Semin Respir Crit Care Med 2020; 41(04): 555-567
DOI: 10.1055/s-0040-1710584
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Influenza Virus in Community-Acquired Pneumonia: Current Understanding and Knowledge Gaps

Jiuyang Xu
1   Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
,
Jiapei Yu
2   Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
3   Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Center of Respiratory Diseases, Beijing, China
,
Luning Yang
1   Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
,
Fei Zhou
4   Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
5   Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
,
Hui Li
4   Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
5   Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
,
Bin Cao
2   Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
3   Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Center of Respiratory Diseases, Beijing, China
4   Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
› Author Affiliations
Further Information

Publication History

Publication Date:
10 June 2020 (online)

Abstract

Influenza virus infection poses a heavy burden on global health and economics. With the advancement in viral pathogen detection methods, the role of virus infection in community-acquired pneumonia has been increasingly recognized. The disease spectrum of influenza ranges from asymptomatic infection to severe or even fatal illness. Progress has been made in recent years to identify risk factors including lymphopenia and hypoxia for influenza mortality. Immunopathology plays an important role in influenza pathogenesis. The disturbed homeostasis after virus infection consists of both an excessive inflammatory phase and an immune suppression phase, collectively described as viral sepsis. Multiple antiviral therapies have been tested and some were advanced to late-phase clinical trials, including polymerase inhibitors, hemagglutinin inhibitors, host-acting antivirals, monoclonal antibodies, and adjunctive immunomodulatory therapies. Combination therapies have been shown to increase antiviral efficacy and genetic resistance barrier. In this review, we summarized the recent advances in our understanding of the disease pathogenesis, as well as the progress in antiviral therapy development. We also pointed out current key knowledge gaps in influenza research. Hopefully, experience gained from seasonal influenza research will prepare us for the next influenza pandemic and emerging respiratory pathogens.

 
  • References

  • 1 Qu JX, Gu L, Pu ZH. , et al; Beijing Network for Adult Community-Acquired Pneumonia (BNACAP). Viral etiology of community-acquired pneumonia among adolescents and adults with mild or moderate severity and its relation to age and severity. BMC Infect Dis 2015; 15: 89
  • 2 Cao B, Huang Y, She DY. , et al. Diagnosis and treatment of community-acquired pneumonia in adults: 2016 clinical practice guidelines by the Chinese Thoracic Society, Chinese Medical Association. Clin Respir J 2018; 12 (04) 1320-1360
  • 3 Mandell LA, Wunderink RG, Anzueto A. , et al; Infectious Diseases Society of America; American Thoracic Society. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007; 44 (Suppl. 02) S27-S72
  • 4 Jain S, Self WH, Wunderink RG. , et al; CDC EPIC Study Team. Community-acquired pneumonia requiring hospitalization among U.S. Adults. N Engl J Med 2015; 373 (05) 415-427
  • 5 Woodhead M, Blasi F, Ewig S. , et al; Joint Taskforce of the European Respiratory Society and European Society for Clinical Microbiology and Infectious Diseases. Guidelines for the management of adult lower respiratory tract infections--full version. Clin Microbiol Infect 2011; 17 (Suppl. 06) E1-E59
  • 6 Li L, Liu Y, Wu P. , et al. Influenza-associated excess respiratory mortality in China, 2010-15: a population-based study. Lancet Public Health 2019; 4 (09) e473-e481
  • 7 Iuliano AD, Roguski KM, Chang HH. , et al; Global Seasonal Influenza-associated Mortality Collaborator Network. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 2018; 391 (10127): 1285-1300
  • 8 Wu S, Wei Z, Greene CM. , et al. Mortality burden from seasonal influenza and 2009 H1N1 pandemic influenza in Beijing, China, 2007-2013. Influenza Other Respir Viruses 2018; 12 (01) 88-97
