterfield LH, Ribas A, Dissette VB. et al. A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clin Cancer Res 2006; 12 (09) 2817-2825
  • 152 Sprooten J, Ceusters J, Coosemans A. et al. Trial watch: dendritic cell vaccination for cancer immunotherapy. OncoImmunology 2019; 8 (11) e1638212
  • 153 Graff JN, Chamberlain ED. Sipuleucel-T in the treatment of prostate cancer: an evidence-based review of its place in therapy. Core Evid 2014; 10: 1-10
  • 154 Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. Lancet Oncol 2014; 15 (07) e257-e267
  • 155 Vermaelen K. Vaccine strategies to improve anti-cancer cellular immune responses. Front Immunol 2019; 10: 8-8
  • 156 Ten Ham RMT, Hoekman J, Hövels AM, Broekmans AW, Leufkens HGM, Klungel OH. Challenges in advanced therapy medicinal product development: a survey among companies in Europe. Mol Ther Methods Clin Dev 2018; 11: 121-130
  • 157 Biotherapeutics Btm. Standardization in cell therapy industry is a race against time. 2019 . Available at: https://bethematchbiotherapies.com/cell-lines-blog/standardization-cell-therapy-industry-race-against-time/ . Accessed June 15, 2020
  • 158 Bravery CA, Carmen J, Fong T. et al. Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry. Cytotherapy 2013; 15 (01) 9-19
  • 159 Pimpaneau V, Gianelli F, Trouvin J-H, Poiseau AD. The challenges of potency assays development for cell-based medicinal products in Europe. Regul Rapporteur 2015; 12 (05) 5-10
  • 160 Blackford SJI, Ng SS, Segal JM. et al. Validation of current good manufacturing practice compliant human pluripotent stem cell-derived hepatocytes for cell-based therapy. Stem Cells Transl Med 2019; 8 (02) 124-137
  • 161 Cameron K, Tan R, Schmidt-Heck W. et al. Recombinant laminins drive the differentiation and self-organization of hESC-derived hepatocytes. Stem Cell Reports 2015; 5 (06) 1250-1262
  • 162 Alwahsh SM, Rashidi H, Hay DC. Liver cell therapy: is this the end of the beginning?. Cell Mol Life Sci 2018; 75 (08) 1307-1324
  • 163 Pinxteren J, Deltour E, Scholasse J, Manzoni F. Challenges in developing an off-the-shelf cell therapy for ACLF and NASH. Cytotherapy 2019; 21 (05) S87
  • 164 Coopman K, Medcalf N. From Production to Patient: Challenges and Approaches for Delivering Cell Therapies. Cambridge, MA: Harvard Stem Cell Institute; 2014
  • 165 Seoane-Vazquez E, Shukla V, Rodriguez-Monguio R. Innovation and competition in advanced therapy medicinal products. EMBO Mol Med 2019; 11 (03) e9992
  • 166 Hanna E, Marre C, Toumi M. PHP307 - Reimbursement of advanced therapy medicinal products in Europe. Value Health 2018; 21: S202-S203
  • 167 Phacilitate. Advanced therapy investment report. 2017 . Available at: https://www.phacilitate.co.uk/sites/default/files/clarion_phacilitate/pdfs/advanced_therapies_investment_report_phacilitate.pdf . Accessed June 15, 2020