Semin Musculoskelet Radiol 2020; 24(03): 246-255
DOI: 10.1055/s-0040-1708818
Review Article

Is There a Role for Cartilage Imaging in Athletes?

1   Department of Radiology, University of California, San Diego, California
,
Benjamin D. Levine
2   Department of Radiology, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
,
Mario Padron
3   Department of Radiology, Clínica Cemtro, Madrid, Spain
,
Christine B. Chung
4   Department of Radiology, VA San Diego Healthcare System and University of California, San Diego, La Jolla, California
› Author Affiliations

Abstract

This article reviews implications for cartilage imaging in athletes in the setting of (1) acute chondral injury diagnosis, (2) evaluation and follow-up of conservative and surgical therapy, and (3) evaluation of cartilage as a surrogate for meniscal function and joint stability. Focal knee cartilage defects are common in athletic populations. Athletes with articular cartilage injury may initially be able to return to sport with conservative therapy; however, a reduction of athletic ability and progression to osteoarthritis is expected in athletes with untreated severe chondral injury. For diagnostic and pre- and postsurgical evaluation purposes, morphological magnetic resonance (MR) assessment of the articular cartilage with high-resolution protocols is crucial. Although not widely implemented for clinical use, compositional MR techniques have great potential for monitoring the development and progression of biochemical and microstructural changes in cartilage extracellular matrix before gross morphological changes occur.



Publication History

Article published online:
28 September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Jones SJ, Lyons RA, Sibert J, Evans R, Palmer SR. Changes in sports injuries to children between 1983 and 1998: comparison of case series. J Public Health Med 2001; 23 (04) 268-271
  • 2 Mithoefer K, Williams III RJ, Warren RF, Wickiewicz TL, Marx RG. High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 2006; 34 (09) 1413-1418
  • 3 Mithoefer K, Peterson L, Zenobi-Wong M, Mandelbaum BR. Cartilage issues in football—today's problems and tomorrow's solutions. Br J Sports Med 2015; 49 (09) 590-596
  • 4 Pan J, Pialat JB, Joseph T. , et al. Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: a longitudinal study of the normal control cohort from the Osteoarthritis Initiative. Radiology 2011; 261 (02) 507-515
  • 5 Palmieri-Smith RM, Wojtys EM, Potter HG. Early cartilage changes after anterior cruciate ligament injury: evaluation with imaging and serum biomarkers—a pilot study. Arthroscopy 2016; 32 (07) 1309-1318
  • 6 Schwaiger BJ, Gersing AS, Mbapte Wamba J, Nevitt MC, McCulloch CE, Link TM. Can signal abnormalities detected with MR imaging in knee articular cartilage be used to predict development of morphologic cartilage defects? 48-month data from the Osteoarthritis Initiative. Radiology 2016; 281 (01) 158-167
  • 7 McAdams TR, Mithoefer K, Scopp JM, Mandelbaum BR. Articular cartilage injury in athletes. Cartilage 2010; 1 (03) 165-179
  • 8 Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH. Prevalence of chondral defects in athletes' knees: a systematic review. Med Sci Sports Exerc 2010; 42 (10) 1795-1801
  • 9 Niethammer TR, Holzgruber M, Gülecyüz MF, Weber P, Pietschmann MF, Müller PE. Matrix based autologous chondrocyte implantation in children and adolescents: a match paired analysis in a follow-up over three years post-operation. Int Orthop 2017; 41 (02) 343-350
  • 10 Heir S, Årøen A, Løken S, Sulheim S, Engebretsen L, Reinholt FP. Intraarticular location predicts cartilage filling and subchondral bone changes in a chondral defect. Acta Orthop 2010; 81 (05) 619-627