  • 9 Zhang H, Xiong Q, Wu P, Chen Y, Leung NHL, Cowling BJ. Influenza-associated mortality in Yancheng, China, 2011-15. Influenza Other Respir Viruses 2018; 12 (01) 98-103
  • 10 Global Health Estimates 2016: disease burden by cause, age, sex, by country and by region, 2000–2016. 2018 . Available at: https://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html . Accessed February 4, 2020
  • 11 Influenza (Seasonal) Fact Sheet. 2018 . Available at: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) . Accessed January 14, 2020
  • 12 Hammond A, Hundal K, Laurenson-Schafer H. , et al. Review of the 2018–2019 influenza season in the northern hemisphere. World Health Organization, August 9, 2019. Available at: https://apps.who.int/iris/bitstream/handle/10665/326242/WER9432-en-fr.pdf?ua=1 . Accessed April 6, 2020
  • 13 Yu H, Alonso WJ, Feng L. , et al. Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: spatio-temporal modeling of surveillance data. PLoS Med 2013; 10 (11) e1001552
  • 14 Hammond A, Laurenson-Schafer H, Marsland M. , et al. Review of the 2017–2018 influenza season in the northern hemisphere. World Health Organization, Aug 24, 2018. Available at: https://apps.who.int/iris/bitstream/handle/10665/274263/WER9334.pdf?ua=1 . Accessed April 6, 2020
  • 15 Caini S, Kusznierz G, Garate VV. , et al; Global Influenza B Study team. The epidemiological signature of influenza B virus and its B/Victoria and B/Yamagata lineages in the 21st century. PLoS One 2019; 14 (09) e0222381
  • 16 Liu LJ, Yang J, Zhu F. , et al. Influenza-like illness outbreaks in China during 2017-2018 surveillance season [in Chinese]. Zhonghua Yu Fang Yi Xue Za Zhi 2019; 53 (10) 982-986
  • 17 Mauad T, Hajjar LA, Callegari GD. , et al. Lung pathology in fatal novel human influenza A (H1N1) infection. Am J Respir Crit Care Med 2010; 181 (01) 72-79
  • 18 Shi SJ, Li H, Liu M. , et al. Mortality prediction to hospitalized patients with influenza pneumonia: PO2 /FiO2 combined lymphocyte count is the answer. Clin Respir J 2017; 11 (03) 352-360
  • 19 Grohskopf LA, Sokolow LZ, Broder KR, Walter EB, Fry AM, Jernigan DB. Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices-United States, 2018-19 Influenza Season. MMWR Recomm Rep 2018; 67 (03) 1-20
  • 20 Morens DM, Taubenberger JK, Harvey HA, Memoli MJ. The 1918 influenza pandemic: lessons for 2009 and the future. Crit Care Med 2010; 38 (4, Suppl): e10-e20
  • 21 Taubenberger JK, Morens DM. 1918 Influenza: the mother of all pandemics. Emerg Infect Dis 2006; 12 (01) 15-22
  • 22 Gill PJ, Ashdown HF, Wang K. , et al. Identification of children at risk of influenza-related complications in primary and ambulatory care: a systematic review and meta-analysis. Lancet Respir Med 2015; 3 (02) 139-149
  • 23 Fell DB, Savitz DA, Kramer MS. , et al. Maternal influenza and birth outcomes: systematic review of comparative studies. BJOG 2017; 124 (01) 48-59
  • 24 He J, Liu ZW, Lu YP. , et al. A systematic review and meta-analysis of influenza a virus infection during pregnancy associated with an increased risk for stillbirth and low birth weight. Kidney Blood Press Res 2017; 42 (02) 232-243
  • 25 Mertz D, Geraci J, Winkup J, Gessner BD, Ortiz JR, Loeb M. Pregnancy as a risk factor for severe outcomes from influenza virus infection: A systematic review and meta-analysis of observational studies. Vaccine 2017; 35 (04) 521-528
  • 26 Ribeiro AF, Pellini ACG, Kitagawa BY. , et al. Severe influenza A(H1N1)pdm09 in pregnant women and neonatal outcomes, State of Sao Paulo, Brazil, 2009. PLoS One 2018; 13 (03) e0194392
  • 27 Honce R, Schultz-Cherry S. Impact of obesity on influenza A virus pathogenesis, immune response, and evolution. Front Immunol 2019; 10: 1071
  • 28 Martín V, Castilla J, Godoy P. , et al; Grupo de Trabajo del Proyecto CIBERESP de Casos y Controles sobre la Gripe Pandémica, España. High body mass index as a risk factor for hospitalization due to influenza: a case-control study. Arch Bronconeumol 2016; 52 (06) 299-307 (English Edition)
