CC BY-NC-ND 4.0 · SynOpen 2021; 05(03): 173-228
DOI: 10.1055/s-0040-1706051
Graphical Review

C–H Bond Functionalization of Amines: A Graphical Overview of Diverse Methods

Subhradeep Dutta
,
,
Dillon R. L. Rickertsen
,
Daniel A. Valles
,
Daniel Seidel
Financial support from the NIH–NIGMS (grant no. R01GM101389) is gratefully acknowledged.
 


Abstract

This Graphical Review provides a concise overview of the manifold and mechanistically diverse methods that enable the functionalization of sp3 C–H bonds in amines and their derivatives.


# 1

Introduction

The development of methods for the C–H bond functionalization of amines continues to be a topic of significant interest. Given the potential to lead to real-world applications, coupled with the intellectually stimulating nature of the field, this sustained high level of interest is hardly surprising. A plethora of approaches have emerged over the years, exhibiting significant mechanistic diversity. In addition, an almost overwhelming number of contributions continue to be published at an ever-accelerating pace, making it challenging to keep up with what has already been accomplished, and to put new discoveries into perspective. The rapid speed of development can also obscure what has already been done well versus which transformations need further improvement (regarding scope, ease of use, cost, scalability, etc.), and which worthwhile unsolved challenges remain to be addressed. The goal of this Graphical Review is to provide a concise overview of the manifold methods that achieve the functionalization of sp3 C–H bonds in amines and their protected derivatives (e.g., amides, carbamates, N-aryl amines, etc.). We aim to cover the most important methods while highlighting the underlying mechanisms. Throughout, we have attempted to trace the origin of each approach back to a seminal report or important literature precedent. A focus is placed on historical contributions, key innovations, and the most recent cutting-edge advances. While reactions are grouped by mechanism, clear categorization of a given process is not always possible. Clearly, certain transformations would fit well into different categories. Due to the format of this review and the vast number of contributions published to date, this overview could not possibly be comprehensive, nor does it aim to be. Coverage extends to the end of 2020, with selected contributions from early 2021. We hope that this review will offer something of value to novices and experts alike. Feedback from the community is welcomed, so that a future, updated version of this review can be improved upon.

Regarding the structure of this Graphical Review, abbreviated references including prior reviews are provided within the Figures at the appropriate places. Full references are shown in the reference section and are grouped by Figure number. A note on the use of color: Amine substrates are shown in black, while groups that are being added are colored in light or dark blue. Catalysts are shown in purple or green. Other colors are used on occasion to highlight certain aspects (e.g., green for directing groups, red for hydrogens that are being functionalized, and orange for curly arrows).

Zoom Image
(from left to right) Subhradeep Dutta was born and raised in West Bengal, India. He earned a B.Sc. degree in chemistry from Calcutta University (India) in 2016 and an M.Sc. degree in chemistry from the Indian Institute of Technology Kanpur (IITK) in 2018 under the guidance of Prof. Basker Sundararaju. In August 2018, he moved to the University of Florida (USA) for his graduate studies, joining the group of Prof. Daniel Seidel. His research focuses on developing methods towards the C–H bond functionalization of cyclic amines.


Bowen Li was born and raised in Shandong, P. R. of China. He earned a B.Sc. degree in the School of Chemistry and Chemical Engineering at Shanghai Jiao Tong University (P. R. of China) working with Prof. Wanbin Zhang. In 2019, he moved to the University of Florida (USA) for his graduate studies, joining the group of Prof. Daniel Seidel. His research focuses on asymmetric catalysis and C–H bond functionalization.


Dillon Rickertsen was born in Denver, Colorado, USA. He earned a B.Sc. degree in the Department of Chemistry at the University of Colorado, Denver (USA), working with Prof. Scott Reed. In 2019, he moved to the University of Florida for his graduate studies, joining the group of Prof. Daniel Seidel. His research is focused on developing methodologies for the C–H bond functionalization of amines.


Daniel Valles was born in Caracas, Venezuela and raised in Weston, Florida, USA. He attended the California Institute of Technology (Caltech) (USA) working with Prof. Peter Dervan, Prof. Sarah Reisman, and Dr. Scott Virgil. In 2018, he started his Ph.D. research at the University of Florida under the direction of Prof. Daniel Seidel. His research focuses on the functionalization of C–H bonds on cyclic amines.


Daniel Seidel studied chemistry at the Friedrich-Schiller-Universität Jena (Germany) and at the University of Texas at Austin (USA) (Diplom 1998). He performed his graduate studies in the lab of Prof. Jonathan L. Sessler, obtaining his Ph.D. in 2002. From 2002–2005, he was an Ernst Schering Postdoctoral Fellow in the group of Prof. David A. Evans at Harvard University (USA). He started his independent career at Rutgers University (USA) in 2005 and was promoted to Associate Professor in 2011 and Full Professor in 2014. In the summer of 2017, his research group moved to the University of Florida (USA).
Zoom Image
Figure 1 Deprotonation of tertiary amines.[1]
Zoom Image
Figure 2 Deprotonation of protected amines, part I.[2]
Zoom Image
Figure 3 Deprotonation of protected amines, part II.[3]
Zoom Image
Figure 4 Deprotonation of protected amines, part III.[4]
Zoom Image
Figure 5 Deprotonation of protected amines, part IV.[5]
Zoom Image
Figure 6 Transition-metal-catalyzed reactions with substrates containing directing groups, part I.[6]
Zoom Image
Figure 7 Transition-metal-catalyzed reactions with substrates containing directing groups, part II.[7]
Zoom Image
Figure 8 Transition-metal-catalyzed reactions with substrates containing directing groups, functionalization of amino acid derivatives.[8]
Zoom Image
Figure 9 Transition-metal-catalyzed reactions with substrates containing directing groups, catalytic enantioselective approaches.[9]
Zoom Image
Figure 10 Transition-metal-catalyzed reactions involving transient directing groups (TDGs).[10]
Zoom Image
Figure 11 Native-amine-directed transition-metal-catalyzed reactions.[11]
Zoom Image
Figure 12 Undirected transition-metal-catalyzed reactions.[12]
Zoom Image
Figure 13 Hydroaminoalkylation.[13]
Zoom Image
Figure 14 Oxidative methods, stoichiometric metal-based oxidants.[14]
Zoom Image
Figure 15 Oxidative methods, stoichiometric nonmetallic oxidants.[15]
Zoom Image
Figure 16 Oxidative preparation of building blocks.[16]
Zoom Image
Figure 17 Metal-catalyzed cross-dehydrogenative-coupling (CDC) reactions.[17]
Zoom Image
Figure 18 Metal-catalyzed cross-dehydrogenative-coupling (CDC) reactions with oxygen as the terminal oxidant.[18]
Zoom Image
Figure 19 Iodine-catalyzed cross-dehydrogenative-coupling (CDC) reactions.[19]
Zoom Image
Figure 20 Acceptorless cross-dehydrogenative-coupling (CDC) reactions with hydrogen evolution.[20]
Zoom Image
Figure 21 Catalytic enantioselective cross-dehydrogenative-coupling (CDC) reactions.[21]
Zoom Image
Figure 22 Oxidative β-functionalization.[22]
Zoom Image
Figure 23 Oxidative formation of sulfur-rich heterocycles.[23]
Zoom Image
Figure 24 Reactions involving amine N-oxides.[24]
Zoom Image
Figure 25 Dehydrogenation/aromatization.[25]
Zoom Image
Figure 26 Hydrogen borrowing.[26]
Zoom Image
Figure 27 Condensation-based methods involving azomethine ylide intermediates, aromatization.[27]
Zoom Image
Figure 28 Condensation-based methods involving azomethine ylide intermediates, pericyclic reactions.[28]
Zoom Image
Figure 29 Condensation-based methods involving azomethine ylide intermediates, redox-neutral 3-component coupling reactions.[29]
Zoom Image
Figure 30 Condensation-based methods involving azomethine ylide intermediates, redox-annulations.[30]
Zoom Image
Figure 31 Internal redox transformations involving [1,n]-H transfers, the ‘tert-amino effect’.[31]
Zoom Image
Figure 32 Lewis and Brønsted acid catalyzed internal redox transformations involving [1,n]-H transfers.[32]
Zoom Image
Figure 33 Catalytic enantioselective internal redox transformations involving [1,n]-H transfers.[33]
Zoom Image
Figure 34 Internal redox transformations involving [1,n]-H transfers in non-conjugated systems.[34]
Zoom Image
Figure 35 (Redox-neutral) methods involving intermolecular hydride transfer.[35]
Zoom Image
Figure 36 Li-amide-based imine and 1-azaallyl anion generation from unprotected azacycles.[36]
Zoom Image
Figure 37 Reactions involving carbenes or metal carbenoids.[37]
Zoom Image
Figure 38 Hofmann–Löffler–Freytag (HLF) reaction.[38]
Zoom Image
Figure 39 Miscellaneous radical-based methods.[39]
Zoom Image
Figure 40 Electrochemical approaches, cation pool method.[40]
Zoom Image
Figure 41 Electrochemical approaches, 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO) catalysis.[41]
Zoom Image
Figure 42 Intramolecular hydrogen atom transfer (HAT).[42]
Zoom Image
Figure 43 Direct hydrogen atom transfer (HAT).[43]
Zoom Image
Figure 44 Photoredox approaches, part I.[44]
Zoom Image
Figure 45 Photoredox approaches, part II.[45]
Zoom Image
Figure 46 Indirect hydrogen atom transfer (HAT).[46]
Zoom Image
Figure 47 Deconstructive functionalization.[47]

#
#

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

We are grateful to the current and former members of the Seidel research group who have contributed to the development of this field.