  • 11 Cheng Q, Zhao FC. Comparison of 1.5- and 3.0-T magnetic resonance imaging for evaluating lesions of the knee: a systematic review and meta-analysis (PRISMA-compliant article). Medicine (Baltimore) 2018; 97 (38) e12401
  • 12 Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 2009; 250 (03) 839-848
  • 13 Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 1982; 64 (03) 460-466
  • 14 Brittberg M, Peterson L, Sjögren-Jansson E, Tallheden T, Lindahl A. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J Bone Joint Surg Am 2003; 85-A (Suppl. 03) 109-115
  • 15 Furukawa T, Eyre DR, Koide S, Glimcher MJ. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am 1980; 62 (01) 79-89
  • 16 Simonian PT, Sussmann PS, Wickiewicz TL, Paletta GA, Warren RF. Contact pressures at osteochondral donor sites in the knee. Am J Sports Med 1998; 26 (04) 491-494
  • 17 Rudd RG, Visco DM, Kincaid SA, Cantwell HD. The effects of beveling the margins of articular cartilage defects in immature dogs. Vet Surg 1987; 16 (05) 378-383
  • 18 Provencher MT, Chahla J, Cinque ME. , et al. Symptomatic focal knee chondral injuries in National Football League combine players are associated with poorer performance and less volume of Play. Arthroscopy 2018; 34 (03) 671-677
  • 19 Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR. Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med 2009; 37 (Suppl. 01) 167S-176S
  • 20 Drawer S, Fuller CW. Propensity for osteoarthritis and lower limb joint pain in retired professional soccer players. Br J Sports Med 2001; 35 (06) 402-408
  • 21 Felson DT, Lawrence RC, Dieppe PA. , et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 2000; 133 (08) 635-646
  • 22 Roemer FW, Guermazi A, Felson DT. , et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis 2011; 70 (10) 1804-1809
  • 23 Roemer FW, Zhang Y, Niu J. , et al; Multicenter Osteoarthritis Study Investigators. Tibiofemoral joint osteoarthritis: risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study. Radiology 2009; 252 (03) 772-780
  • 24 Guermazi A, Hayashi D, Roemer FW. , et al. Synovitis in knee osteoarthritis assessed by contrast-enhanced magnetic resonance imaging (MRI) is associated with radiographic tibiofemoral osteoarthritis and MRI-detected widespread cartilage damage: the MOST study. J Rheumatol 2014; 41 (03) 501-508
  • 25 Crema MD, Felson DT, Roemer FW. , et al. Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST study. Osteoarthritis Cartilage 2013; 21 (02) 306-313
  • 26 Felson DT, Chaisson CE, Hill CL. , et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 2001; 134 (07) 541-549
  • 27 Mall NA, Harris JD, Cole BJ. Clinical evaluation and preoperative planning of articular cartilage lesions of the knee. J Am Acad Orthop Surg 2015; 23 (10) 633-640
  • 28 Dai L, He Z, Zhang X. , et al. One-step repair for cartilage defects in a rabbit model: a technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture. Am J Sports Med 2014; 42 (03) 583-591
  • 29 Erggelet C, Endres M, Neumann K. , et al. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res 2009; 27 (10) 1353-1360
  • 30 Sofu H, Kockara N, Oner A, Camurcu Y, Issın A, Sahin V. Results of hyaluronic acid-based cell-free scaffold application in combination with microfracture for the treatment of osteochondral lesions of the knee: 2-year comparative study. Arthroscopy 2017; 33 (01) 209-216
  • 31 Kon E, Filardo G, Roffi A, Andriolo L, Marcacci M. New trends for knee cartilage regeneration: from cell-free scaffolds to mesenchymal stem cells. Curr Rev Musculoskelet Med 2012; 5 (03) 236-243
  • 32 Saris DB, Vanlauwe J, Victor J. , et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 2008; 36 (02) 235-246
  • 33 Behery O, Siston RA, Harris JD, Flanigan DC. Treatment of cartilage defects of the knee: expanding on the existing algorithm. Clin J Sport Med 2014; 24 (01) 21-30
  • 34 Abrams GD, Alentorn-Geli E, Harris JD, Cole BJ. Treatment of a lateral tibial plateau osteochondritis dissecans lesion with subchondral injection of calcium phosphate. Arthrosc Tech 2013; 2 (03) e271-e274
  • 35 Minas T, Ogura T, Headrick J, Bryant T. Autologous chondrocyte implantation “sandwich” technique compared with autologous bone grafting for deep osteochondral lesions in the knee. Am J Sports Med 2018; 46 (02) 322-332
  • 36 Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med 1995; 23 (06) 694-701
  • 37 Bjordal JM, Arnły F, Hannestad B, Strand T. Epidemiology of anterior cruciate ligament injuries in soccer. Am J Sports Med 1997; 25 (03) 341-345
  • 38 Joseph C, Pathak SS, Aravinda M, Rajan D. Is ACL reconstruction only for athletes? A study of the incidence of meniscal and cartilage injuries in an ACL-deficient athlete and non-athlete population: an Indian experience. Int Orthop 2008; 32 (01) 57-61
  • 39 Church S, Keating JF. Reconstruction of the anterior cruciate ligament: timing of surgery and the incidence of meniscal tears and degenerative change. J Bone Joint Surg Br 2005; 87 (12) 1639-1642
  • 40 Noyes FR, Barber-Westin SD. Anterior cruciate ligament reconstruction with autogenous patellar tendon graft in patients with articular cartilage damage. Am J Sports Med 1997; 25 (05) 626-634
  • 41 Kay J, Memon M, Shah A. , et al. Earlier anterior cruciate ligament reconstruction is associated with a decreased risk of medial meniscal and articular cartilage damage in children and adolescents: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2018; 26 (12) 3738-3753
  • 42 Ambra LF, Hinckel BB, Arendt EA, Farr J, Gomoll AH. Anatomic risk factors for focal cartilage lesions in the patella and trochlea: a case-control study. Am J Sports Med 2019; 47 (10) 2444-2453
  • 43 Krill M, Early N, Everhart JS, Flanigan DC. Autologous chondrocyte implantation (ACI) for knee cartilage defects: a review of indications, technique, and outcomes. JBJS Rev 2018; 6 (02) e5
  • 44 Hayashi D, Li X, Murakami AM, Roemer FW, Trattnig S, Guermazi A. Understanding magnetic resonance imaging of knee cartilage repair: a focus on clinical relevance. Cartilage 2018; 9 (03) 223-236
  • 45 McCarthy HS, McCall IW, Williams JM. , et al. Magnetic resonance imaging parameters at 1 year correlate with clinical outcomes up to 17 years after autologous chondrocyte implantation. Orthop J Sports Med 2018; 6 (08) 2325967118788280
  • 46 Anderson DE, Williams III RJ, DeBerardino TM. , et al. Magnetic resonance imaging characterization and clinical outcomes after NeoCart surgical therapy as a primary reparative treatment for knee cartilage injuries. Am J Sports Med 2017; 45 (04) 875-883
  • 47 Carter AH, Guttierez N, Subhawong TK. , et al. MR imaging of BioCartilage augmented microfracture surgery utilizing 2D MOCART and KOOS scores. J Clin Orthop Trauma 2018; 9 (02) 146-152
  • 48 Schreiner MM, Raudner M, Marlovits S. , et al. The MOCART (magnetic resonance observation of cartilage repair tissue) 2.0 knee score and atlas. Cartilage 2019 ; August 17 (Epub ahead of print)
  • 49 Chen M, Qiu L, Shen S. , et al. The influences of walking, running and stair activity on knee articular cartilage: quantitative MRI using T1 rho and T2 mapping. PLOS One 2017; 12 (11) e0187008
  • 50 Tjörnstrand J, Neuman P, Svensson J, Lundin B, Dahlberg LE, Tiderius CJ. Osteoarthritis development related to cartilage quality—the prognostic value of dGEMRIC after anterior cruciate ligament injury. Osteoarthritis Cartilage 2019; 27 (11) 1647-1652
  • 51 Yang J, Shao H, Ma Y. , et al. Quantitative ultrashort echo time magnetization transfer (UTE-MT) for diagnosis of early cartilage degeneration: comparison with UTE-T2* and T2 mapping. Quant Imaging Med Surg 2020; 10 (01) 171-183
  • 52 Mithoefer K, Williams III RJ, Warren RF. , et al. Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. Surgical technique. J Bone Joint Surg Am 2006; 88 (1, Suppl 1 Pt 2): 294-304