  • 29 Sun Y, Wang Q, Yang G, Lin C, Zhang Y, Yang P. Weight and prognosis for influenza A(H1N1)pdm09 infection during the pandemic period between 2009 and 2011: a systematic review of observational studies with meta-analysis. Infect Dis (Lond) 2016; 48 (11–12): 813-822
  • 30 Garnacho-Montero J, León-Moya C, Gutiérrez-Pizarraya A. , et al; on Behalf GETGAG Study Group. Clinical characteristics, evolution, and treatment-related risk factors for mortality among immunosuppressed patients with influenza A (H1N1) virus admitted to the intensive care unit. J Crit Care 2018; 48: 172-177
  • 31 Shah DP, Ghantoji SS, Ariza-Heredia EJ. , et al. Immunodeficiency scoring index to predict poor outcomes in hematopoietic cell transplant recipients with RSV infections. Blood 2014; 123 (21) 3263-3268
  • 32 Kmeid J, Vanichanan J, Shah DP. , et al. Outcomes of influenza infections in hematopoietic cell transplant recipients: application of an immunodeficiency scoring index. Biol Blood Marrow Transplant 2016; 22 (03) 542-548
  • 33 Martin-Loeches I, , J Schultz M, Vincent JL. , et al. Increased incidence of co-infection in critically ill patients with influenza. Intensive Care Med 2017; 43 (01) 48-58
  • 34 Klein EY, Monteforte B, Gupta A. , et al. The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis. Influenza Other Respir Viruses 2016; 10 (05) 394-403
  • 35 Jia L, Xie J, Zhao J. , et al. Mechanisms of severe mortality-associated bacterial co-infections following influenza virus infection. Front Cell Infect Microbiol 2017; 7: 338
  • 36 Martin-Loeches I, van Someren Gréve F, Schultz MJ. Bacterial pneumonia as an influenza complication. Curr Opin Infect Dis 2017; 30 (02) 201-207
  • 37 Kaiser L, Wat C, Mills T, Mahoney P, Ward P, Hayden F. Impact of oseltamivir treatment on influenza-related lower respiratory tract complications and hospitalizations. Arch Intern Med 2003; 163 (14) 1667-1672
  • 38 Sellers SA, Hagan RS, Hayden FG, Fischer II WA. The hidden burden of influenza: a review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses 2017; 11 (05) 372-393
  • 39 Minodier L, Charrel RN, Ceccaldi PE. , et al. Prevalence of gastrointestinal symptoms in patients with influenza, clinical significance, and pathophysiology of human influenza viruses in faecal samples: what do we know?. Virol J 2015; 12: 215
  • 40 Hékimian G, Jovanovic T, Bréchot N. , et al. When the heart gets the flu: fulminant influenza B myocarditis: a case-series report and review of the literature. J Crit Care 2018; 47: 61-64
  • 41 Marchetti L, Gandolfo C, Maglioni E, Contorni M, Arena F, Cusi MG. Myocarditis requiring extracorporeal membrane oxygenation support following Influenza B infection: a case report and literature review. New Microbiol 2019; 42 (01) 61-63
  • 42 Spoto S, Valeriani E, Locorriere L. , et al. Influenza B virus infection complicated by life-threatening pericarditis: a unique case-report and literature review. BMC Infect Dis 2019; 19 (01) 40
  • 43 Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and immune pathogenesis of viral sepsis. Front Immunol 2018; 9: 2147
  • 44 Short KR, Kroeze EJBV, Fouchier RAM, Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infect Dis 2014; 14 (01) 57-69
  • 45 van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 2017; 17 (07) 407-420
  • 46 Bellelli V, d'Ettorre G, Celani L, Borrazzo C, Ceccarelli G, Venditti M. Clinical significance of lymphocytopenia in patients hospitalized with pneumonia caused by influenza virus. Crit Care 2019; 23 (01) 330
  • 47 Cillóniz C, Dominedò C, Magdaleno D, Ferrer M, Gabarrús A, Torres A. Pure viral sepsis secondary to community-acquired pneumonia in adults: risk and prognostic factors. J Infect Dis 2019; 220 (07) 1166-1171
  • 48 Wang Y, Fan G, Horby P. , et al; CAP-China Network. Comparative outcomes of adults hospitalized with seasonal influenza A or B virus infection: application of the 7-category ordinal scale. Open Forum Infect Dis 2019; 6 (03) ofz053
  • 49 Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med 2017; 377 (06) 562-572
  • 50 Taubenberger JK, Morens DM. The pathology of influenza virus infections. Annu Rev Pathol 2008; 3: 499-522
  • 51 Short KR, Kasper J, van der Aa S. , et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur Respir J 2016; 47 (03) 954-966
  • 52 Brand JD, Lazrak A, Trombley JE. , et al. Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight 2018; 3 (20) 3
  • 53 Londino JD, Lazrak A, Collawn JF, Bebok Z, Harrod KS, Matalon S. Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae. Am J Physiol Lung Cell Mol Physiol 2017; 313 (05) L845-L858
  • 54 Chan MC, Cheung CY, Chui WH. , et al. Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respir Res 2005; 6: 135
  • 55 Guo XJ, Thomas PG. New fronts emerge in the influenza cytokine storm. Semin Immunopathol 2017; 39 (05) 541-550
  • 56 Perrone LA, Plowden JK, García-Sastre A, Katz JM, Tumpey TM. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog 2008; 4 (08) e1000115
  • 57 Lamichhane PP, Samarasinghe AE. The role of innate leukocytes during influenza virus infection. J Immunol Res 2019; 2019: 8028725
  • 58 Wang JP, Bowen GN, Padden C. , et al. Toll-like receptor-mediated activation of neutrophils by influenza A virus. Blood 2008; 112 (05) 2028-2034
  • 59 Kulkarni U, Zemans RL, Smith CA, Wood SC, Deng JC, Goldstein DR. Excessive neutrophil levels in the lung underlie the age-associated increase in influenza mortality. Mucosal Immunol 2019; 12 (02) 545-554
  • 60 Narasaraju T, Yang E, Samy RP. , et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 2011; 179 (01) 199-210
  • 61 Ichikawa A, Kuba K, Morita M. , et al. CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am J Respir Crit Care Med 2013; 187 (01) 65-77
  • 62 Peiró T, Patel DF, Akthar S. , et al. Neutrophils drive alveolar macrophage IL-1β release during respiratory viral infection. Thorax 2018; 73 (06) 546-556
  • 63 Tang BM, Shojaei M, Teoh S. , et al. Neutrophils-related host factors associated with severe disease and fatality in patients with influenza infection. Nat Commun 2019; 10 (01) 3422
  • 64 Zerbib Y, Jenkins EK, Shojaei M. , et al; Nepean Genomic Research Group. Pathway mapping of leukocyte transcriptome in influenza patients reveals distinct pathogenic mechanisms associated with progression to severe infection. BMC Med Genomics 2020; 13 (01) 28
  • 65 Wang J, Nikrad MP, Travanty EA. , et al. Innate immune response of human alveolar macrophages during influenza A infection. PLoS One 2012; 7 (03) e29879
  • 66 Herold S, von Wulffen W, Steinmueller M. , et al. Alveolar epithelial cells direct monocyte transepithelial migration upon influenza virus infection: impact of chemokines and adhesion molecules. J Immunol (Baltimore, Md: 1950) 2006; 177 (03) 1817-1824
  • 67 Peteranderl C, Herold S, Schmoldt C. Human influenza virus infections. Semin Respir Crit Care Med 2016; 37 (04) 487-500
  • 68 Herold S, Steinmueller M, von Wulffen W. , et al. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J Exp Med 2008; 205 (13) 3065-3077
  • 69 Yuen KY, Wong SS. Human infection by avian influenza A H5N1. Hong Kong Med J 2005; 11 (03) 189-199
  • 70 Short KR, Kedzierska K, van de Sandt CE. Back to the future: lessons learned from the 1918 influenza pandemic. Front Cell Infect Microbiol 2018; 8: 343
  • 71 Beigel JH, Farrar J, Han AM. , et al; Writing Committee of the World Health Organization (WHO) Consultation on Human Influenza A/H5. Avian influenza A (H5N1) infection in humans. N Engl J Med 2005; 353 (13) 1374-1385
  • 72 de Jong MD, Simmons CP, Thanh TT. , et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 2006; 12 (10) 1203-1207
  • 73 Wang Z, Zhang A, Wan Y. , et al. Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. Proc Natl Acad Sci U S A 2014; 111 (02) 769-774
  • 74 Short KR, Veeris R, Leijten LM. , et al. Proinflammatory cytokine responses in extra-respiratory tissues during severe influenza. J Infect Dis 2017; 216 (07) 829-833
  • 75 Wang J, Oberley-Deegan R, Wang S. , et al. Differentiated human alveolar type II cells secrete antiviral IL-29 (IFN-lambda 1) in response to influenza A infection. J Immunol (Baltimore, Md: 1950) 2009; 182 (03) 1296-1304
  • 76 Crotta S, Davidson S, Mahlakoiv T. , et al. Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathog 2013; 9 (11) e1003773
  • 77 Galani IE, Triantafyllia V, Eleminiadou EE. , et al. Interferon-λ mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity 2017; 46 (05) 875-890.e6