  • References

    • 1a Peterson DJ, Hays HR. J. Org. Chem. 1965; 30: 1939
    • 1b Lepley AR, Giumanini AG. J. Org. Chem. 1966; 31: 2055
    • 1c Ahlbrecht H, Dollinger H. Tetrahedron Lett. 1984; 25: 1353
    • 1d Gessner VH, Strohmann C. J. Am. Chem. Soc. 2008; 130: 14412
    • 1e Kessar SV, Singh P, Vohra R, Kaur NP, Singh KN. J. Chem. Soc., Chem. Commun. 1991; 568
    • 1f Kessar SV, Vohra R, Kaur NP. Tetrahedron Lett. 1991; 32: 3221
    • 1g De Ceglie MC, Musio B, Affortunato F, Moliterni A, Altomare A, Florio S, Luisi R. Chem. Eur. J. 2011; 17: 286
    • 1h Singh KN, Singh P, Singh P, Deol YS. Org. Lett. 2012; 14: 2202
    • 1i Lepley AR, Khan WA. J. Org. Chem. 1966; 31: 2061
    • 1j Lepley AR, Khan WA. Chem. Commun. 1967; 1198
    • 1k Kessar SV, Singh P. Chem. Rev. 1997; 97: 721
    • 1l Katritzky AR, Qi M. Tetrahedron 1998; 54: 2647
    • 1m Ferey V, Toupet L, Le Gall T, Mioskowski C. Angew. Chem., Int. Ed. Engl. 1996; 35: 430
    • 1n Vedejs E, Kendall JT. J. Am. Chem. Soc. 1997; 119: 6941
    • 1o Ebden MR, Simpkins NS, Fox DN. A. Tetrahedron 1998; 54: 12923
    • 1p Kessar SV, Singh P, Singh KN, Venugopalan P, Kaur A, Bharatam PV, Sharma AK. J. Am. Chem. Soc. 2007; 129: 4506
    • 1q Harmata M, Carter KW, Jones DE, Kahraman M. Tetrahedron Lett. 1996; 37: 6267
    • 1r Kovács E, Huszka B, Gáti T, Nyerges M, Faigl F, Mucsi Z. J. Org. Chem. 2019; 84: 7100
    • 1s Kovács E, Faigl F, Mucsi Z. J. Org. Chem. 2020; 85: 11226
    • 2a Keefer LK, Fodor CH. J. Am. Chem. Soc. 1970; 92: 5747
    • 2b Seebach D, Enders D. Angew. Chem., Int. Ed. Engl. 1972; 11: 301
    • 2c Seebach D, Enders D. Angew. Chem., Int. Ed. Engl. 1972; 11: 1101
    • 2d Seebach D, Wykypiel W. Synthesis 1979; 423
    • 2e Seebach D, Enders D. J. Med. Chem. 1974; 17: 1225
    • 2f Fraser RR, Passannanti S. Synthesis 1976; 540
    • 2g Wykypiel W, Seebach D. Tetrahedron Lett. 1980; 21: 1927
    • 2h Savignac P, Dreux M, Leroux Y. Tetrahedron Lett. 1974; 15: 2651
    • 2i Savignac P, Leroux Y. J. Organomet. Chem. 1973; 57: C47
    • 2j Magnus P, Roy G. Synthesis 1980; 575
    • 2k Seebach D, Yoshifuji M. Helv. Chim. Acta 1981; 64: 643
    • 2l Beak P, Zajdel WJ. J. Am. Chem. Soc. 1984; 106: 1010
    • 2m Meyers AI, Edwards PD, Rieker WF, Bailey TR. J. Am. Chem. Soc. 1984; 106: 3270
    • 2n Meyers AL, Dickman DA, Boes M. Tetrahedron 1987; 43: 5095
    • 2o Meyers AI. Tetrahedron 1992; 48: 2589
    • 2p Seebach D, Enders D. Angew. Chem., Int. Ed. Engl. 1975; 14: 15
    • 2q Beak P, Reitz DB. Chem. Rev. 1978; 78: 275
    • 2r Beak P, Zajdel WJ, Reitz DB. Chem. Rev. 1984; 84: 471
    • 2s Clayden J. Organolithiums: Selectivity for Synthesis. In Tetrahedron Organic Chemistry Series, Vol. 23. Clayden J. Pergamon; Amsterdam: 2002: 9
    • 2t Fraser RR, Boussard G, Postescu ID, Whiting JJ, Wigfield YY. Can. J. Chem. 1973; 51: 1109
    • 2u Lyle RE, Saavedra JE, Lyle GG, Fribush HM, Marshall JL, Lijinsky W, Singer GM. Tetrahedron Lett. 1976; 17: 4431
    • 2v Seebach D, Lubosch W. Angew. Chem., Int. Ed. Engl. 1976; 15: 313
    • 2w Seebach D, Hassel T. Angew. Chem., Int. Ed. Engl. 1978; 17: 274
    • 2x Meyers AI, Ten Hoeve W. J. Am. Chem. Soc. 1980; 102: 7125
    • 2y Seebach D, Lohmann J.-J, Syfrig MA, Yoshifuji M. Tetrahedron 1983; 39: 1963
    • 2z Gawley RE, Hart G, Goicoechea-Pappas M, Smith AL. J. Org. Chem. 1986; 51: 3076
    • 2aa Gawley RE, Rein K, Chemburkar S. J. Org. Chem. 1989; 54: 3002
    • 2ab Meyers AI, Milot G. J. Org. Chem. 1993; 58: 6538
    • 2ac Nain Singh K, Singh P, Kaur A. Synth. Commun. 2006; 36: 3339
    • 3a Beak P, Lee W.-K. Tetrahedron Lett. 1989; 30: 1197
    • 3b Beak P, Lee WK. J. Org. Chem. 1990; 55: 2578
    • 3c Beak P, Lee WK. J. Org. Chem. 1993; 58: 1109
    • 3d Xiao D, Lavey BJ, Palani A, Wang C, Aslanian RG, Kozlowski JA, Shih N.-Y, McPhail AT, Randolph GP, Lachowicz JE, Duffy RA. Tetrahedron Lett. 2005; 46: 7653
    • 3e Aeyad T, Williams JD, Meijer AJ. H. M, Coldham I. Synlett 2017; 28: 2765
    • 3f Beak P, Wu S, Yum EK, Jun YM. J. Org. Chem. 1994; 59: 276
    • 3g Dieter RK, Li S. Tetrahedron Lett. 1995; 36: 3613
    • 3h Dieter RK, Li S. J. Org. Chem. 1997; 62: 7726
    • 3i Dieter RK, Dieter JW, Alexander CW, Bhinderwala NS. J. Org. Chem. 1996; 61: 2930
    • 3j Dieter RK, Velu SE. J. Org. Chem. 1997; 62: 3798
    • 3k Dieter RK, Lu K, Velu SE. J. Org. Chem. 2000; 65: 8715
    • 3l Barker G, O’Brien P, Campos KR. Org. Lett. 2010; 12: 4176
    • 3m Kwong A, Firth JD, Farmer TJ, O’Brien P. Tetrahedron 2021; 81: 131899
    • 3n Stead D, O’Brien P, Sanderson AJ. Org. Lett. 2005; 7: 4459
    • 3o Berkheij M, van der Sluis L, Sewing C, den Boer DJ, Terpstra JW, Hiemstra H, Iwema Bakker WI, van den Hoogenband A, van Maarseveen JH. Tetrahedron Lett. 2005; 46: 2369
    • 3p Hodgson DM, Humphreys PG, Xu Z, Ward JG. Angew. Chem. Int. Ed. 2007; 46: 2245
    • 3q Li X, Leonori D, Sheikh NS, Coldham I. Chem. Eur. J. 2013; 19: 7724
    • 3r Pizzuti MG, Minnaard AJ, Feringa BL. Org. Biomol. Chem. 2008; 6: 3464
    • 3s Krishnan S, Bagdanoff JT, Ebner DC, Ramtohul YK, Tambar UK, Stoltz BM. J. Am. Chem. Soc. 2008; 130: 13745
    • 3t Dieter RK, Sharma RR, Ryan W. Tetrahedron Lett. 1997; 38: 783
    • 3u Dieter RK, Lu K. J. Org. Chem. 2002; 67: 847
    • 3v Coldham I, Leonori D. Org. Lett. 2008; 10: 3923
    • 4a Kerrick ST, Beak P. J. Am. Chem. Soc. 1991; 113: 9708
    • 4b Beak P, Kerrick ST, Wu S, Chu J. J. Am. Chem. Soc. 1994; 116: 3231
    • 4c Dearden MJ, Firkin CR, Hermet J.-PR, O’Brien P. J. Am. Chem. Soc. 2002; 124: 11870
    • 4d Campos KR, Klapars A, Waldman JH, Dormer PG, Chen C.-Y. J. Am. Chem. Soc. 2006; 128: 3538
    • 4e Seel S, Thaler T, Takatsu K, Zhang C, Zipse H, Straub BF, Mayer P, Knochel P. J. Am. Chem. Soc. 2011; 133: 4774
    • 4f Kasten K, Seling N, O’Brien P. Org. React. 2019; 100: 255
    • 4g Wong JY. F, Barker G. Tetrahedron 2020; 76: 131704
    • 4h Gallagher DJ, Beak P. J. Org. Chem. 1995; 60: 7092
    • 4i Wilkinson TJ, Stehle NW, Beak P. Org. Lett. 2000; 2: 155
    • 4j Phuan P.-W, Ianni JC, Kozlowski MC. J. Am. Chem. Soc. 2004; 126: 15473
    • 4k Coldham I, Leonori D. J. Org. Chem. 2010; 75: 4069
    • 4l Sheikh NS, Leonori D, Barker G, Firth JD, Campos KR, Meijer AJ. H. M, O’Brien P, Coldham I. J. Am. Chem. Soc. 2012; 134: 5300
    • 4m Kizirian J.-C, Caille J.-C, Alexakis A. Tetrahedron Lett. 2003; 44: 8893
    • 4n Hermet J.-PR, Porter DW, Dearden MJ, Harrison JR, Koplin T, O’Brien P, Parmene J, Tyurin V, Whitwood AC, Gilday J, Smith NM. Org. Biomol. Chem. 2003; 1: 3977
    • 4o McGrath MJ, Bilke JL, O’Brien P. Chem. Commun. 2006; 2607
    • 4p McGrath MJ, O’Brien P. J. Am. Chem. Soc. 2005; 127: 16378
    • 5a Coldham I, Raimbault S, Whittaker DT. E, Chovatia PT, Leonori D, Patel JJ, Sheikh NS. Chem. Eur. J. 2010; 16: 4082
    • 5b Millet A, Larini P, Clot E, Baudoin O. Chem. Sci. 2013; 4: 2241
    • 5c Cordier CJ, Lundgren RJ, Fu GC. J. Am. Chem. Soc. 2013; 135: 10946
    • 5d Mu X, Shibata Y, Makida Y, Fu GC. Angew. Chem. Int. Ed. 2017; 56: 5821
    • 5e Beak P, Basu A, Gallagher DJ, Park YS, Thayumanavan S. Acc. Chem. Res. 1996; 29: 552
    • 5f Campos KR. Chem. Soc. Rev. 2007; 36: 1069
    • 5g Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BU. W. Chem. Eur. J. 2012; 18: 10092
    • 5h Coldham I, Dufour S, Haxell TF. N, Howard S, Vennall GP. Angew. Chem. Int. Ed. 2002; 41: 3887
    • 5i Beng TK, Gawley RE. J. Am. Chem. Soc. 2010; 132: 12216
    • 5j Millet A, Dailler D, Larini P, Baudoin O. Angew. Chem. Int. Ed. 2014; 53: 2678
    • 5k Watson RT, Gore VK, Chandupatla KR, Dieter RK, Snyder JP. J. Org. Chem. 2004; 69: 6105
    • 5l Klapars A, Campos KR, Waldman JH, Zewge D, Dormer PG, Chen C.-Y. J. Org. Chem. 2008; 73: 4986
    • 5m Barker G, McGrath JL, Klapars A, Stead D, Zhou G, Campos KR, O’Brien P. J. Org. Chem. 2011; 76: 5936
    • 6a Jun C.-H. Chem. Commun. 1998; 1405
    • 6b Wang D.-H, Hao X.-S, Wu D.-F, Yu J.-Q. Org. Lett. 2006; 8: 3387
    • 6c Pan S, Endo K, Shibata T. Org. Lett. 2011; 13: 4692
    • 6d Chatani N, Asaumi T, Ikeda T, Yorimitsu S, Ishii Y, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2000; 122: 12882
    • 6e Pastine SJ, Gribkov DV, Sames D. J. Am. Chem. Soc. 2006; 128: 14220
    • 6f Chatani N, Asaumi T, Yorimitsu S, Ikeda T, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2001; 123: 10935
    • 6g Tsuchikama K, Kasagawa M, Endo K, Shibata T. Org. Lett. 2009; 11: 1821
    • 6h Schinkel M, Wang L, Bielefeld K, Ackermann L. Org. Lett. 2014; 16: 1876
    • 6i Lahm G, Opatz T. Org. Lett. 2014; 16: 4201
    • 6j Spangler JE, Kobayashi Y, Verma P, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 11876
    • 6k Tran AT, Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 10530
    • 6l Antermite D, Affron DP, Bull JA. Org. Lett. 2018; 20: 3948
    • 6m Reyes RL, Sato M, Iwai T, Sawamura M. J. Am. Chem. Soc. 2020; 142: 589
    • 6n Su B, Bunescu A, Qiu Y, Zuend SJ, Ernst M, Hartwig JF. J. Am. Chem. Soc. 2020; 142: 7912
    • 6o He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 6p Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 6q Zhang M, Wang Q, Peng Y, Chen Z, Wan C, Chen J, Zhao Y, Zhang R, Zhang AQ. Chem. Commun. 2019; 55: 13048
    • 6r Kapoor M, Singh A, Sharma K, Hsu MH. Adv. Synth. Catal. 2020; 362: 4513
    • 7a Topczewski JJ, Cabrera PJ, Saper NI, Sanford MS. Nature 2016; 531: 220
    • 7b Cabrera PJ, Lee M, Sanford MS. J. Am. Chem. Soc. 2018; 140: 5599
    • 7c Aguilera EY, Sanford MS. Angew. Chem. Int. Ed. 2021; 60: 11227
    • 7d Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 7e Zhang S.-Y, He G, Nack WA, Zhao Y, Li Q, Chen G. J. Am. Chem. Soc. 2013; 135: 2124
    • 7f Zhang S.-Y, He G, Zhao Y, Wright K, Nack WA, Chen G. J. Am. Chem. Soc. 2012; 134: 7313
    • 7g He G, Zhao Y, Zhang S, Lu C, Chen G. J. Am. Chem. Soc. 2012; 134: 3
    • 7h He G, Zhao Y, Zhang S, Lu C, Chen G. J. Am. Chem. Soc. 2017; 139: 561
    • 7i Verma P, Richter JM, Chekshin N, Qiao JX, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 5117
    • 7j Nadres ET, Daugulis O. J. Am. Chem. Soc. 2012; 134: 7
    • 7k Ye X, He Z, Ahmed T, Weise K, Akhmedov NG, Petersen JL, Shi X. Chem. Sci. 2013; 4: 3712
    • 7l Li Q, Zhang S.-Y, He G, Nack WA, Chen G. Adv. Synth. Catal. 2014; 356: 1544
    • 7m Wang P.-L, Li Y, Wu Y, Li C, Lan Q, Wang X.-S. Org. Lett. 2015; 17: 3698
    • 7n Huang Z, Wang C, Dong G. Angew. Chem. Int. Ed. 2016; 55: 5299
    • 7o Coomber CE, Benhamou L, Bučar D.-K, Smith PD, Porter MJ, Sheppard TD. J. Org. Chem. 2018; 83: 2495
    • 8a Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
    • 8b Tran LD, Daugulis O. Angew. Chem. Int. Ed. 2012; 51: 5188
    • 8c Affron DP, Davis OA, Bull JA. Org. Lett. 2014; 16: 4956
    • 8d Affron DP, Bull JA. Eur. J. Org. Chem. 2016; 139
    • 8e Maetani M, Zoller J, Melillo B, Verho O, Kato N, Pu J, Comer E, Schreiber SL. J. Am. Chem. Soc. 2017; 139: 11300
    • 8f He J, Li S, Deng Y, Fu H, Laforteza BN, Spangler JE, Homs A, Yu J.-Q. Science 2014; 343: 1216
    • 8g He G, Chen G. Angew. Chem. Int. Ed. 2011; 50: 5192
    • 8h Rodríguez N, Romero-Revilla JA, Fernández-Ibáñez M. Á, Carretero JC. Chem. Sci. 2013; 4: 175
    • 8i Chen K, Hu F, Zhang S.-Q, Shi B.-F. Chem. Sci. 2013; 4: 3906
    • 8j Zhang S.-Y, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2013; 135: 12135
    • 8k Wang B, Nack WA, He G, Zhang S.-Y, Chen G. Chem. Sci. 2014; 5: 3952
    • 8l Gong W, Zhang G, Liu T, Giri R, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 16940
    • 8m Zhang L.-S, Chen G, Wang X, Guo Q.-Y, Zhang X.-S, Pan F, Chen K, Shi Z.-J. Angew. Chem. Int. Ed. 2014; 53: 3899
    • 8n Zhang Q, Yin X.-S, Chen K, Zhang S.-Q, Shi B.-F. J. Am. Chem. Soc. 2015; 137: 8219
    • 8o Ye S, Yang W, Coon T, Fanning D, Neubert T, Stamos D, Yu J.-Q. Chem. Eur. J. 2016; 22: 4748
    • 8p Xu J.-W, Zhang Z.-Z, Rao W.-H, Shi B.-F. J. Am. Chem. Soc. 2016; 138: 10750
    • 8q Zhan B.-B, Li Y, Xu J.-W, Nie X.-L, Fan J, Jin L, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 5858
    • 8r Noisier AF. M, Brimble MA. Chem. Rev. 2014; 114: 8775
    • 8s He G, Wang B, Nack WA, Chen G. Acc. Chem. Res. 2016; 49: 635
    • 8t Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14700
    • 8u Tong H.-R, Li B, Li G, He G, Chen G. CCS Chem. 2020; 3: 1797
    • 9a Wang H, Tong H.-R, He G, Chen G. Angew. Chem. Int. Ed. 2016; 55: 15387
    • 9b Jain P, Verma P, Xia G, Yu J.-Q. Nat. Chem. 2017; 9: 140
    • 9c Jiang H.-J, Zhong X.-M, Yu J, Zhang Y, Zhang X, Wu Y.-D, Gong L.-Z. Angew. Chem. Int. Ed. 2019; 58: 1803
    • 9d Greßies S, Klauck FJ. R, Kim JH, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2018; 57: 9950
    • 9e Chen L, Yang Y, Liu L, Gao Q, Xu S. J. Am. Chem. Soc. 2020; 142: 12062
    • 10a Wu Y, Chen Y.-Q, Liu T, Eastgate MD, Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14554
    • 10b Liu Y, Ge H. Nat. Chem. 2017; 9: 26
    • 10c Kapoor M, Liu D, Young MC. J. Am. Chem. Soc. 2018; 140: 6818
    • 10d Chen Y.-Q, Wang Z, Wu Y, Wisniewski SR, Qiao JX, Ewing WR, Eastgate MD, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 17884
    • 10e Chen Y.-Q, Singh S, Wu Y, Wang Z, Hao W, Verma P, Qiao JX, Sunoj RB, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 9966
    • 10f Yada A, Liao W, Sato Y, Murakami M. Angew. Chem. Int. Ed. 2017; 56: 1073
    • 10g St John-Campbell S, Ou AK, Bull JA. Chem. Eur. J. 2018; 24: 17838
    • 10h St John-Campbell S, Bull JA. Org. Biomol. Chem. 2018; 16: 4582
    • 10i Niu B, Yang K, Lawrence B, Ge H. ChemSusChem 2019; 12: 2955
    • 10j Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
    • 11a McNally A, Haffemayer B, Collins BS. L, Gaunt MJ. Nature 2014; 510: 129
    • 11b Smalley AP, Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 10632
    • 11c Willcox D, Chappell BG. N, Hogg KF, Calleja J, Smalley AP, Gaunt MJ. Science 2016; 354: 851
    • 11d Smalley AP, Cuthbertson JD, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 1412
    • 11e Whitehurst WG, Blackwell JH, Hermann GN, Gaunt MJ. Angew. Chem. Int. Ed. 2019; 58: 9054
    • 11f Zhuang Z, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 12015
    • 11g Calleja J, Pla D, Gorman TW, Domingo V, Haffemayer B, Gaunt MJ. Nat. Chem. 2015; 7: 1009
    • 11h Cabrera-Pardo JR, Trowbridge A, Nappi M, Ozaki K, Gaunt MJ. Angew. Chem. Int. Ed. 2017; 56: 11958
    • 11i Chen K, Wang D, Li Z.-W, Liu Z, Pan F, Zhang Y.-F, Shi Z.-J. Org. Chem. Front. 2017; 4: 2097
    • 11j Png ZM, Cabrera-Pardo JR, Peiró Cadahía J, Gaunt MJ. Chem. Sci. 2018; 9: 7628
    • 11k Lin H, Pan X, Barsamian AL, Kamenecka TM, Bannister TD. ACS Catal. 2019; 9: 4887
    • 11l Rodrigalvarez J, Nappi M, Azuma H, Flodén NJ, Burns ME, Gaunt MJ. Nat. Chem. 2020; 12: 76
    • 11m He C, Whitehurst WG, Gaunt MJ. Chem 2019; 5: 1031
    • 12a Li Q, Liskey CW, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 8755
    • 12b Lee M, Sanford MS. J. Am. Chem. Soc. 2015; 137: 12796
    • 12c Howell JM, Feng K, Clark JR, Trzepkowski LJ, White MC. J. Am. Chem. Soc. 2015; 137: 14590
    • 12d Zhao J, Nanjo T, de Lucca EC, White MC. Nat. Chem. 2019; 11: 213
    • 12e Clark JR, Feng K, Sookezian A, White MC. Nat. Chem. 2018; 10: 583
    • 12f Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Science 2020; 368: 736
    • 12g Su B, Lee T, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 18032
    • 12h Mack JB. C, Gipson JD, Du Bois J, Sigman MS. J. Am. Chem. Soc. 2017; 139: 9503
    • 12i Mbofana CT, Chong E, Lawniczak J, Sanford MS. Org. Lett. 2016; 18: 4258
    • 12j Nanjo T, de Lucca EC, White MC. J. Am. Chem. Soc. 2017; 139: 14586
    • 12k Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
    • 12l Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
    • 13a Clerici MG, Maspero F. Synthesis 1980; 305
    • 13b Nugent WA, Ovenall DW, Holmes SJ. Organometallics 1983; 2: 161
    • 13c Herzon SB, Hartwig JF. J. Am. Chem. Soc. 2007; 129: 6690
    • 13d Herzon SB, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 14940
    • 13e Kubiak R, Prochnow I, Doye S. Angew. Chem. Int. Ed. 2009; 48: 1153
    • 13f Bexrud JA, Eisenberger P, Leitch DC, Payne PR, Schafer LL. J. Am. Chem. Soc. 2009; 131: 2116
    • 13g Nako AE, Oyamada J, Nishiura M, Hou Z. Chem. Sci. 2016; 7: 6429
    • 13h Reznichenko AL, Hultzsch KC. J. Am. Chem. Soc. 2012; 134: 3300
    • 13i Roesky PW. Angew. Chem. Int. Ed. 2009; 48: 4892
    • 13j Kruger K, Tillack A, Beller M. ChemSusChem 2009; 2: 715
    • 13k Chong E, Garcia P, Schafer L. Synthesis 2014; 46: 2884
    • 13l Hannedouche J, Schulz E. Organometallics 2018; 37: 4313
    • 13m Edwards PM, Schafer LL. Chem. Commun. 2018; 54: 12543
    • 13n Eisenberger P, Ayinla RO, Lauzon JM, Schafer LL. Angew. Chem. Int. Ed. 2009; 48: 8361
    • 13o Bytschkov I, Doye S. Eur. J. Org. Chem. 2001; 4411
    • 13p Ramanathan B, Odom AL. J. Am. Chem. Soc. 2006; 128: 9344
    • 13q Zi G, Zhang F, Song H. Chem. Commun. 2010; 46: 6296
    • 13r Reznichenko AL, Emge TJ, Audörsch S, Klauber EG, Hultzsch KC, Schmidt B. Organometallics 2011; 30: 921
    • 13s Payne PR, Garcia P, Eisenberger P, Yim JC.-H, Schafer LL. Org. Lett. 2013; 15: 2182
    • 13t Luhning LH, Strehl J, Schmidtmann M, Doye S. Chem. Eur. J. 2017; 23: 4197
    • 13u Geik D, Rosien M, Bielefeld J, Schmidtmann M, Doye S. Angew. Chem. Int. Ed. 2021; 60: 9936
    • 14a Leonard NJ, Hay AS, Fulmer RW, Gash VW. J. Am. Chem. Soc. 1955; 77: 439
    • 14b Leonard NJ, Morrow DF. J. Am. Chem. Soc. 1958; 80: 371
    • 14c Leonard NJ, Hauck FP. J. Am. Chem. Soc. 1957; 79: 5279
    • 14d Van Tamelen EE, Foltz RL. J. Am. Chem. Soc. 1969; 91: 7372
    • 14e Gutzwiller J, Pizzolato G, Uskoković M. J. Am. Chem. Soc. 1971; 93: 5907
    • 14f Openshaw HT, Whittaker N. J. Chem. Soc. 1963; 1449
    • 14g Bartlett MF, Lambert BF, Taylor WI. J. Am. Chem. Soc. 1964; 86: 729
    • 14h Barczaibeke M, Dornyei G, Kajtar M, Szantay C. Tetrahedron 1976; 32: 1019
    • 14i Sakai S, Kubo A, Haginiwa J. Tetrahedron Lett. 1969; 10: 1485
    • 14j Butler RN. Chem. Rev. 1984; 84: 249
    • 15a Rosenblatt DH, Moore KA, Streaty RA, Hayes AJ, Harrison BL. J. Org. Chem. 1963; 28: 2790
    • 15b Chen CK, Hortmann AG, Marzabadi MR. J. Am. Chem. Soc. 1988; 110: 4829
    • 15c Moriarty RM, Vaid RK, Duncan MP, Ochiai M, Inenaga M, Nagao Y. Tetrahedron Lett. 1988; 29: 6913
    • 15d Shen H, Zhang XH, Liu Q, Pan J, Hu W, Xiong Y, Zhu XM. Tetrahedron Lett. 2015; 56: 5628
    • 15e Tsang AS. K, Todd MH. Tetrahedron Lett. 2009; 50: 1199
    • 15f Chu LL, Qing FL. Chem. Commun. 2010; 46: 6285
    • 15g Allen JM, Lambert TH. J. Am. Chem. Soc. 2011; 133: 1260
    • 15h Xie ZY, Liu L, Chen WF, Zheng HB, Xu QQ, Yuan HQ, Lou HX. Angew. Chem. Int. Ed. 2014; 53: 3904
    • 15i Richter H, Mancheño OG. Eur. J. Org. Chem. 2010; 4460
    • 15j Fang L, Li ZH, Jiang ZJ, Tan ZY, Xie YY. Eur. J. Org. Chem. 2016; 3559
    • 15k Zhdankin VV, Kuehl CJ, Krasutsky AP, Bolz JT, Mismash B, Woodward JK, Simonsen AJ. Tetrahedron Lett. 1995; 36: 7975
    • 15l Huang WZ, Ni CF, Zhao YC, Hu JB. New J. Chem. 2013; 37: 1684
    • 15m Oss G, de Vos SD, Luc KN. H, Harper JB, Nguyen TV. J. Org. Chem. 2018; 83: 1000
    • 15n Zhang RP, Qin Y, Zhang L, Luo SZ. J. Org. Chem. 2019; 84: 2542
    • 15o Chen WL, Wang LY, Li YJ. Eur. J. Org. Chem. 2020; 103
    • 15p Singh P, Batra A, Singh KN, Mritunjay M. Synthesis 2021; 53: 1556
    • 16a Murahashi S.-I, Imada Y. Chem. Rev. 2019; 119: 4684
    • 16b Largeron M. Eur. J. Org. Chem. 2013; 5225
    • 16c Franck B, Randau D. Angew. Chem., Int. Ed. Engl. 1966; 5: 131
    • 16d Gupta RN, Spenser ID. Can. J. Chem. 1969; 47: 445
    • 16e Claxton GP, Allen L, Grisar JM. Org. Synth. 1977; 56: 118
    • 16f Kessler H, Moehrle H, Zimmermann G. J. Org. Chem. 1977; 42: 66
    • 16g Nutt RF, Joullie MM. J. Am. Chem. Soc. 1982; 104: 5852
    • 16h Davis BG, Maughan MA. T, Chapman TM, Villard R, Courtney S. Org. Lett. 2002; 4: 103
    • 16i Gravel E, Poupon E, Hocquemiller R. Tetrahedron 2006; 62: 5248
    • 16j Gomm A, Lewis W, Green AP, O’Reilly E. Chem. Eur. J. 2016; 22: 12692
    • 16k Gu R, Flidrova K, Lehn J.-M. J. Am. Chem. Soc. 2018; 140: 5560
    • 16l van der Heijden G, van Schaik TB, Mouarrawis V, de Wit MJ. M, Velde CM. L. V, Ruijter E, Orru RV. A. Eur. J. Org. Chem. 2019; 5313
    • 16m Nomura Y, Ogawa K, Takeuchi Y, Tomoda S. Chem. Lett. 1977; 693
    • 16n Ogawa K, Nomura Y, Takeuchi Y, Tomoda S. J. Chem. Soc., Perkin Trans. 1 1982; 3031
    • 16o Ochiai M, Inenaga M, Nagao Y, Moriarty RM, Vaid RK, Duncan MP. Tetrahedron Lett. 1988; 29: 6917
    • 16p Boto A, Hernández R, Suárez E. Tetrahedron Lett. 1999; 40: 5945
    • 16q Huang W.-J, Singh OV, Chen C.-H, Chiou S.-Y, Lee S.-S. Helv. Chim. Acta 2002; 85: 1069
    • 16r Castedo L, Riguera R, Rodriguez MJ. Tetrahedron 1982; 38: 1569
    • 16s Su F, Mathew SC, Möhlmann L, Antonietti M, Wang X, Blechert S. Angew. Chem. Int. Ed. 2011; 50: 657
    • 16t Wendlandt AE, Stahl SS. Org. Lett. 2012; 14: 2850
    • 16u Chen B, Wang L, Gao S. ACS Catal. 2015; 5: 5851
    • 16v Mitsui H, Zenki S.-I, Shiota T, Murahashi S.-I. J. Chem. Soc., Chem. Commun. 1984; 874
    • 16w Murahashi S, Mitsui H, Shiota T, Tsuda T, Watanabe S. J. Org. Chem. 1990; 55: 1736
    • 16x Matassini C, Parmeggiani C, Cardona F, Goti A. Org. Lett. 2015; 17: 4082
    • 16y Lisnyak VG, Lynch-Colameta T, Snyder SA. Angew. Chem. Int. Ed. 2018; 57: 15162
    • 17a Murahashi S, Naota T, Yonemura K. J. Am. Chem. Soc. 1988; 110: 8256
    • 17b Boess E, Wolf LM, Malakar S, Salamone M, Bietti M, Thiel W, Klussmann M. ACS Catal. 2016; 6: 3253
    • 17c Li ZP, Li CJ. J. Am. Chem. Soc. 2004; 126: 11810
    • 17d Volla CM. R, Vogel P. Org. Lett. 2009; 11: 1701
    • 17e Li ZP, Li CJ. J. Am. Chem. Soc. 2005; 127: 6968
    • 17f Xie J, Huang ZZ. Angew. Chem. Int. Ed. 2010; 49: 10181
    • 17g Xu ZW, Yu XQ, Feng XJ, Bao M. J. Org. Chem. 2011; 76: 6901
    • 17h Wang YD, Zhu J, Guo R, Lindberg H, Wang YM. Chem. Sci. 2020; 11: 12316
    • 17i Li CJ. Acc. Chem. Res. 2009; 42: 335
    • 17j Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 17k Zhang C, Tang CH, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 17l Girard SA, Knauber T, Li CJ. Angew. Chem. Int. Ed. 2014; 53: 74
    • 17m Qin Y, Zhu LH, Luo SZ. Chem. Rev. 2017; 117: 9433
    • 17n Huang CY, Kang H, Li JB, Li CJ. J. Org. Chem. 2019; 84: 12705
    • 17o Zhang JS, Liu L, Chen TQ, Han LB. ChemSusChem 2020; 13: 4776
    • 18a Murahashi SI, Komiya N, Terai H, Nakae T. J. Am. Chem. Soc. 2003; 125: 15312
    • 18b Scott M, Sud A, Boess E, Klussmann M. J. Org. Chem. 2014; 79: 12033
    • 18c Basle O, Li CJ. Green Chem. 2007; 9: 1047
    • 18d Meng QY, Liu Q, Zhong JJ, Zhang HH, Li ZJ, Chen B, Tung CH, Wu LZ. Org. Lett. 2012; 14: 5992
    • 18e Alagiri K, Kumara RG. S, Prabhu KR. Chem. Commun. 2011; 47: 11787
    • 18f Wang TT, Schrempp M, Berndhauser A, Schiemann O, Menche D. Org. Lett. 2015; 17: 3982
    • 18g Sonobe T, Oisaki K, Kanai M. Chem. Sci. 2012; 3: 3249
    • 18h Li X, Zhao H, Chen XW, Jiang HF, Zhang M. Org. Chem. Front. 2020; 7: 425
    • 18i Wang FF, Luo CP, Deng GJ, Yang L. Green Chem. 2014; 16: 2428
    • 18j Brzozowski M, Forni JA, Savage GP, Polyzos A. Chem. Commun. 2015; 51: 334
    • 18k Sharma K, Borah A, Neog K, Gogoi P. ChemistrySelect 2016; 1: 4620
    • 18l Groll B, Schaaf P, Schnürch M. Monatsh. Chem. 2017; 148: 91
    • 18m Zhang Y, Wei BW, Wang WX, Deng LL, Nie LJ, Luo HQ, Fan XL. RSC Adv. 2017; 7: 1229
    • 18n Zhu ZQ, Xiao LJ, Chen Y, Xie ZB, Zhu HB, Le ZG. Synthesis 2018; 50: 2775
    • 18o Ramana DV, Chandrasekharam M. Adv. Synth. Catal. 2018; 360: 4080
    • 18p Odachowski M, Greaney MF, Turner NJ. ACS Catal. 2018; 8: 10032
    • 18q Peng K, Dong ZB. Adv. Synth. Catal. 2021; 363: 1185
    • 18r Afsina CM. A, Aneeja T, Neetha M, Anilkumar G. Eur. J. Org. Chem. 2021; 1776
    • 19a Dominguez E, Lete E. J. Heterocycl. Chem. 1984; 21: 525
    • 19b Rao SN, Reddy NN. K, Samanta S, Adimurthy S. J. Org. Chem. 2017; 82: 13632
    • 19c Nobuta T, Tada N, Fujiya A, Kariya A, Miura T, Itoh A. Org. Lett. 2013; 15: 574
    • 19d Nobuta T, Fujiya A, Yamaguchi T, Tada N, Miura T, Itoh A. RSC Adv. 2013; 3: 10189
    • 19e Huang HM, Li YJ, Ye Q, Yu WB, Han L, Jia JH, Gao JR. J. Org. Chem. 2014; 79: 1084
    • 19f Kumar RA, Saidulu G, Prasad KR, Kumar GS, Sridhar B, Reddy KR. Adv. Synth. Catal. 2012; 354: 2985
    • 19g Li LT, Li HY, Xing LJ, Wen LJ, Wang P, Wang B. Org. Biomol. Chem. 2012; 10: 9519
    • 19h Liu D, Lei AW. Chem. Asian J. 2015; 10: 806
    • 19i Deb ML, Borpatra PJ, Saikia PJ, Baruah PK. Synlett 2017; 28: 461
    • 19j Debnath S, Das T, Gayen S, Ghosh T, Maiti DK. ACS Omega 2019; 4: 20410
    • 20a Shu XZ, Yang YF, Xia XF, Ji KG, Liu XY, Liang YM. Org. Biomol. Chem. 2010; 8: 4077
    • 20b Meng QY, Zhong JJ, Liu Q, Gao XW, Zhang HH, Lei T, Li ZJ, Feng K, Chen B, Tung CH, Wu LZ. J. Am. Chem. Soc. 2013; 135: 19052
    • 20c Zhong JJ, Meng QY, Liu B, Li XB, Gao XW, Lei T, Wu CJ, Li ZJ, Tung CH, Wu LZ. Org. Lett. 2014; 16: 1988
    • 20d Gao XW, Meng QY, Li JX, Zhong JJ, Lei T, Li XB, Tung CH, Wu LZ. ACS Catal. 2015; 5: 2391
    • 20e Chen XW, Li YB, Chen L, Zhu ZZ, Li B, Huang YB, Zhang M. J. Org. Chem. 2019; 84: 3559
    • 20f Niu LB, Wang SC, Liu JM, Yi H, Liang XA, Liu TY, Lei AW. Chem. Commun. 2018; 54: 1659
    • 20g Zhou AX, Mao LL, Wang GW, Yang SD. Chem. Commun. 2014; 50: 8529
    • 20h Cao L, Zhao H, Tan ZD, Guan RQ, Jiang HF, Zhang M. Org. Lett. 2020; 22: 4781
    • 20i Sun X, Hu Y, Nie SZ, Yan YY, Zhang XJ, Yan M. Adv. Synth. Catal. 2013; 355: 2179
    • 20j Nie SZ, Sun X, Wei WT, Zhang XJ, Yan M, Xiao JL. Org. Lett. 2013; 15: 2394
    • 20k Sun X, Lv XH, Ye LM, Hu Y, Chen YY, Zhang XJ, Yan M. Org. Biomol. Chem. 2015; 13: 7381
    • 20l Fu NK, Li LJ, Yang Q, Luo SZ. Org. Lett. 2017; 19: 2122
    • 20m Khusnutdinova JR, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2014; 136: 2998
    • 20n He KH, Li Y. ChemSusChem 2014; 7: 2788
    • 20o Chen C, Chen X, Zhao H, Jiang H, Zhang M. Org. Lett. 2017; 19: 3390
    • 20p Chen B, Wu LZ, Tung CH. Acc. Chem. Res. 2018; 51: 2512
    • 20q Tang S, Zeng L, Lei AW. J. Am. Chem. Soc. 2018; 140: 13128
    • 20r Wang HM, Gao XL, Lv ZC, Abdelilah T, Lei AW. Chem. Rev. 2019; 119: 6769
    • 21a Li ZP, Li CJ. Org. Lett. 2004; 6: 4997
    • 21b Li ZP, MacLeod PD, Li CJ. Tetrahedron: Asymmetry 2006; 17: 590
    • 21c Zhang G, Ma YX, Wang SL, Kong WD, Wang R. Chem. Sci. 2013; 4: 2645
    • 21d Dubs C, Hamashima Y, Sasamoto N, Seidel TM, Suzuki S, Hashizume D, Sodeoka M. J. Org. Chem. 2008; 73: 5859
    • 21e Zhang JM, Tiwari B, Xing C, Chen XK, Chi YG. R. Angew. Chem. Int. Ed. 2012; 51: 3649
    • 21f Zhang G, Ma YX, Wang SL, Zhang YH, Wang R. J. Am. Chem. Soc. 2012; 134: 12334
    • 21g Ma YX, Zhang G, Zhang JL, Yang DX, Wang R. Org. Lett. 2014; 16: 5358
    • 21h Huang TY, Liu XH, Lang JW, Xu J, Lin LL, Feng XM. ACS Catal. 2017; 7: 5654
    • 21i Zhao YL, Wang Y, Luo YC, Fu XZ, Xu PF. Tetrahedron Lett. 2015; 56: 3703
    • 21j Cheng MX, Yang SD. Synlett 2017; 28: 159
    • 21k Gandhi S. Org. Biomol. Chem. 2019; 17: 9683
    • 21l Phillips AM. F, da Silva M, Pombeiro AJ. L. Catalysts 2020; 10: 529
    • 21m Rostoll-Berenguer J, Blay G, Pedro JR, Vila C. Adv. Synth. Catal. 2021; 363: 602
    • 22a Schreiber SL. Tetrahedron Lett. 1980; 21: 1027
    • 22b Xu XL, Li XN, Ma L, Ye N, Weng BJ. J. Am. Chem. Soc. 2008; 130: 14048
    • 22c Wang SJ, Wang ZY, Zheng XQ. Chem. Commun. 2009; 47: 7372
    • 22d Shu XZ, Xia XF, Yang YF, Ji KG, Liu XY, Liang YM. J. Org. Chem. 2009; 74: 7464
    • 22e Xia XF, Shu XZ, Ji KG, Yang YF, Shaukat A, Liu XY, Liang YM. J. Org. Chem. 2010; 75: 2893
    • 22f Takasu N, Oisaki K, Kanai M. Org. Lett. 2013; 15: 1918
    • 22g Griffiths RJ, Kong WC, Richards SA, Burley GA, Willis MC, Talbot EP. A. Chem. Sci. 2018; 9: 2295
    • 22h He Y, Yang JT, Liu QM, Zhang XY, Fan XS. J. Org. Chem. 2020; 85: 15600
    • 22i Rong XN, Guo JW, Hu ZQ, Huang LH, Gu YG, Cai YP, Liang G, Xia QQ. Eur. J. Org. Chem. 2021; 701
    • 22j Wang F, Zhang XY, He Y, Fan XS. J. Org. Chem. 2020; 85: 2220
    • 22k Jiang F, Achard M, Bruneau C. Chem. Eur. J. 2015; 21: 14319
    • 22l Cai YG, Zhang RH, Sun DL, Xu S, Zhou QG. Synlett 2017; 28: 1630
    • 22m Zhou MJ, Zhu SF, Zhou QL. Chem. Commun. 2017; 53: 8770
    • 22n He Y, Wang F, Zhang XY, Fan XS. Chem. Commun. 2017; 53: 4002
    • 22o Liu GQ, Opatz T. Adv. Heterocycl. Chem. 2018; 125: 107
    • 22p Shi XN, Chen X, Wang MH, Zhang XY, Fan XS. J. Org. Chem. 2018; 83: 6524
    • 22q He Y, Zheng Z, Liu YJ, Qiao JJ, Zhang XY, Fan XS. Chem. Commun. 2019; 55: 12372
    • 22r He KX, Zhang T, Zhang SW, Sun Z, Zhang YX, Yuan Y, Jia XD. Org. Lett. 2019; 21: 5030
    • 23a Konstantinova LS, Rakitin OA, Rees CW. Chem. Rev. 2004; 104: 2617
    • 23b Rakitin O. А. Chem. Heterocycl. Compd. (Engl. Transl.) 2020; 56: 837
    • 23c Rees CW, Marcos CF, Polo C, Torroba T, Rakitin OA. Angew. Chem., Int. Ed. Engl. 1997; 36: 281
    • 23d Marcos CF, Polo C, Rakitin OA, Rees CW, Torroba T. Chem. Commun. 1997; 879
    • 23e Rees CW, White AJ. P, Williams DJ, Rakitin OA, Marcos CF, Polo C, Torroba T. J. Org. Chem. 1998; 63: 2189
    • 23f Konstantinova LS, Obruchnikova NV, Rakitin OA, Rees CW, Torroba T. J. Chem. Soc., Perkin Trans. 1 2000; 3421
    • 23g Barriga S, Konstantinova SL, Marcos FC, Rakitin AO, Rees WC, Torroba T, White JP. A, Williams JD. J. Chem. Soc., Perkin Trans. 1 1999; 2237
    • 23h Konstantinova LS, Berezin AA, Lysov KA, Rakitin OA. Russ. Chem. Bull., Int. Ed. 2006; 55: 147
    • 23i Amelichev SA, Konstantinova LS, Lyssenko KA, Rakitin OA, Rees CW. Org. Biomol. Chem. 2005; 3: 3496
    • 23j Konstantinova LS, Amelichev SA, Rakitin OA. Russ. Chem. Bull., Int. Ed. 2006; 55: 2081
    • 23k Konstantinova LS, Rakitin OA, Rees CW, Souvorova LI, Golovanov DG, Lyssenko KA. Org. Lett. 2003; 5: 1939
    • 23l Konstantinova LS, Bastrakov MA, Starosotnikov AM, Glukhov IV, Lysov KA, Rakitin OA, Shevelev SA. Mendeleev Commun. 2010; 20: 353
    • 24a Lounasmaa M, Koskinen A. Heterocycles 1984; 22: 1591
    • 24b Grierson D. Org. React. 1990; 39: 85
    • 24c Langlois N, Gueritte F, Langlois Y, Potier P. J. Am. Chem. Soc. 1976; 98: 7017
    • 24d Han-ya Y, Tokuyama H, Fukuyama T. Angew. Chem. Int. Ed. 2011; 50: 4884
    • 24e Ahond A, Cave A, Kan-Fan C, Husson HP, De Rostolan J, Potier P. J. Am. Chem. Soc. 1968; 90: 5622
    • 24f Aimi N, Yamanaka E, Endo J, Sakai S, Haginiwa J. Tetrahedron 1973; 29: 2015
    • 24g Kende AS, Liu K, Jos Brands KM. J. Am. Chem. Soc. 1995; 117: 10597
    • 24h Wenkert E, Chauncy B, Wentland SH. Synth. Commun. 1973; 3: 73
    • 24i Beugelmans R, Negron G, Roussi G. J. Chem. Soc., Chem. Commun. 1983; 31
    • 24j Chastanet J, Roussi G. Heterocycles 1985; 23: 653
    • 24k Chastanet J, Roussi G. J. Org. Chem. 1985; 50: 2910
    • 24l Chastanet J, Roussi G. J. Org. Chem. 1988; 53: 3808
    • 24m Davoren JE, Gray DL, Harris AR, Nason DM, Xu W. Synlett 2010; 2490
    • 24n Takano S, Sugihara Y, Ogasawara K. Heterocycles 1992; 34: 1519
    • 24o Mirzayans PM, Krenske EH, Williams CM. Aust. J. Chem. 2014; 67: 1309
    • 24p Bernier D, Wefelscheid UK, Woodward S. Org. Prep. Proced. Int. 2009; 41: 173
    • 24q Cui L, Peng Y, Zhang L. J. Am. Chem. Soc. 2009; 131: 8394
    • 24r Cui L, Ye L, Zhang L. Chem. Commun. 2010; 46: 3351
    • 24s Noey EL, Luo YD, Zhang LM, Houk KN. J. Am. Chem. Soc. 2012; 134: 1078
    • 25a Nishiguchi T, Tachi K, Fukuzumi K. J. Org. Chem. 1975; 40: 237
    • 25b Yoshida T, Okano T, Otsuka S. J. Chem. Soc., Chem. Commun. 1979; 870
    • 25c Murahashi SI, Naota T, Taki H. J. Chem. Soc., Chem. Commun. 1985; 613
    • 25d Gu XQ, Chen W, Morales-Morales D, Jensen CM. J. Mol. Catal. A: Chem. 2002; 189: 119
    • 25e Zhang XW, Fried A, Knapp S, Goldman AS. Chem. Commun. 2003; 2060
    • 25f Kamiguchi S, Nakamura A, Suzuki A, Kodomari M, Nomura M, Iwasawa Y, Chihara T. J. Catal. 2005; 230: 204
    • 25g Yi CS, Lee DW. Organometallics 2009; 28: 947
    • 25h Wang ZH, Tonks I, Belli J, Jensen CM. J. Organomet. Chem. 2009; 694: 2854
    • 25i Brayton DF, Jensen CM. Chem. Commun. 2014; 50: 5987
    • 25j Lu YS. J, Zhang XW, Malakar S, Krogh-Jespersen K, Hasanayn F, Goldman AS. J. Org. Chem. 2020; 85: 3020
    • 25k Wang YL, Qian L, Huang ZD, Liu GX, Huang Z. Chin. J. Chem. 2020; 38: 837
    • 25l Fujita K, Tanaka Y, Kobayashi M, Yamaguchi R. J. Am. Chem. Soc. 2014; 136: 4829
    • 25m Yamaguchi R, Ikeda C, Takahashi Y, Fujita K. J. Am. Chem. Soc. 2009; 131: 8410
    • 25n Wu JJ, Talwar D, Johnston S, Yan M, Xiao JL. Angew. Chem. Int. Ed. 2013; 52: 6983
    • 25o Talwar D, Gonzalez-de-Castro A, Li HY, Xiao JL. Angew. Chem. Int. Ed. 2015; 54: 5223
    • 25p Manas MG, Sharninghausen LS, Lin E, Crabtree RH. J. Organomet. Chem. 2015; 792: 184
    • 25q Zhang DL, Iwai T, Sawamura M. Org. Lett. 2020; 22: 5240
    • 25r Tseng KN. T, Rizzi AM, Szymczak NK. J. Am. Chem. Soc. 2013; 135: 16352
    • 25s Hale LV. A, Malakar T, Tseng KN. T, Zimmerman PM, Paul A, Szymczak NK. ACS Catal. 2016; 6: 4799
    • 25t Muthaiah S, Hong SH. Adv. Synth. Catal. 2012; 354: 3045
    • 25u Dutta I, Yadav S, Sarbajna A, De S, Holscher M, Leitner W, Bera JK. J. Am. Chem. Soc. 2018; 140: 8662
    • 25v Wang QF, Chai HN, Yu ZK. Organometallics 2018; 37: 584
    • 25w Stubbs JM, Hazlehurst RJ, Boyle PD, Blacquiere JM. Organometallics 2017; 36: 1692
    • 25x Kojima M, Kanai M. Angew. Chem. Int. Ed. 2016; 55: 12224
    • 25y Maier AF. G, Tussing S, Schneider T, Florke U, Qu ZW, Grimme S, Paradies J. Angew. Chem. Int. Ed. 2016; 55: 12219
    • 25z Wu Y, Yi H, Lei AW. ACS Catal. 2018; 8: 1192
    • 25aa Chen WD, Tang H, Wang WL, Fu Q, Luo JF. Adv. Synth. Catal. 2020; 362: 3905
    • 25ab Yang RC, Yue SS, Tan W, Xie YF, Cai H. J. Org. Chem. 2020; 85: 7501
    • 25ac Huang YQ, Song HJ, Liu YX, Wang QM. Chem. Eur. J. 2018; 24: 2065
    • 25ad Liu TT, Wu KK, Wang LD, Yu ZK. Adv. Synth. Catal. 2019; 361: 3958
    • 25ae Kato S, Saga Y, Kojima M, Fuse H, Matsunaga S, Fukatsu A, Kondo M, Masaoka S, Kanai M. J. Am. Chem. Soc. 2017; 139: 2204
    • 25af Kim J, Kim S, Choi G, Lee GS, Kim D, Choi J, Ihee H, Hong SH. Chem. Sci. 2021; 12: 1915
    • 25ag He KH, Tan FF, Zhou CZ, Zhou GJ, Yang XL, Li Y. Angew. Chem. Int. Ed. 2017; 56: 3080
    • 25ah Chakraborty S, Brennessel WW, Jones WD. J. Am. Chem. Soc. 2014; 136: 8564
    • 25ai Bolig AD, Brookhart M. J. Am. Chem. Soc. 2007; 129: 14544
    • 26a Grigg R, Mitchell TR. B, Sutthivaiyakit S, Tongpenyai N. J. Chem. Soc., Chem. Commun. 1981; 611
    • 26b Sundararaju B, Tang Z, Achard M, Sharma GV. M, Toupet L, Bruneau C. Adv. Synth. Catal. 2010; 352: 3141
    • 26c Sundararaju B, Achard M, Sharma GV. M, Bruneau C. J. Am. Chem. Soc. 2011; 133: 10340
    • 26d Boudiar T, Sahli Z, Sundararaju B, Achard M, Kabouche Z, Doucet H, Bruneau C. J. Org. Chem. 2012; 77: 3674
    • 26e Murugesh V, Bruneau C, Achard M, Sahoo AR, Sharma GV. M, Suresh S. Chem. Commun. 2017; 53: 10448
    • 26f Murugesh V, Sahoo AR, Achard M, Sharma GV. M, Bruneau C, Suresh S. Adv. Synth. Catal. 2021; 363: 453
    • 26g Chen Y, Wan HL, Huang Y, Liu S, Wang FY, Lu CF, Nie JQ, Chen ZX, Yang GC, Ma C. Org. Lett. 2020; 22: 7797
    • 26h Yuan KD, Jiang F, Sahli Z, Achard M, Roisnel T, Bruneau C. Angew. Chem. Int. Ed. 2012; 51: 8876
    • 26i Sahli Z, Sundararaju B, Achard M, Bruneau C. Green Chem. 2013; 15: 775
    • 26j Bruneau C. Top. Organomet. Chem. 2014; 48: 195
    • 26k Irrgang T, Kempe R. Chem. Rev. 2019; 119: 2524
    • 27a Rügheimer L. Ber. Dtsch. Chem. Ges. 1891; 24: 2186
    • 27b Rügheimer L. Ber. Dtsch. Chem. Ges. 1892; 25: 2421
    • 27c Poirier RH, Morin RD, McKim AM, Bearse AE. J. Org. Chem. 1961; 26: 4275
    • 27d Platonova AY, Seidel D. Tetrahedron Lett. 2015; 56: 3147
    • 27e Burrows EP, Hutton RF, Burrows WD. J. Org. Chem. 1962; 27: 316
    • 27f Sainsbury M, Dyke SF, Brown DW, Lugton WG. D. Tetrahedron 1968; 24: 427
    • 27g Dannhardt G, Mayer KK, Obergrusberger I, Roelcke J. Arch. Pharm. (Weinheim Ger.) 1986; 319: 977
    • 27h Cook AG, Switek KA, Cutler KA, Witt AN. Lett. Org. Chem. 2004; 1: 1
    • 27i Polackova V, Veverkova E, Toma S, Bogdal D. Synth. Commun. 2009; 39: 1871
    • 27j Xue X, Yu A, Cai Y, Cheng J.-P. Org. Lett. 2011; 13: 6054
    • 27k Moura NM. M, Nunez C, Santos SM, Faustino MA. F, Cavaleiro JA. S, Paz FA. A, Neves M, Capelo JL, Lodeiro C. Chem. Eur. J. 2014; 20: 6684
    • 27l Burrows WD, Burrows EP. J. Org. Chem. 1963; 28: 1180
    • 27m Oda M, Fukuchi Y, Ito S, Thanh NC, Kuroda S. Tetrahedron Lett. 2007; 48: 9159
    • 27n Pahadi NK, Paley M, Jana R, Waetzig SR, Tunge JA. J. Am. Chem. Soc. 2009; 131: 16626
    • 27o Mao H, Xu R, Wan J, Jiang Z, Sun C, Pan Y. Chem. Eur. J. 2010; 16: 13352
    • 27p Deb I, Das D, Seidel D. Org. Lett. 2011; 13: 812
    • 27q Ma L, Paul A, Breugst M, Seidel D. Chem. Eur. J. 2016; 22: 18179
    • 28a Ardill H, Grigg R, Sridharan V, Surendrakumar S, Thianpatanagul S, Kanajun S. J. Chem. Soc., Chem. Commun. 1986; 602
    • 28b Grigg R, Gunaratne HQ. N, Henderson D, Sridharan V. Tetrahedron 1990; 46: 1599
    • 28c Ardill H, Fontaine XL. R, Grigg R, Henderson D, Montgomery J, Sridharan V, Surendrakumar S. Tetrahedron 1990; 46: 6449
    • 28d Mantelingu K, Lin Y, Seidel D. Org. Lett. 2014; 16: 5910
    • 28e Rahman M, Bagdi AK, Mishra S, Hajra A. Chem. Commun. 2014; 50: 2951
    • 28f Deb I, Seidel D. Tetrahedron Lett. 2010; 51: 2945
    • 28g Kang Y, Richers MT, Sawicki CH, Seidel D. Chem. Commun. 2015; 51: 10648
    • 28h Cheng Y.-F, Rong H.-J, Yi C.-B, Yao J.-J, Qu J. Org. Lett. 2015; 17: 4758
    • 28i Vasu D, Fuentes de Arriba AL, Leitch JA, de Gombert A, Dixon DJ. Chem. Sci. 2019; 10: 3401
    • 28j Wittland C, Arend M, Risch N. Synthesis 1996; 367
    • 28k Yang H.-T, Tan Y.-C, Ge J, Wu H, Li J.-X, Yang Y, Sun X.-Q, Miao C.-B. J. Org. Chem. 2016; 81: 11201
    • 28l Zheng K, Zhuang S, You M, Shu W, Wu A, Wu Y. ChemistrySelect 2017; 2: 10762
    • 28m Strada A, Fredditori M, Zanoni G, Protti S. Molecules 2019; 24: 1318
    • 29a Ma L, Chen W, Seidel D. J. Am. Chem. Soc. 2012; 134: 15305
    • 29b Das D, Sun AX, Seidel D. Angew. Chem. Int. Ed. 2013; 52: 3765
    • 29c Zheng Q.-H, Meng W, Jiang G.-J, Yu Z.-X. Org. Lett. 2013; 15: 5928
    • 29d Lin W, Cao T, Fan W, Han Y, Kuang J, Luo H, Miao B, Tang X, Yu Q, Yuan W, Zhang J, Zhu C, Ma S. Angew. Chem. Int. Ed. 2014; 53: 277
    • 29e Lin W, Ma S. Org. Chem. Front. 2014; 1: 338
    • 29f Chen W, Wilde RG, Seidel D. Org. Lett. 2014; 16: 730
    • 29g Haldar S, Mahato S, Jana CK. Asian J. Org. Chem. 2014; 3: 44
    • 29h Chen W, Kang Y, Wilde RG, Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5179
    • 29i Zheng K.-L, Shu W.-M, Ma J.-R, Wu Y.-D, Wu A.-X. Org. Lett. 2016; 18: 3526
    • 29j Mandal S, Dwari S, Jana CK. J. Org. Chem. 2018; 83: 8874
    • 29k Chen W, Seidel D. Org. Lett. 2014; 16: 3158
    • 29l Zhu Z, Seidel D. Org. Lett. 2016; 18: 631
    • 29m Yan J.-M, Bai Q.-F, Xu C, Feng G. Synthesis 2016; 48: 3730
    • 29n Haldar S, Saha S, Mandal S, Jana CK. Green Chem. 2018; 20: 3463
    • 29o Jiang D, Wu Z, Wang J. Chin. J. Chem. 2020; 38: 135
    • 29p Seidel D. Org. Chem. Front. 2014; 1: 426
    • 29q Seidel D. Acc. Chem. Res. 2015; 48: 317
    • 29r Mahato S, Jana CK. Chem. Rec. 2016; 16: 1477
    • 29s Das D, Seidel D. Org. Lett. 2013; 15: 4358
    • 29t Mandal S, Mahato S, Jana CK. Org. Lett. 2015; 17: 3762
    • 29u Zhou S, Tong R. Chem. Eur. J. 2016; 22: 7084
    • 29v Huang J, Li L, Xiao T, Mao Z.-w, Zhou L. Asian J. Org. Chem. 2016; 5: 1204
    • 29w Du Y, Yu A, Jia J, Zhang Y, Meng X. Chem. Commun. 2017; 53: 1684
    • 29x Yi C.-B, She Z.-Y, Cheng Y.-F, Qu J. Org. Lett. 2018; 20: 668
    • 29y Haldar S, Jana CK. Org. Biomol. Chem. 2019; 17: 1800
    • 29z Rahman I, Deka B, Thakuria R, Deb ML, Baruah PK. Org. Biomol. Chem. 2020; 18: 6514
    • 30a Zhang C, De C K, Mal R, Seidel D. J. Am. Chem. Soc. 2008; 130: 416
    • 30b Dieckmann A, Richers MT, Platonova AY, Zhang C, Seidel D, Houk KN. J. Org. Chem. 2013; 78: 4132
    • 30c Richers MT, Deb I, Platonova AY, Zhang C, Seidel D. Synthesis 2013; 45: 1730
    • 30d Zheng L, Yang F, Dang Q, Bai X. Org. Lett. 2008; 10: 889
    • 30e Richers MT, Breugst M, Platonova AY, Ullrich A, Dieckmann A, Houk KN, Seidel D. J. Am. Chem. Soc. 2014; 136: 6123
    • 30f Jarvis CL, Richers MT, Breugst M, Houk KN, Seidel D. Org. Lett. 2014; 16: 3556
    • 30g Mahato S, Haque MA, Dwari S, Jana CK. RSC Adv. 2014; 4: 46214
    • 30h Kirkeby EK, Roberts AG. Chem. Commun. 2020; 56: 9118
    • 30i Zhang C, Das D, Seidel D. Chem. Sci. 2011; 2: 233
    • 30j Ma L, Seidel D. Chem. Eur. J. 2015; 21: 12908
    • 30k Kang Y, Chen W, Breugst M, Seidel D. J. Org. Chem. 2015; 80: 9628
    • 30l Chen W, Seidel D. Org. Lett. 2016; 18: 1024
    • 30m Zhu Z, Seidel D. Org. Lett. 2017; 19: 2841
    • 30n Li J, Qin C, Yu Y, Fan H, Fu Y, Li H, Wang W. Adv. Synth. Catal. 2017; 359: 2191
    • 30o Li J, Fu Y, Qin C, Yu Y, Li H, Wang W. Org. Biomol. Chem. 2017; 15: 6474
    • 30p Zhu Z, Chandak HS, Seidel D. Org. Lett. 2018; 20: 4090
    • 30q Paul A, Chandak HS, Ma L, Seidel D. Org. Lett. 2020; 22: 976
    • 30r Rickertsen DR. L, Ma L, Paul A, Abboud KA, Seidel D. SynOpen 2020; 4: 123
    • 30s Zhu Z, Lv X, Anesini JE, Seidel D. Org. Lett. 2017; 19: 6424
    • 30t Liu Y, Wu J, Jin Z, Jiang H. Synlett 2018; 29: 1061
    • 30u Afanasyev OI, Podyacheva E, Rudenko A, Tsygankov AA, Makarova M, Chusov D. J. Org. Chem. 2020; 85: 9347
    • 31a Pinnow J. Ber. Dtsch. Chem. Ges. 1895; 28: 3039
    • 31b Ruiz MD. R, Vasella A. Helv. Chim. Acta 2011; 94: 785
    • 31c Meth-Cohn O, Naqui MA. Chem. Commun. 1967; 1157
    • 31d Ryabukhin SV, Plaskon AS, Volochnyuk DM, Shivanyuk AN, Tolmachev AA. J. Org. Chem. 2007; 72: 7417
    • 31e Verboom W, Reinhoudt DN, Visser R, Harkema S. J. Org. Chem. 1984; 49: 269
    • 31f Nijhuis WH. N, Verboom W, Abu El-Fadl A, Harkema S, Reinhoudt DN. J. Org. Chem. 1989; 54: 199
    • 31g Nijhuis WH. N, Verboom W, Abu El-Fadl A, Van Hummel GJ, Reinhoudt DN. J. Org. Chem. 1989; 54: 209
    • 31h Verboom W, Hamzink MR. J, Reinhoudt DN, Visser R. Tetrahedron Lett. 1984; 25: 4309
    • 31i Noguchi M, Yamada H, Sunagawa T. J. Chem. Soc., Perkin Trans. 1 1998; 3327
    • 31j Reinhoudt DN, Visser GW, Verboom W, Benders PH, Pennings ML. M. J. Am. Chem. Soc. 1983; 105: 4775
    • 31k Jiang S, Janousek Z, Viehe HG. Tetrahedron Lett. 1994; 35: 1185
    • 31l Jiang S, Janousek Z, Viehe HG. Bull. Soc. Chim. Belg. 1993; 102: 663
    • 31m De Boeck B, Janousek Z, Viehe HG. Tetrahedron 1995; 51: 13239
    • 31n Polonka-Balint A, Saraceno C, Ludányi K, Bényei A, Matyus P. Synlett 2008; 2846
    • 31o Foldi AA, Ludanyi K, Benyei AC, Matyus P. Synlett 2010; 2109
    • 31p Barluenga J, Fananas-Mastral M, Aznar F, Valdes C. Angew. Chem. Int. Ed. 2008; 47: 6594
    • 31q Meth-Cohn O, Suschitzky H. Adv. Heterocycl. Chem. 1972; 14: 211
    • 31r Meth-Cohn O. Adv. Heterocycl. Chem. 1996; 65: 1
    • 31s Matyus P, Elias O, Tapolcsanyi P, Polonka-Balint A, Halasz-Dajka B. Synthesis 2006; 2625
    • 31t Platonova AY, Glukhareva TV, Zimovets OA, Morzherin YY. Chem. Heterocycl. Compd. (Engl. Transl.) 2013; 49: 357
    • 32a Peng B, Maulide N. Chem. Eur. J. 2013; 19: 13274
    • 32b Haibach MC, Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5010
    • 32c Kwon SJ, Kim DY. Chem. Rec. 2016; 16: 1191
    • 32d An X.-D, Xiao J. Org. Chem. Front. 2021; 8: 1364
    • 32e Zhang C, Murarka S, Seidel D. J. Org. Chem. 2009; 74: 419
    • 32f Mori K, Ohshima Y, Ehara K, Akiyama T. Chem. Lett. 2009; 38: 524
    • 32g Murarka S, Zhang C, Konieczynska MD, Seidel D. Org. Lett. 2009; 11: 129
    • 32h Zhou G, Zhang J. Chem. Commun. 2010; 46: 6593
    • 32i Jurberg ID, Peng B, Woestefeld E, Wasserloos M, Maulide N. Angew. Chem. Int. Ed. 2012; 51: 1950
    • 32j Haibach MC, Deb I, De C K, Seidel D. J. Am. Chem. Soc. 2011; 133: 2100
    • 32k Wang P.-F, Huang Y.-P, Wen X, Sun H, Xu Q.-L. Eur. J. Org. Chem. 2015; 6727
    • 32l Wang P.-F, Jiang C.-H, Wen X, Xu Q.-L, Sun H. J. Org. Chem. 2015; 80: 1155
    • 32m Li S.-S, Zhou L, Wang L, Zhao H, Yu L, Xiao J. Org. Lett. 2018; 20: 138
    • 32n Liu S, Qu J, Wang B. Chem. Commun. 2018; 54: 7928
    • 32o Bai G, Dong F, Xu L, Liu Y, Wang L, Li S.-S. Org. Lett. 2019; 21: 6225
    • 32p Wang S, Shen Y.-B, Li L.-F, Qiu B, Yu L, Liu Q, Xiao J. Org. Lett. 2019; 21: 8904
    • 32q An X.-D, Duan K, Li X.-J, Yang J.-M, Lu Y.-N, Liu Q, Xiao J. J. Org. Chem. 2019; 84: 11839
    • 32r Suh CW, Kwon SJ, Kim DY. Org. Lett. 2017; 19: 1334
    • 32s Li S.-S, Lv X, Ren D, Shao C.-L, Liu Q, Xiao J. Chem. Sci. 2018; 9: 8253
    • 32t Lv X, Hu F, Duan K, Li S.-S, Liu Q, Xiao J. J. Org. Chem. 2019; 84: 1833
    • 32u Shen Y.-B, Li L.-F, Xiao M.-Y, Yang J.-M, Liu Q, Xiao J. J. Org. Chem. 2019; 84: 13935
    • 32v Mori K, Kurihara K, Yabe S, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2014; 136: 3744
    • 33a Murarka S, Deb I, Zhang C, Seidel D. J. Am. Chem. Soc. 2009; 131: 13226
    • 33b Kang YK, Kim SM, Kim DY. J. Am. Chem. Soc. 2010; 132: 11847
    • 33c Kang YK, Kim DY. Adv. Synth. Catal. 2013; 355: 3131
    • 33d Kang YK, Kim DY. Chem. Commun. 2014; 50: 222
    • 33e Suh CW, Kim DY. Org. Lett. 2014; 16: 5374
    • 33f Zhou G, Liu F, Zhang J. Chem. Eur. J. 2011; 17: 3101
    • 33g Mori K, Ehara K, Kurihara K, Akiyama T. J. Am. Chem. Soc. 2011; 133: 6166
    • 33h Cao W, Liu X, Wang W, Lin L, Feng X. Org. Lett. 2011; 13: 600
    • 33i Lv J, Luo S. Chem. Commun. 2013; 49: 847
    • 33j He Y.-P, Du Y.-L, Luo S.-W, Gong L.-Z. Tetrahedron Lett. 2011; 52: 7064
    • 33k Mori K, Isogai R, Kamei Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2018; 140: 6203
    • 33l Wang M. ChemCatChem 2013; 5: 1291
    • 33m Xiao M, Zhu S, Shen Y, Wang L, Xiao J. Chin. J. Org. Chem. 2018; 38: 328
    • 33n Cao W, Liu X, Guo J, Lin L, Feng X. Chem. Eur. J. 2015; 21: 1632
    • 33o He Y.-P, Wu H, Chen D.-F, Yu J, Gong L.-Z. Chem. Eur. J. 2013; 19: 5232
    • 33p Mao Z, Mo F, Lin X. Synlett 2016; 27: 546
    • 33q Du H.-J, Lin C, Wen X, Xu Q.-L. Tetrahedron 2018; 74: 7480
    • 34a Ten Broeke J, Douglas AW, Grabowski EJ. J. J. Org. Chem. 1976; 41: 3159
    • 34b Heathcock CH, Hansen MM, Ruggeri RB, Kath JC. J. Org. Chem. 1992; 57: 2544
    • 34c Heathcock CH. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 14323
    • 34d Tantillo DJ. Org. Lett. 2016; 18: 4482
    • 34e Pastine SJ, McQuaid KM, Sames D. J. Am. Chem. Soc. 2005; 127: 12180
    • 34f Vadola PA, Sames D. J. Am. Chem. Soc. 2009; 131: 16525
    • 34g Sugiishi T, Nakamura H. J. Am. Chem. Soc. 2012; 134: 2504
    • 34h Cui Y, Lin W, Ma S. Chem. Sci. 2019; 10: 1796
    • 34i Huang Y.-W, Frontier AJ. Org. Lett. 2016; 18: 4896
    • 34j Lecomte M, Evano G. Angew. Chem. Int. Ed. 2016; 55: 4547
    • 34k Machida M, Mori K. Chem. Lett. 2018; 47: 868
    • 34l Zhang X, Anderson JC. Angew. Chem. Int. Ed. 2019; 58: 18040
    • 34m Kataoka M, Otawa Y, Ido N, Mori K. Org. Lett. 2019; 21: 9334
    • 34n Ye J, Ma S. Org. Chem. Front. 2014; 1: 1210
    • 35a Shang M, Chan JZ, Cao M, Chang Y, Wang Q, Cook B, Torker S, Wasa M. J. Am. Chem. Soc. 2018; 140: 10593
    • 35b Millot N, Santini CC, Fenet B, Basset JM. Eur. J. Inorg. Chem. 2002; 3328
    • 35c Chen G.-Q, Kehr G, Daniliuc CG, Bursch M, Grimme S, Erker G. Chem. Eur. J. 2017; 23: 4723
    • 35d Zhang J, Park S, Chang S. J. Am. Chem. Soc. 2018; 140: 13209
    • 35e Zhou M, Park S, Dang L. Org. Chem. Front. 2020; 7: 944
    • 35f Chang Y, Cao M, Chan JZ, Zhao C, Wang Y, Yang R, Wasa M. J. Am. Chem. Soc. 2021; 143: 2441
    • 35g Chan JZ, Yesilcimen A, Cao M, Zhang Y, Zhang B, Wasa M. J. Am. Chem. Soc. 2020; 142: 16493
    • 35h Chan JZ, Chang Y, Wasa M. Org. Lett. 2019; 21: 984
    • 35i Li R, Chen Y, Jiang K, Wang F, Lu C, Nie J, Chen Z, Yang G, Chen Y.-C, Zhao Y, Ma C. Chem. Commun. 2019; 55: 1217
    • 35j Maier AF. G, Tussing S, Zhu H, Wicker G, Tzvetkova P, Flörke U, Daniliuc CG, Grimme S, Paradies J. Chem. Eur. J. 2018; 24: 16287
    • 35k Tian J.-J, Zeng N.-N, Liu N, Tu X.-S, Wang X.-C. ACS Catal. 2019; 9: 295
    • 35l Fang H, Xie K, Kemper S, Oestreich M. Angew. Chem. Int. Ed. 2021; 60: 8542
    • 35m Zhou L, Shen Y.-B, An X.-D, Li X.-J, Li S.-S, Liu Q, Xiao J. Org. Lett. 2019; 21: 8543
    • 35n Chang Y, Yesilcimen A, Cao M, Zhang Y, Zhang B, Chan JZ, Wasa M. J. Am. Chem. Soc. 2019; 141: 14570
    • 35o Zhou L, An X.-D, Yang S, Li X.-J, Shao C.-L, Liu Q, Xiao J. Org. Lett. 2020; 22: 776
    • 35p Ma Y, Lou S.-J, Hou Z. Chem. Soc. Rev. 2021; 50: 1945
    • 35q Basak S, Winfrey L, Kustiana BA, Melen RL, Morrill LC, Pulis AP. Chem. Soc. Rev. 2021; 50: 3720
    • 36a Fandrick DR, Hart CA, Okafor IS, Mercadante MA, Sanyal S, Masters JT, Sarvestani M, Fandrick KR, Stockdill JL, Grinberg N, Gonnella N, Lee H, Senanayake CH. Org. Lett. 2016; 18: 6192
    • 36b Wittig G, Schmidt HJ, Renner H. Chem. Ber. 1962; 95: 2377
    • 36c Wittig G, Hesse A. Liebigs Ann. Chem. 1971; 746: 174
    • 36d Wittig G, Häusler G. Liebigs Ann. Chem. 1971; 746: 185
    • 36e Chen W, Ma L, Paul A, Seidel D. Nat. Chem. 2018; 10: 165
    • 36f Chen W, Paul A, Abboud KA, Seidel D. Nat. Chem. 2020; 12: 545
    • 36g Majewski M, Gleave DM. J. Organomet. Chem. 1994; 470: 1
    • 36h Scully FE. J. Org. Chem. 1980; 45: 1515
    • 36i Paul A, