Semin Respir Crit Care Med 2021; 42(01): 078-097
DOI: 10.1055/s-0040-1713084
Review Article

Metabolic and Endocrine Challenges

Gennaro Martucci
1   Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
,
Eleonora Bonicolini
1   Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
,
Dhruv Parekh
2   Critical Care, Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
,
Onn Shaun Thein
2   Critical Care, Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
,
Mario Scherkl
3   Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
,
3   Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
› Author Affiliations

Abstract

This review aims to provide an overview of metabolic and endocrine challenges in the setting of intensive care medicine. These are a group of heterogeneous clinical conditions with a high degree of overlap, as well as nonspecific signs and symptoms. Several diseases involve multiple organ systems, potentially causing catastrophic dysfunction and death. In the majority of cases, endocrine challenges accompany other organ failures or manifest as a complication of prolonged intensive care unit stay and malnutrition. However, when endocrine disorders present as an isolated syndrome, they are a rare and extreme manifestation. As they are uncommon, these can typically challenge both with diagnosis and management. Acute exacerbations may be elicited by triggers such as infections, trauma, surgery, and hemorrhage. In this complex scenario, early diagnosis and prompt treatment require knowledge of the specific endocrine syndrome. Here, we review diabetic coma, hyponatremia, hypercalcemia, thyroid emergencies, pituitary insufficiency, adrenal crisis, and vitamin D deficiency, highlighting diagnostic tools and tricks, and management pathways through defining common clinical presentations.



Publication History

Article published online:
03 September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Whitted AD, Stanifer JW, Dube P. et al. A dyshomeostasis of electrolytes and trace elements in acute stressor states: impact on the heart. Am J Med Sci 2010; 340 (01) 48-53
  • 2 Aberegg SK. Ionized calcium in the ICU: Should it be measured and corrected?. Chest 2016; 149 (03) 846-855
  • 3 Egi M, Kim I, Nichol A. et al. Ionized calcium concentration and outcome in critical illness. Crit Care Med 2011; 39 (02) 314-321
  • 4 Forster J, Querusio L, Burchard KW, Gann DS. Hypercalcemia in critically ill surgical patients. Ann Surg 1985; 202 (04) 512-518
  • 5 Mousseaux C, Dupont A, Rafat C. et al. Epidemiology, clinical features, and management of severe hypercalcemia in critically ill patients. Ann Intensive Care 2019; 9 (01) 133
  • 6 Khan MI, Dellinger RP, Waguespack SG. Electrolyte disturbances in critically ill cancer patients: an endocrine perspective. J Intensive Care Med 2018; 33 (03) 147-158
  • 7 Lind L, Ljunghall S. Critical care hypercalcemia--a hyperparathyroid state. Exp Clin Endocrinol 1992; 100 (03) 148-151
  • 8 Žofková I. Hypercalcemia. Pathophysiological aspects. Physiol Res 2016; 65 (01) 1-10
  • 9 Kraft MD, Btaiche IF, Sacks GS, Kudsk KA. Treatment of electrolyte disorders in adult patients in the intensive care unit. Am J Health Syst Pharm 2005; 62 (16) 1663-1682
  • 10 Slomp J, van der Voort PHJ, Gerritsen RT, Berk JAM, Bakker AJ. Albumin-adjusted calcium is not suitable for diagnosis of hyper- and hypocalcemia in the critically ill. Crit Care Med 2003; 31 (05) 1389-1393
  • 11 Zhang Z, Xu X, Ni H, Deng H. Predictive value of ionized calcium in critically ill patients: an analysis of a large clinical database MIMIC II. PLoS One 2014; 9 (04) e95204
  • 12 Zaloga GP, Chernow B, Cook D, Snyder R, Clapper M, O’Brian JT. Assessment of calcium homeostasis in the critically ill surgical patient. The diagnostic pitfalls of the McLean-Hastings nomogram. Ann Surg 1985; 202: 587-594
  • 13 Guimard C, Batard E, Lavainne F, Trewick D. Is severe hypercalcemia immediately life-threatening?. Eur J Emerg Med 2018; 25 (02) 110-113
  • 14 Schulman RC, Moshier EL, Rho L. et al. Intravenous pamidronate is associated with reduced mortality in patients with chronic critical illness. Endocr Pract 2016; 22 (07) 799-808
  • 15 Urán Moreno M, Alonso Riofrío R, Moliner Robredo C, Pons Morales S, López-Herce Cid J. Hypercalcemia due to immobilization in critically ill children: calcitonin treatment. An Esp Pediatr 2001; 54 (06) 555-558
  • 16 Pasquel FJ, Umpierrez GE. Hyperosmolar hyperglycemic state: a historic review of the clinical presentation, diagnosis, and treatment. Diabetes Care 2014; 37 (11) 3124-3131
  • 17 Fadini GP, de Kreutzenberg SV, Rigato M. et al. Characteristics and outcomes of the hyperglycemic hyperosmolar non-ketotic syndrome in a cohort of 51 consecutive cases at a single center. Diabetes Res Clin Pract 2011; 94 (02) 172-179
  • 18 MacIsaac RJ, Lee LY, McNeil KJ, Tsalamandris C, Jerums G. Influence of age on the presentation and outcome of acidotic and hyperosmolar diabetic emergencies. Intern Med J 2002; 32 (08) 379-385
  • 19 Munro JF, Campbell IW, McCuish AC, Duncan LJP. Euglycaemic diabetic ketoacidosis. BMJ 1973; 2 (5866): 578-580
  • 20 Modi A, Agrawal A, Morgan F. Euglycemic diabetic ketoacidosis: a review. Curr Diabetes Rev 2017; 13 (03) 315-321
  • 21 Ogawa W, Hirota Y. Sodium-glucose cotransporter 2 inhibitor-associated diabetic ketoacidosis in patients with type 1 diabetes: metabolic imbalance as an underlying mechanism. J Diabetes Investig 2019; 10 (04) 879-882
  • 22 Patakfalvi L, Brazeau A-S, Dasgupta K. Physician experiences with sodium-glucose cotransporter (SGLT2) inhibitors, a new class of medications in type 2 diabetes, and adverse effects. Prim Health Care Res Dev 2018; 20: 1-6
  • 23 Scott AR. Joint British Diabetes Societies (JBDS) for Inpatient Care, JBDS Hyperosmolar Hyperglycaemic Guidelines Group. Management of hyperosmolar hyperglycaemic state in adults with diabetes. Diabet Med 2015; 32 (06) 714-724
  • 24 Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009; 32 (07) 1335-1343
  • 25 Benoit SR, Zhang Y, Geiss LS, Gregg EW, Albright A. Trends in diabetic ketoacidosis hospitalizations and in-hospital mortality - United States, 2000-2014. MMWR Morb Mortal Wkly Rep 2018; 67 (12) 362-365
  • 26 Rosenbloom AL. Hyperglycemic hyperosmolar state: an emerging pediatric problem. J Pediatr 2010; 156 (02) 180-184
  • 27 Watanabe S, Kido J, Ogata M, Nakamura K, Mizukami T. Hyperglycemic hyperosmolar state in an adolescent with type 1 diabetes mellitus. Endocrinol Diabetes Metab Case Rep 2019; 2019: 180131
  • 28 Gaglia JL, Wyckoff J, Abrahamson MJ. Acute hyperglycemic crisis in the elderly. Med Clin North Am 2004; 88 (04) 1063-1084 , xii
  • 29 Koufakis T, Sertedaki A, Tatsi E-B. et al. First report of diabetes phenotype due to a loss-of-function ABCC8 mutation previously known to cause congenital hyperinsulinism. Case Rep Genet 2019; 2019: 3654618
  • 30 Trojanowska-Grigoriew M, Majkowska L. Diabetic Ketoacidosis without Hyperglycemia as a Complication of SGLT2 Inhibitors Treatment. Via Med. Clinic of Diabetology and Internal Medicine at the Pomeranian Medical University in Szczecin: 2016
  • 31 Stoner GD. Hyperosmolar hyperglycemic state. Am Fam Physician 2005; 71 (09) 1723-1730
  • 32 Campanella LM, Lartey R, Shih R. Severe hyperglycemic hyperosmolar nonketotic coma in a nondiabetic patient receiving aripiprazole. Ann Emerg Med 2009; 53 (02) 264-266
  • 33 Singh BM, Strobos RJ. Epilepsia partialis continua associated with nonketotic hyperglycemia: clinical and biochemical profile of 21 patients. Ann Neurol 1980; 8 (02) 155-160
  • 34 Vale TC, Freitas DdaS, Maciel ROH, Miranda EC, Cardoso F. Teaching Video NeuroImages: hemichorea-hemiballismus secondary to nonketotic hyperglycemia. Neurology 2013; 80 (16) e178
  • 35 Trachtman H. Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances: II. Pediatr Nephrol 1992; 6 (01) 104-112
  • 36 Sterns RH. Disorders of plasma sodium--causes, consequences, and correction. N Engl J Med 2015; 372 (01) 55-65
  • 37 Leung CB, Li PK, Lui SF, Lai KN. Acute renal failure (ARF) caused by rhabdomyolysis due to diabetic hyperosmolar nonketotic coma: a case report and literature review. Ren Fail 1992; 14 (01) 81-85
  • 38 Lustman CC, Guérin J-MJ, Barbotin-Larrieu FE. Hyperosmolar nonketotic syndrome associated with rhabdomyolysis and acute kidney failure. Diabetes Care 1991; 14 (02) 146-147
  • 39 Nambam B, Menefee E, Gungor N, Mcvie R. Severe complications after initial management of hyperglycemic hyperosmolar syndrome and diabetic ketoacidosis with a standard diabetic ketoacidosis protocol. J Pediatr Endocrinol Metab 2017; 30 (11) 1141-1145
  • 40 Braun AB, Gibbons FK, Litonjua AA, Giovannucci E, Christopher KB. Low serum 25-hydroxyvitamin D at critical care initiation is associated with increased mortality. Crit Care Med 2012; 40 (01) 63-72
  • 41 Thickett DR, Moromizato T, Litonjua AA. et al. Association between prehospital vitamin D status and incident acute respiratory failure in critically ill patients: a retrospective cohort study. BMJ Open Respir Res 2015; 2 (01) e000074
  • 42 Dancer RC, Parekh D, Lax S. et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 2015; 70 (07) 617-624
  • 43 Parekh D, Dancer RCA, Scott A. et al. Vitamin D to prevent lung injury following esophagectomy-a randomized, placebo-controlled trial. Crit Care Med 2018; 46 (12) e1128-e1135
  • 44 Quraishi SA, Litonjua AA, Moromizato T. et al. Association between prehospital vitamin D status and hospital-acquired bloodstream infections. Am J Clin Nutr 2013; 98 (04) 952-959
  • 45 Moromizato T, Litonjua AA, Braun AB, Gibbons FK, Giovannucci E, Christopher KB. Association of low serum 25-hydroxyvitamin D levels and sepsis in the critically ill. Crit Care Med 2014; 42 (01) 97-107
  • 46 Parekh D, Patel JM, Scott A. et al. Vitamin D deficiency in human and murine sepsis. Crit Care Med 2017; 45 (02) 282-289
  • 47 Braun A, Chang D, Mahadevappa K. et al. Association of low serum 25-hydroxyvitamin D levels and mortality in the critically ill. Crit Care Med 2011; 39 (04) 671-677
  • 48 Madden K, Feldman HA, Smith EM. et al. Vitamin D deficiency in critically ill children. Pediatrics 2012; 130 (03) 421-428
  • 49 McNally JD, Menon K, Chakraborty P. et al; Canadian Critical Care Trials Group. The association of vitamin D status with pediatric critical illness. Pediatrics 2012; 130 (03) 429-436
  • 50 Amrein K, Quraishi SA, Litonjua AA. et al. Evidence for a U-shaped relationship between prehospital vitamin D status and mortality: a cohort study. J Clin Endocrinol Metab 2014; 99 (04) 1461-1469
  • 51 Amrein K, Martucci G, McNally JD. When not to use meta-analysis: analysing the meta-analyses on vitamin D in critical care. Clin Nutr 2017; 36 (06) 1729-1730
  • 52 Amrein K, Scherkl M, Hoffmann M. et al. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr 2020; 1-16 DOI: 10.1038/s41430-020-0558-y.
  • 53 Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357 (03) 266-281
  • 54 Parekh D, Thickett DR, Turner AM. Vitamin D deficiency and acute lung injury. Inflamm Allergy Drug Targets 2013; 12 (04) 253-261
  • 55 Wood AM, Bassford C, Webster D. et al. Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages. Thorax 2011; 66 (03) 205-210
  • 56 Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunninghake GW. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol 2008; 181 (10) 7090-7099
  • 57 Adams JS, Sharma OP, Gacad MA, Singer FR. Metabolism of 25-hydroxyvitamin D3 by cultured pulmonary alveolar macrophages in sarcoidosis. J Clin Invest 1983; 72 (05) 1856-1860
  • 58 Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol 2007; 179 (03) 1634-1647
  • 59 Sigmundsdottir H, Pan J, Debes GF. et al. DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat Immunol 2007; 8 (03) 285-293
  • 60 Chishimba L, Thickett DR, Stockley RA, Wood AM. The vitamin D axis in the lung: a key role for vitamin D-binding protein. Thorax 2010; 65 (05) 456-462
  • 61 Martucci G, McNally D, Parekh D. et al. Trying to identify who may benefit most from future vitamin D intervention trials: a post hoc analysis from the VITDAL-ICU study excluding the early deaths. Crit Care 2019; 23 (01) 200
  • 62 Hewison M. Vitamin D and the intracrinology of innate immunity. Mol Cell Endocrinol 2010; 321 (02) 103-111
  • 63 Hewison M. An update on vitamin D and human immunity. Clin Endocrinol (Oxf) 2012; 76 (03) 315-325
  • 64 Witte KK, Byrom R, Gierula J. et al. Effects of vitamin D on cardiac function in patients with chronic HF: the VINDICATE study. J Am Coll Cardiol 2016; 67 (22) 2593-2603
  • 65 Thompson J, Nitiahpapand R, Bhatti P, Kourliouros A. Vitamin D deficiency and atrial fibrillation. Int J Cardiol 2015; 184: 159-162
  • 66 Ordóñez-Mena JM, Maalmi H, Schöttker B. et al. Genetic variants in the vitamin D pathway, 25(OH)D levels, and mortality in a large population-based cohort study. J Clin Endocrinol Metab 2017; 102 (02) 470-477
  • 67 Orford N, Cattigan C, Brennan SL, Kotowicz M, Pasco J, Cooper DJ. The association between critical illness and changes in bone turnover in adults: a systematic review. Osteoporos Int 2014; 25 (10) 2335-2346
  • 68 Orford NR, Bailey M, Bellomo R. et al. The association of time and medications with changes in bone mineral density in the 2 years after critical illness. Crit Care 2017; 21 (01) 69
  • 69 Rousseau AF, Foidart-Desalle M, Ledoux D. et al. Effects of cholecalciferol supplementation and optimized calcium intakes on vitamin D status, muscle strength and bone health: a one-year pilot randomized controlled trial in adults with severe burns. Burns 2015; 41 (02) 317-325
  • 70 Griffith DM, Walsh TS. Bone loss during critical illness: a skeleton in the closet for the intensive care unit survivor?. Crit Care Med 2011; 39 (06) 1554-1556
  • 71 Grimm G, Vila G, Bieglmayer C, Riedl M, Luger A, Clodi M. Changes in osteopontin and in biomarkers of bone turnover during human endotoxemia. Bone 2010; 47 (02) 388-391
  • 72 Hassan-Smith ZK, Jenkinson C, Smith DJ. et al. 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression. PLoS One 2017; 12 (02) e0170665
  • 73 Gunton JE, Girgis CM. Vitamin D and muscle. Bone Rep 2018; 8: 163-167
  • 74 Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 2013; 34 (01) 33-83
  • 75 McNally JD, Menon K. Vitamin D deficiency in surgical congenital heart disease: prevalence and relevance. Transl Pediatr 2013; 2 (03) 99-111
  • 76 Perron RM, Lee P. Efficacy of high-dose vitamin D supplementation in the critically ill patients. Inflamm Allergy Drug Targets 2013; 12 (04) 273-281
  • 77 Zajic P, Amrein K. Vitamin D deficiency in the ICU: a systematic review. Minerva Endocrinol 2014; 39 (04) 275-287
  • 78 Padhi R, Panda B, Jagati S, Patra SC. Vitamin D status in adult critically ill patients in Eastern India: an observational retrospective study. Lung India 2014; 31 (03) 212-216
  • 79 Moraes RB, Friedman G, Wawrzeniak IC. et al. Vitamin D deficiency is independently associated with mortality among critically ill patients. Clinics (São Paulo) 2015; 70 (05) 326-332
  • 80 Lee P, Eisman JA, Center JR. Vitamin D deficiency in critically ill patients. N Engl J Med 2009; 360 (18) 1912-1914
  • 81 Amrein K, Christopher KB, McNally JD. Understanding vitamin D deficiency in intensive care patients. Intensive Care Med 2015; 41 (11) 1961-1964
  • 82 Lee P. Vitamin D metabolism and deficiency in critical illness. Best Pract Res Clin Endocrinol Metab 2011; 25 (05) 769-781
  • 83 Ross AC, Manson JE, Abrams SA. et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 2011; 96 (01) 53-58
  • 84 Holick MF, Binkley NC, Bischoff-Ferrari HA. et al; Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96 (07) 1911-1930
  • 85 Rizzoli R, Boonen S, Brandi ML. et al. Vitamin D supplementation in elderly or postmenopausal women: a 2013 update of the 2008 recommendations from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Curr Med Res Opin 2013; 29 (04) 305-313
  • 86 Aspray TJ, Bowring C, Fraser W. et al; National Osteoporosis Society. National Osteoporosis Society vitamin D guideline summary. Age Ageing 2014; 43 (05) 592-595