  • 78 Klinkhammer J, Schnepf D, Ye L. , et al. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. eLife 2018; 7: 7
  • 79 Hemann EA, Green R, Turnbull JB, Langlois RA, Savan R, Gale Jr M. Interferon-λ modulates dendritic cells to facilitate T cell immunity during infection with influenza A virus. Nat Immunol 2019; 20 (08) 1035-1045
  • 80 Hufford MM, Kim TS, Sun J, Braciale TJ. The effector T cell response to influenza infection. Curr Top Microbiol Immunol 2015; 386: 423-455
  • 81 Xue C, Wen M, Bao L. , et al. Vγ4+γδT cells aggravate severe H1N1 influenza virus infection-induced acute pulmonary immunopathological injury via secreting interleukin-17A. Front Immunol 2017; 8: 1054
  • 82 Li J, Zhang K, Fan W. , et al. Transcriptome profiling reveals differential effect of interleukin-17a upon influenza virus infection in human cells. Front Microbiol 2019; 10: 2344
  • 83 Dunning J, Blankley S, Hoang LT. , et al; MOSAIC Investigators. Progression of whole-blood transcriptional signatures from interferon-induced to neutrophil-associated patterns in severe influenza. Nat Immunol 2018; 19 (06) 625-635
  • 84 Flynn KJ, Belz GT, Altman JD, Ahmed R, Woodland DL, Doherty PC. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 1998; 8 (06) 683-691
  • 85 Sridhar S, Begom S, Bermingham A. , et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med 2013; 19 (10) 1305-1312
  • 86 Wilkinson TM, Li CK, Chui CS. , et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med 2012; 18 (02) 274-280
  • 87 Erickson JJ, Gilchuk P, Hastings AK. , et al. Viral acute lower respiratory infections impair CD8+ T cells through PD-1. J Clin Invest 2012; 122 (08) 2967-2982
  • 88 Rogers MC, Williams JV. Reining in the CD8+ T cell: respiratory virus infection and PD-1-mediated T-cell impairment. PLoS Pathog 2019; 15 (01) e1007387
  • 89 Rogers MC, Lamens KD, Shafagati N. , et al. CD4+ regulatory T cells exert differential functions during early and late stages of the immune response to respiratory viruses. J Immunol (Baltimore, Md: 1950) 2018; 201 (04) 1253-1266
  • 90 Yu WQ, Ding MD, Dai GH. , et al. Analysis of 15 cases of avian influenza virus (H7N9) infection [in Chinese]. Zhonghua Jie He He Hu Xi Za Zhi 2018; 41 (07) 534-538
  • 91 Wang C, Yu H, Horby PW. , et al. Comparison of patients hospitalized with influenza A subtypes H7N9, H5N1, and 2009 pandemic H1N1. Clin Infect Dis 2014; 58 (08) 1095-1103
  • 92 Zhou F, Li H, Gu L. , et al; National Influenza A(H1N1)pdm09 Clinical Investigation Group of China. Risk factors for nosocomial infection among hospitalised severe influenza A(H1N1)pdm09 patients. Respir Med 2018; 134: 86-91
  • 93 Eşki A, Öztürk GK, Gülen F, Çiçek C, Demir E. Risk factors for influenza virus related severe lower respiratory tract infection in children. Pediatr Infect Dis J 2019; 38 (11) 1090-1095
  • 94 Lalueza A, Folgueira D, Díaz-Pedroche C. , et al. Severe lymphopenia in hospitalized patients with influenza virus infection as a marker of a poor outcome. Infect Dis (Lond) 2019; 51 (07) 543-546
  • 95 Huang C, Wang Y, Li X. , et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497-506
  • 96 Méndez R, Menéndez R, Amara-Elori I. , et al. Lymphopenic community-acquired pneumonia is associated with a dysregulated immune response and increased severity and mortality. J Infect 2019; 78 (06) 423-431
  • 97 Yángüez E, Hunziker A, Dobay MP. , et al. Phosphoproteomic-based kinase profiling early in influenza virus infection identifies GRK2 as antiviral drug target. Nat Commun 2018; 9 (01) 3679
  • 98 Meineke R, Rimmelzwaan GF, Elbahesh H. Influenza virus infections and cellular kinases. Viruses 2019; 11 (02) 11
  • 99 Florence JM, Krupa A, Booshehri LM, Davis SA, Matthay MA, Kurdowska AK. Inhibiting Bruton's tyrosine kinase rescues mice from lethal influenza-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2018; 315 (01) L52-L58
  • 100 Hrincius ER, Liedmann S, Finkelstein D. , et al. Nonstructural protein 1 (NS1)-mediated inhibition of c-Abl results in acute lung injury and priming for bacterial co-infections: insights into 1918 H1N1 pandemic?. J Infect Dis 2015; 211 (09) 1418-1428
  • 101 Berg J, Zscheppang K, Fatykhova D. , et al. Tyk2 as a target for immune regulation in human viral/bacterial pneumonia. Eur Respir J 2017; 50 (01) 50
  • 102 Xie J, Zhang S, Hu Y. , et al. Regulatory roles of c-jun in H5N1 influenza virus replication and host inflammation. Biochim Biophys Acta 2014; 1842 (12, Pt A): 2479-2488
  • 103 Li G, Zhou L, Zhang C. , et al. Insulin-like growth factor 1 regulates acute inflammatory lung injury mediated by influenza virus infection. Front Microbiol 2019; 10: 2541
  • 104 Goraya MU, Zaighum F, Sajjad N, Anjum FR, Sakhawat I, Rahman SU. Web of interferon stimulated antiviral factors to control the influenza A viruses replication. Microb Pathog 2020; 139: 103919
  • 105 Jiang C, Zhou Z, Quan Y. , et al. CARMA3 is a host factor regulating the balance of inflammatory and antiviral responses against viral infection. Cell Rep 2016; 14 (10) 2389-2401
  • 106 Zhang S, Lin X. CARMA3: scaffold protein involved in NF-κB signaling. Front Immunol 2019; 10: 176
  • 107 Palomino-Segura M, Perez L, Farsakoglu Y. , et al. Protection against influenza infection requires early recognition by inflammatory dendritic cells through C-type lectin receptor SIGN-R1. Nat Microbiol 2019; 4 (11) 1930-1940
  • 108 Schloer S, Hübel N, Masemann D. , et al. The annexin A1/FPR2 signaling axis expands alveolar macrophages, limits viral replication, and attenuates pathogenesis in the murine influenza A virus infection model. FASEB J 2019; 33 (11) 12188-12199
  • 109 Poux C, Dondalska A, Bergenstråhle J. , et al. A single-stranded oligonucleotide inhibits toll-like receptor 3 activation and reduces influenza A (H1N1) infection. Front Immunol 2019; 10: 2161
  • 110 Huo C, Jin Y, Zou S. , et al. Lethal influenza A virus preferentially activates TLR3 and triggers a severe inflammatory response. Virus Res 2018; 257: 102-112
  • 111 To EE, Erlich J, Liong F. , et al. Intranasal and epicutaneous administration of Toll-like receptor 7 (TLR7) agonists provides protection against influenza A virus-induced morbidity in mice. Sci Rep 2019; 9 (01) 2366
  • 112 Behillil S, May F, Fourati S. , et al. Oseltamivir resistance in severe influenza A(H1N1)pdm09 pneumonia and acute respiratory distress syndrome: a French multicenter observational cohort study. Clin Infect Dis 2019; ciz904
  • 113 Stevaert A, Naesens L. The influenza virus polymerase complex: an update on its structure, functions, and significance for antiviral drug design. Med Res Rev 2016; 36 (06) 1127-1173
  • 114 Hayden FG, Shindo N. Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis 2019; 32 (02) 176-186
  • 115 Shaw ML, Palese P. Orthomyxoviridae. In: Knipe DM, Howley PM. , eds. Fields Virology. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2013
  • 116 Influenza (Flu) Antiviral Drugs and Related Information. 2019 . Available at: https://www.fda.gov/drugs/information-drug-class/influenza-flu-antiviral-drugs-and-related-information . Accessed February 12, 2020
  • 117 Noshi T, Kitano M, Taniguchi K. , et al. In vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit. Antiviral Res 2018; 160: 109-117
  • 118 Hayden FG, Sugaya N, Hirotsu N. , et al; Baloxavir Marboxil Investigators Group. Baloxavir marboxil for uncomplicated influenza in adults and adolescents. N Engl J Med 2018; 379 (10) 913-923
  • 119 Ison MG, Portsmouth S, Yoshida Y, Shishido T, Hayden F, Uehara T. LB16. Phase 3 trial of baloxavir marboxil in high-risk influenza patients (CAPSTONE-2 Study). Open Forum Infect Dis 2018; 5: S764-S765
  • 120 Hirotsu N, Sakaguchi H, Sato C. , et al. Baloxavir marboxil in Japanese pediatric patients with influenza: safety and clinical and virologic outcomes. Clin Infect Dis 2019; ciz908
  • 121 Beigel JH, Hayden FG. Influenza therapeutics in clinical practice-challenges and recent advances. Cold Spring Harb Perspect Med 2020; a038463
  • 122 Baker J, Burleigh L, Dimonaco S. , et al. Single-dose baloxavir is well tolerated and effective for treatment of influenza in otherwise healthy children aged 1 to < 12 years: a randomized, double-blinded, active- controlled study (miniSTONE-2). OPTIONS X for the Control of Influenza I ABSTRACTS. 2019:11756
  • 123 Ikematsu H, Kawaguchi K, Kinoshita M. , et al. Single-dose baloxavir for the prevention of influenza among household contacts: a randomized, double-blinded, placebo controlled post- exposure prophylaxis study (BLOCKSTONE). OPTIONS X for the Control of Influenza I ABSTRACTS. 2019:11718
  • 124 Kuhlbusch K, Nebesky JM, Bernasconi C. , et al. CENTERSTONE: a global phase IIIb, randomised, double-blind, placebo- controlled clinical efficacy study of baloxavir marboxil for the reduction of direct transmission of influenza from otherwise healthy patients to household contacts. OPTIONS X for the Control of Influenza I ABSTRACTS. 2019:11299
  • 125 Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad, Ser B, Phys Biol Sci 2017; 93 (07) 449-463
  • 126 Takashita E, Ejima M, Ogawa R. , et al. Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir. Antiviral Res 2016; 132: 170-177
  • 127 Goldhill DH, Te Velthuis AJW, Fletcher RA. , et al. The mechanism of resistance to favipiravir in influenza. Proc Natl Acad Sci U S A 2018; 115 (45) 11613-11618
  • 128 Wang Y, Cao B. Pharmacokinetics of favipiravir (T-705) in combination with oseltamivir for treatment of critically ill patients with severe influenza. OPTIONS X for the Control of Influenza I ABSTRACTS. 2019:11286
  • 129 Wang Y, Fan G, Salam A. , et al; CAP-China Network. Comparative effectiveness of combined favipiravir and oseltamivir therapy versus oseltamivir monotherapy in critically ill patients with influenza virus infection. J Infect Dis 2019; jiz656
  • 130 McKimm-Breschkin JL, Fry AM. Meeting report: 4th ISIRV antiviral group conference: Novel antiviral therapies for influenza and other respiratory viruses. Antiviral Res 2016; 129: 21-38
  • 131 McKimm-Breschkin JL, Jiang S, Hui DS, Beigel JH, Govorkova EA, Lee N. Prevention and treatment of respiratory viral infections: presentations on antivirals, traditional therapies and host-directed interventions at the 5th ISIRV Antiviral Group conference. Antiviral Res 2018; 149: 118-142
  • 132 Byrn RA, Jones SM, Bennett HB. , et al. Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit. Antimicrob Agents Chemother 2015; 59 (03) 1569-1582
  • 133 Finberg RW, Lanno R, Anderson D. , et al. Phase 2b study of pimodivir (JNJ-63623872) as monotherapy or in combination with oseltamivir for treatment of acute uncomplicated seasonal influenza A: TOPAZ Trial. J Infect Dis 2019; 219 (07) 1026-1034
  • 134 Muthuri SG, Venkatesan S, Myles PR. , et al; PRIDE Consortium Investigators. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: a meta-analysis of individual participant data. Lancet Respir Med 2014; 2 (05) 395-404
  • 135 Ramirez J, Peyrani P, Wiemken T, Chaves SS, Fry AM. A randomized study evaluating the effectiveness of oseltamivir initiated at the time of hospital admission in adults hospitalized with influenza-associated lower respiratory tract infections. Clin Infect Dis 2018; 67 (05) 736-742
  • 136 Marty FM, Vidal-Puigserver J, Clark C. , et al. Intravenous zanamivir or oral oseltamivir for hospitalised patients with influenza: an international, randomised, double-blind, double-dummy, phase 3 trial. Lancet Respir Med 2017; 5 (02) 135-146
  • 137 Chan-Tack KM, Kim C, Moruf A, Birnkrant DB. Clinical experience with intravenous zanamivir under an Emergency IND program in the United States (2011-2014). Antivir Ther 2015; 20 (05) 561-564
  • 138 Wang-Jairaj J, Zammit-Tabona P, Miller I. , et al. Aqueous Zanamivir Global Compassionate Use Program – 2009–2019. OPTIONS X for the Control of Influenza I ABSTRACTS. 2019:10978
  • 139 Cao B, Wang DY, Yu XM. , et al. An uncontrolled open-label, multicenter study to monitor the antiviral activity and safety of inhaled zanamivir (as Rotadisk via Diskhaler device) among Chinese adolescents and adults with influenza-like illness. Chin Med J (Engl) 2012; 125 (17) 3002-3007
  • 140 Higashiguchi M, Matsumoto T, Fujii T. A meta-analysis of laninamivir octanoate for treatment and prophylaxis of influenza. Antivir Ther 2018; 23 (02) 157-165
  • 141 Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci U S A 2017; 114 (02) 206-214
  • 142 Pshenichnaya NY, Bulgakova VA, Lvov NI. , et al. Clinical efficacy of umifenovir in influenza and ARVI (study ARBITR). Ter Arkh 2019; 91 (03) 56-63
  • 143 Koszalka P, Tilmanis D, Hurt AC. Influenza antivirals currently in late-phase clinical trial. Influenza Other Respir Viruses 2017; 11 (03) 240-246
  • 144 Davey Jr RT, Fernández-Cruz E, Markowitz N. , et al; INSIGHT FLU-IVIG Study Group. Anti-influenza hyperimmune intravenous immunoglobulin for adults with influenza A or B infection (FLU-IVIG): a double-blind, randomised, placebo-controlled trial. Lancet Respir Med 2019; 7 (11) 951-963
  • 145 Triana-Baltzer GB, Gubareva LV, Nicholls JM. , et al. Novel pandemic influenza A(H1N1) viruses are potently inhibited by DAS181, a sialidase fusion protein. PLoS One 2009; 4 (11) e7788
  • 146 Moss RB, Hansen C, Sanders RL, Hawley S, Li T, Steigbigel RT. A phase II study of DAS181, a novel host directed antiviral for the treatment of influenza infection. J Infect Dis 2012; 206 (12) 1844-1851
  • 147 Rossignol JF. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res 2014; 110: 94-103
  • 148 Haffizulla J, Hartman A, Hoppers M. , et al; US Nitazoxanide Influenza Clinical Study Group. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis 2014; 14 (07) 609-618
  • 149 Gamiño-Arroyo AE, Guerrero ML, McCarthy S. , et al; Mexico Emerging Infectious Diseases Clinical Research Network (LaRed). Efficacy and safety of nitazoxanide in addition to standard of care for the treatment of severe acute respiratory illness. Clin Infect Dis 2019; 69 (11) 1903-1911
  • 150 Hui DS, Lee N, Chan PK, Beigel JH. The role of adjuvant immunomodulatory agents for treatment of severe influenza. Antiviral Res 2018; 150: 202-216
  • 151 Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 2016; 13 (01) 3-10
  • 152 Wang CH, Chung FT, Lin SM. , et al. Adjuvant treatment with a mammalian target of rapamycin inhibitor, sirolimus, and steroids improves outcomes in patients with severe H1N1 pneumonia and acute respiratory failure. Crit Care Med 2014; 42 (02) 313-321
  • 153 Hung IFN, To KKW, Chan JFW. , et al. Efficacy of clarithromycin-naproxen-oseltamivir combination in the treatment of patients hospitalized for influenza A(H3N2) infection: an open-label randomized, controlled, phase IIb/III trial. Chest 2017; 151 (05) 1069-1080
  • 154 Cao B, Gao H, Zhou B. , et al. Adjuvant corticosteroid treatment in adults with influenza A (H7N9) viral pneumonia. Crit Care Med 2016; 44 (06) e318-e328
  • 155 Beigel JH, Bao Y, Beeler J. , et al; IRC003 Study Team. Oseltamivir, amantadine, and ribavirin combination antiviral therapy versus oseltamivir monotherapy for the treatment of influenza: a multicentre, double-blind, randomised phase 2 trial. Lancet Infect Dis 2017; 17 (12) 1255-1265
  • 156 Zhou F, Wang Y, Liu Y. , et al; and the CAP-China Network. Disease severity and clinical outcomes of community-acquired pneumonia caused by non-influenza respiratory viruses in adults: a multicentre prospective registry study from the CAP-China Network. Eur Respir J 2019; 54 (02) 54
  • 157 Wang M, Cao R, Zhang L. , et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30 (03) 269-271
  • 158 Hartmann BM, Albrecht RA, Zaslavsky E. , et al. Pandemic H1N1 influenza A viruses suppress immunogenic RIPK3-driven dendritic cell death. Nat Commun 2017; 8 (01) 1931
  • 159 Momota M, Lelliott P, Kubo A. , et al. ZBP1 governs the inflammasome-independent IL-1alpha and neutrophil inflammation that play a dual role in anti-influenza virus immunity. Int Immunol 2020; 32 (03) 203-212
  • 160 Beigel JH, Nam HH, Adams PL. , et al. Advances in respiratory virus therapeutics - A meeting report from the 6th isirv Antiviral Group conference. Antiviral Res 2019; 167: 45-67
  • 161 Trevejo JM, Asmal M, Vingerhoets J. , et al. Pimodivir treatment in adult volunteers experimentally inoculated with live influenza virus: a Phase IIa, randomized, double-blind, placebo-controlled study. Antivir Ther 2018; 23 (04) 335-344
  • 162 Watanabe A, Chang SC, Kim MJ, Chu DW, Ohashi Y. MARVEL Study Group Long-acting neuraminidase inhibitor laninamivir octanoate versus oseltamivir for treatment of influenza: a double-blind, randomized, noninferiority clinical trial. Clin Infect Dis 2010; 51 (10) 1167-1175
  • 163 Watanabe A. A randomized double-blind controlled study of laninamivir compared with oseltamivir for the treatment of influenza in patients with chronic respiratory diseases. J Infect Chemother 2013; 19 (01) 89-97