  • 53 Alparslan L, Winalski CS, Boutin RD, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol 2001; 5 (04) 345-363
  • 54 Link TM, Mischung J, Wörtler K, Burkart A, Rummeny EJ, Imhoff AB. Normal and pathological MR findings in osteochondral autografts with longitudinal follow-up. Eur Radiol 2006; 16 (01) 88-96
  • 55 Saltzman BM, Lin J, Lee S. Particulated juvenile articular cartilage allograft transplantation for osteochondral talar lesions. Cartilage 2017; 8 (01) 61-72
  • 56 Chang EY, Pallante-Kichura AL, Bae WC. , et al. Development of a Comprehensive Osteochondral Allograft MRI Scoring System (OCAMRISS) with histopathologic, micro-computed tomography, and biomechanical validation. Cartilage 2014; 5 (01) 16-27
  • 57 Williams III RJ, Ranawat AS, Potter HG, Carter T, Warren RF. Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am 2007; 89 (04) 718-726
  • 58 Brittberg M, Recker D, Ilgenfritz J, Saris DBF. SUMMIT Extension Study Group. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med 2018; 46 (06) 1343-1351
  • 59 Ogura T, Bryant T, Minas T. Long-term outcomes of autologous chondrocyte implantation in adolescent patients. Am J Sports Med 2017; 45 (05) 1066-1074
  • 60 Kreuz PC, Kalkreuth RH, Niemeyer P, Uhl M, Erggelet C. Long-term clinical and MRI results of matrix-assisted autologous chondrocyte implantation for articular cartilage defects of the knee. Cartilage 2019; 10 (03) 305-313
  • 61 Hoburg A, Niemeyer P, Laute V. , et al. Matrix-associated autologous chondrocyte implantation with spheroid technology is superior to arthroscopic microfracture at 36 months regarding activities of daily living and sporting activities after treatment. Cartilage 2020 ; January 1 (Epub ahead of print)
  • 62 Zhang C, Cai YZ, Lin XJ. Autologous chondrocyte implantation: Is it likely to become a saviour of large-sized and full-thickness cartilage defect in young adult knee?. Knee Surg Sports Traumatol Arthrosc 2016; 24 (05) 1643-1650
  • 63 Niemeyer P, Albrecht D, Andereya S. , et al. Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee 2016; 23 (03) 426-435
  • 64 Muller PE, Gallik D, Hammerschmid F. , et al. Third-generation autologous chondrocyte implantation after failed bone marrow stimulation leads to inferior clinical results. Knee Surg Sports Traumatol Arthrosc 2020; 28 (02) 470-477
  • 65 Merkely G, Ogura T, Bryant T, Minas T. Severe bone marrow edema among patients who underwent prior marrow stimulation technique is a significant predictor of graft failure after autologous chondrocyte implantation. Am J Sports Med 2019; 47 (08) 1874-1884
  • 66 Kijowski R, Chaudhary R. Quantitative magnetic resonance imaging of the articular cartilage of the knee joint. Magn Reson Imaging Clin N Am 2014; 22 (04) 649-669
  • 67 Wang X, Wrigley TV, Bennell KL. , et al. Cartilage quantitative T2 relaxation time 2-4 years following isolated anterior cruciate ligament reconstruction. J Orthop Res 2018; 36 (07) 2022-2029
  • 68 Chang EY, Chen KC, Chung CB. The shiny corner of the knee: a sign of meniscal osteochondral unit dysfunction. Skeletal Radiol 2014; 43 (10) 1403-1409
  • 69 Friedrich KM, Shepard T, de Oliveira VS. , et al. T2 measurements of cartilage in osteoarthritis patients with meniscal tears. AJR Am J Roentgenol 2009; 193 (05) W411-W415
  • 70 Gheno R, Yoon YC, Wang JH, Kim K, Baek SY. Changes in the T2 relaxation value of the tibiofemoral articular cartilage about 6 months after anterior cruciate ligament reconstruction using the double-bundle technique. Br J Radiol 2016; 89 (1060): 20151002
  • 71 Souza RB, Wu SJ, Morse LJ, Subburaj K, Allen CR, Feeley BT. Cartilage MRI relaxation times after arthroscopic partial medial meniscectomy reveal localized degeneration. Knee Surg Sports Traumatol Arthrosc 2015; 23 (01) 188-197