  • 87 Martucci G, Tuzzolino F, Arcadipane A. et al. The effect of high-dose cholecalciferol on bioavailable vitamin D levels in critically ill patients: a post hoc analysis of the VITdAL-ICU trial. Intensive Care Med 2017; 43 (11) 1732-1734
  • 88 Amrein K, Schnedl C, Holl A. et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA 2014; 312 (15) 1520-1530
  • 89 Amrein K, Parekh D, Westphal S. et al; VITDALIZE Collaboration Group. Effect of high-dose vitamin D3 on 28-day mortality in adult critically ill patients with severe vitamin D deficiency: a study protocol of a multicentre, placebo-controlled double-blind phase III RCT (the VITDALIZE study). BMJ Open 2019; 9 (11) e031083
  • 90 Ginde AA, Brower RG, Caterino JM. et al; National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early high-dose vitamin D3 for critically ill, vitamin D-deficient patients. N Engl J Med 2019; 381 (26) 2529-2540
  • 91 Martineau AR, Jolliffe DA, Hooper RL. et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017; 356: i6583
  • 92 Rajasekaran S, Vanderpump M, Baldeweg S. et al. UK guidelines for the management of pituitary apoplexy. Clin Endocrinol (Oxf) 2011; 74 (01) 9-20
  • 93 Regal M, Páramo C, Sierra SM, García-Mayor RV. Prevalence and incidence of hypopituitarism in an adult Caucasian population in northwestern Spain. Clin Endocrinol (Oxf) 2001; 55 (06) 735-740
  • 94 Jho DH, Biller BMK, Agarwalla PK, Swearingen B. Pituitary apoplexy: large surgical series with grading system. World Neurosurg 2014; 82 (05) 781-790
  • 95 Zhang F, Chen J, Lu Y, Ding X. Manifestation, management and outcome of subclinical pituitary adenoma apoplexy. J Clin Neurosci 2009; 16 (10) 1273-1275
  • 96 Möller-Goede DL, Brändle M, Landau K, Bernays RL, Schmid C. Pituitary apoplexy: re-evaluation of risk factors for bleeding into pituitary adenomas and impact on outcome. Eur J Endocrinol 2011; 164 (01) 37-43
  • 97 Raappana A, Koivukangas J, Ebeling T, Pirilä T. Incidence of pituitary adenomas in Northern Finland in 1992-2007. J Clin Endocrinol Metab 2010; 95 (09) 4268-4275
  • 98 Jankowski PP, Crawford JR, Khanna P, Malicki DM, Ciacci JD, Levy ML. Pituitary tumor apoplexy in adolescents. World Neurosurg 2015; 83 (04) 644-651
  • 99 Kinoshita Y, Tominaga A, Usui S, Arita K, Sugiyama K, Kurisu K. Impact of subclinical haemorrhage on the pituitary gland in patients with pituitary adenomas. Clin Endocrinol (Oxf) 2014; 80 (05) 720-725
  • 100 Fernández-Balsells MM, Murad MH, Barwise A. et al. Natural history of nonfunctioning pituitary adenomas and incidentalomas: a systematic review and metaanalysis. J Clin Endocrinol Metab 2011; 96 (04) 905-912
  • 101 Kleinschmidt-DeMasters BK, Lillehei KO. Pathological correlates of pituitary adenomas presenting with apoplexy. Hum Pathol 1998; 29 (11) 1255-1265
  • 102 Galvin JA, Van Stavern GP. Ischemic pituitary apoplexy associated with the lupus anticoagulant. J Neurol Sci 2004; 221 (1-2): 89-90
  • 103 Ly S, Naman A, Chaufour-Higel B. et al. Pituitary apoplexy and rivaroxaban. Pituitary 2017; 20 (06) 709-710
  • 104 Oldfield EH, Merrill MJ. Apoplexy of pituitary adenomas: the perfect storm. J Neurosurg 2015; 122 (06) 1444-1449
  • 105 Yakupoglu H, Onal MB, Civelek E, Kircelli A, Celasun B. Pituitary apoplexy after cardiac surgery in a patient with subclinical pituitary adenoma: case report with review of literature. Neurol Neurochir Pol 2010; 44 (05) 520-525
  • 106 Wiesmann M, Gliemroth J, Kehler U, Missler U. Pituitary apoplexy after cardiac surgery presenting as deep coma with dilated pupils. Acta Anaesthesiol Scand 1999; 43 (02) 236-238
  • 107 Hidiroglu M, Kucuker A, Ucaroglu E, Kucuker SA, Sener E. Pituitary apoplexy after cardiac surgery. Ann Thorac Surg 2010; 89 (05) 1635-1637
  • 108 Akakın A, Yılmaz B, Ekşi MŞ, Kılıç T. A case of pituitary apoplexy following posterior lumbar fusion surgery. J Neurosurg Spine 2015; 23 (05) 598-601
  • 109 Elia G, Ferrari SM, Galdiero MR. et al. New insight in endocrine-related adverse events associated to immune checkpoint blockade. Best Pract Res Clin Endocrinol Metab 2019; DOI: 10.1016/j.beem.2019.101370. . [Epub ahead of print]
  • 110 Masago A, Ueda Y, Kanai H, Nagai H, Umemura S. Pituitary apoplexy after pituitary function test: a report of two cases and review of the literature. Surg Neurol 1995; 43 (02) 158-164 , discussion 165
  • 111 Yoshino A, Katayama Y, Watanabe T. et al. Apoplexy accompanying pituitary adenoma as a complication of preoperative anterior pituitary function tests. Acta Neurochir (Wien) 2007; 149 (06) 557-565 , discussion 565
  • 112 Sasagawa Y, Tachibana O, Nakagawa A, Koya D, Iizuka H. Pituitary apoplexy following gonadotropin-releasing hormone agonist administration with gonadotropin-secreting pituitary adenoma. J Clin Neurosci 2015; 22 (03) 601-603
  • 113 Ali A, Sophie C, Pei Chia E. et al. Clinical and biochemical characteristics of patients presenting with pituitary apoplexy. Endocr Connect 2018; 7: 1058-1066
  • 114 Pyrgelis ES, Mavridis I, Meliou M. Presenting symptoms of pituitary apoplexy. J Neurol Surg A Cent Eur Neurosurg 2018; 79 (01) 52-59
  • 115 Kim SY. Diagnosis and treatment of hypopituitarism. Endocrinol Metab (Seoul) 2015; 30 (04) 443-455
  • 116 Piotin M, Tampieri D, Rüfenacht DA. et al. The various MRI patterns of pituitary apoplexy. Eur Radiol 1999; 9 (05) 918-923
  • 117 Albani A, Ferraù F, Angileri FF. et al. Multidisciplinary management of pituitary apoplexy. Int J Endocrinol 2016; 2016: 7951536
  • 118 Teixeira JC, Lavrador J, Simão D, Miguéns J. Pituitary Apoplexy: Should endoscopic surgery be the gold standard?. World Neurosurg 2018; 111: e495-e499
  • 119 Witek P. Pituitary apoplexy: managing the life-threatening condition associated with pituitary adenomas. Minerva Endocrinol 2014; 39 (04) 245-259
  • 120 Ferretti E, Persani L, Jaffrain-Rea M-L, Giambona S, Tamburrano G, Beck-Peccoz P. Evaluation of the adequacy of levothyroxine replacement therapy in patients with central hypothyroidism. J Clin Endocrinol Metab 1999; 84 (03) 924-929
  • 121 Singh TD, Valizadeh N, Meyer FB, Atkinson JL, Erickson D, Rabinstein AA. Management and outcomes of pituitary apoplexy. J Neurosurg 2015; 122 (06) 1450-1457
  • 122 Ayuk J, McGregor EJ, Mitchell RD, Gittoes NJL. Acute management of pituitary apoplexy--surgery or conservative management?. Clin Endocrinol (Oxf) 2004; 61 (06) 747-752
  • 123 Almeida JP, Sanchez MM, Karekezi C. et al. Pituitary apoplexy: results of surgical and conservative management clinical series and review of the literature. World Neurosurg 2019; 130: e988-e999
  • 124 Kim Y-H, Cho YH, Hong SH. et al. Postoperative neurologic outcome in patients with pituitary apoplexy after transsphenoidal surgery. World Neurosurg 2018; 111: e18-e23
  • 125 Capatina C, Inder W, Karavitaki N, Wass JA. Management of endocrine disease: pituitary tumour apoplexy. Eur J Endocrinol 2015; 172 (05) R179-R190
  • 126 Goshtasbi K, Abiri A, Sahyouni R. et al. Visual and endocrine recovery following conservative and surgical treatment of pituitary apoplexy: a meta-analysis. World Neurosurg 2019; 132: 33-40
  • 127 Amrein K, Martucci G, Hahner S. Understanding adrenal crisis. Intensive Care Med 2018; 44 (05) 652-655
  • 128 Dineen R, Thompson CJ, Sherlock M. Adrenal crisis: prevention and management in adult patients. Ther Adv Endocrinol Metab 2019; 10: 2042018819848218
  • 129 Elshimy G, Alghoula F, Jeong JM. Adrenal Crisis. Treasure Island, FL: StatPearls Publishing; 2019
  • 130 Rushworth RL, Torpy DJ, Falhammar H. Adrenal Crisis. 2019; 381: 852-861
  • 131 Yamamoto T. Latent adrenal insufficiency: concept, clues to detection, and diagnosis. Endocr Pract 2018; 24 (08) 746-755
  • 132 White KG. A retrospective analysis of adrenal crisis in steroid-dependent patients: causes, frequency and outcomes. BMC Endocr Disord 2019; 19 (01) 129
  • 133 Rushworth RL, Torpy DJ, Stratakis CA, Falhammar H. Adrenal crises in children: perspectives and research directions. Horm Res Paediatr 2018; 89 (05) 341-351
  • 134 Quinkler M, Ekman B, Zhang P, Isidori AM, Murray RD. EU-AIR Investigators. Mortality data from the European Adrenal Insufficiency Registry-Patient characterization and associations. Clin Endocrinol (Oxf) 2018; 89 (01) 30-35
  • 135 Wijaya M, Huamei M, Jun Z. et al. Etiology of primary adrenal insufficiency in children: a 29-year single-center experience. J Pediatr Endocrinol Metab 2019; 32 (06) 615-622
  • 136 Smrecnik M, Kavcic Trsinar Z, Kocjan T. Adrenal crisis after first infusion of zoledronic acid: a case report. Osteoporos Int 2018; 29 (07) 1675-1678
  • 137 Sensi H, Buch H, Ford L, Gama R. Acute adrenal failure: a potentially fatal consequence of an adulterated herbal remedy. BMJ Case Rep 2019; 12 (02) 12
  • 138 Schöfl C, Mayr B, Maison N. et al. Daily adjustment of glucocorticoids by patients with adrenal insufficiency. Clin Endocrinol (Oxf) 2019; 91 (02) 256-262
  • 139 Valentin A, Borresen SW, Rix M, Elung-Jensen T, Sørensen SS, Feldt-Rasmussen U. Adrenal insufficiency in kidney transplant patients during low-dose prednisolone therapy: a cross-sectional case-control study. Nephrol Dial Transplant 2019; gfz180
  • 140 Wood Heickman LK, Davallow Ghajar L, Conaway M, Rogol AD. Evaluation of hypothalamic-pituitary-adrenal axis suppression following cutaneous use of topical corticosteroids in children: a meta-analysis. Horm Res Paediatr 2018; 89 (06) 389-396
  • 141 Sharma S, Joshi R, Kalelkar R, Agrawal P. Tuberculous adrenal abscess presenting as adrenal insufficiency in a 4-year-old boy. J Trop Pediatr 2019; 65 (03) 301-304
  • 142 Akarca FK, Can O, Yalcinli S, Altunci YA. Nivolumab, a new immunomodulatory drug, a new adverse effect; adrenal crisis. Turk J Emerg Med 2017; 17 (04) 157-159
  • 143 Malakooti SK, Simon LV. A sarcoidosis patient presents with adrenal insufficiency: a standardized patient scenario for medical students and residents. Cureus 2018; 10 (06) e2833
  • 144 Latina A, Terzolo M, Pia A. et al. Acute primary adrenal insufficiency after hip replacement in a patient with acute intermittent porphyria. Case Rep Endocrinol 2018; 2018: 2353172
  • 145 Yamada S, Arase H, Morishita T. et al. Adrenal crisis presented as acute onset of hypercalcemia and hyponatremia triggered by acute pyelonephritis in a patient with partial hypopituitarism and pre-dialysis chronic kidney disease. CEN Case Rep 2019; 8 (02) 83-88
  • 146 Nagamatsu F, Satoh S, Ogiwara Y. et al. Treatment of adrenal crisis in patients with primary hypoadrenalism can lead to hypertension. Clin Pediatr Endocrinol 2019; 28 (02) 25-30
  • 147 Burger-Stritt S, Kardonski P, Pulzer A, Meyer G, Quinkler M, Hahner S. Management of adrenal emergencies in educated patients with adrenal insufficiency—a prospective study. Clin Endocrinol (Oxf) 2018; 89 (01) 22-29
  • 148 Miller BS, Spencer SP, Geffner ME. et al. Emergency management of adrenal insufficiency in children: advocating for treatment options in outpatient and field settings. J Investig Med 2020; 68 (01) 16-25
  • 149 Ylli D, Klubo-Gwiezdzinska J, Wartofsky L. Thyroid emergencies. Pol Arch Intern Med 2019; 129 (7-8): 526-534
  • 150 Spitzweg C, Reincke M, Gärtner R. Thyroid emergencies: thyroid storm and myxedema coma. Internist (Berl) 2017; 58: 1011-1019
  • 151 Wiersinga W. Myxedema and Coma (Severe Hypothyroidism). Endotext. South Dartmouth, MA: MDText.com, Inc.; 2018
  • 152 Wall CR. Myxedema coma: diagnosis and treatment. Am Fam Physician 2000; 62 (11) 2485-2490
  • 153 Bourcier S, Coutrot M, Kimmoun A. et al. Thyroid storm in the ICU: a retrospective multicenter study. Crit Care Med 2020; 48 (01) 83-90
  • 154 Akamizu T, Satoh T, Isozaki O. et al; Japan Thyroid Association. Diagnostic criteria, clinical features, and incidence of thyroid storm based on nationwide surveys. Thyroid 2012; 22 (07) 661-679
  • 155 Broch Porcar MJ, Rodríguez Cubillo B, Domínguez-Roldán JM. et al. Practical document on the management of hyponatremia in critically ill patients. Med Intensiva 2019; 43 (05) 302-316
  • 156 Wald R, Jaber BL, Price LL, Upadhyay A, Madias NE. Impact of hospital-associated hyponatremia on selected outcomes. Arch Intern Med 2010; 170 (03) 294-302
  • 157 Holland-Bill L, Christiansen CF, Heide-Jørgensen U. et al. Hyponatremia and mortality risk: a Danish cohort study of 279|508 acutely hospitalized patients. Eur J Endocrinol 2015; 173 (01) 71-81
  • 158 Spasovski G, Vanholder R, Allolio B. et al; Hyponatraemia Guideline Development Group. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol 2014; 170 (03) G1-G47
  • 159 Hoorn EJ, Zietse R. Diagnosis and treatment of hyponatremia: compilation of the guidelines. J Am Soc Nephrol 2017; 28 (05) 1340-1349
  • 160 Rafat C, Flamant M, Gaudry S, Vidal-Petiot E, Ricard J-D, Dreyfuss D. Hyponatremia in the intensive care unit: How to avoid a Zugzwang situation?. Ann Intensive Care 2015; 5 (01) 39
  • 161 Overgaard-Steensen C, Ring T. Clinical review: practical approach to hyponatraemia and hypernatraemia in critically ill patients. Crit Care 2013; 17 (01) 206
  • 162 Funk G-C, Lindner G, Druml W. et al. Incidence and prognosis of dysnatremias present on ICU admission. Intensive Care Med 2010; 36 (02) 304-311
  • 163 Vandergheynst F, Sakr Y, Felleiter P. et al. Incidence and prognosis of dysnatraemia in critically ill patients: analysis of a large prevalence study. Eur J Clin Invest 2013; 43 (09) 933-948
  • 164 Oude Lansink-Hartgring A, Hessels L, Weigel J. et al. Long-term changes in dysnatremia incidence in the ICU: a shift from hyponatremia to hypernatremia. Ann Intensive Care 2016; 6 (01) 22
  • 165 DeVita MV, Gardenswartz MH, Konecky A, Zabetakis PM. Incidence and etiology of hyponatremia in an intensive care unit. Clin Nephrol 1990; 34 (04) 163-166
  • 166 Verbalis JG, Goldsmith SR, Greenberg A. et al. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med 2013; 126 (10) (Suppl. 01) S1-S42
  • 167 Abbott R, Silber E, Felber J, Ekpo E. Osmotic demyelination syndrome. BMJ 2005; 331 (7520): 829-830
  • 168 Tzoulis P, Evans R, Falinska A. et al. Multicentre study of investigation and management of inpatient hyponatraemia in the UK. Postgrad Med J 2014; 90 (1070): 694-698
  • 169 Padhi R, Panda BN, Jagati S, Patra SC. Hyponatremia in critically ill patients. Indian J Crit Care Med 2014; 18 (02) 83-87
  • 170 Darmon M, Diconne E, Souweine B. et al. Prognostic consequences of borderline dysnatremia: pay attention to minimal serum sodium change. Crit Care 2013; 17 (01) R12
  • 171 Stelfox HT, Ahmed SB, Khandwala F, Zygun D, Shahpori R, Laupland K. The epidemiology of intensive care unit-acquired hyponatraemia and hypernatraemia in medical-surgical intensive care units. Crit Care 2008; 12 (06) R162
  • 172 Shirazy M, Omar I, Abduljabbar D. et al. Prevalence and prognostic impact of hypernatremia in sepsis and septic shock patients in the intensive care unit: a single centre experience. J Crit Care Med (Targu Mures) 2020; 6 (01) 52-58
  • 173 Chi WC, Patel S, Cheung NW. Admission sodium levels and hospital outcomes. Intern Med J 2020
  • 174 Arampatzis S, Frauchiger B, Fiedler G-M. et al. Characteristics, symptoms, and outcome of severe dysnatremias present on hospital admission. Am J Med 2012; 125 (11) 1125.e1-1125.e7
  • 175 Hu B, Han Q, Mengke N. et al. Prognostic value of ICU-acquired hypernatremia in patients with neurological dysfunction. Medicine (Baltimore) 2016; 95 (35) e3840
  • 176 Polderman KH, Schreuder WO, Strack van Schijndel RJ, Thijs LG. Hypernatremia in the intensive care unit: an indicator of quality of care?. Crit Care Med 1999; 27 (06) 1105-1108
  • 177 Shah MK, Workeneh B, Taffet GE. Hypernatremia in the geriatric population. Clin Interv Aging 2014; 9: 1987-1992
  • 178 Broll M, John S. Hypernatriämie. Med Klin Intensivmed Notfmed 2020; 115: 263-274
  • 179 Xiao H, Barmanray R, Qian S, De Alwis D, Fennessy G. Survival following extreme hypernatraemia associated with severe dehydration and undiagnosed diabetes mellitus. Case Rep Endocrinol 2019; 2019: 4174259
  • 180 WHO. Guideline: Sodium Intake for Adults and Children. 2012. World Health Organization (WHO);
  • 181 Darmon M, Timsit J-F, Francais A. et al. Association between hypernatraemia acquired in the ICU and mortality: a cohort study. Nephrol Dial Transplant 2010; 25 (08) 2510-2515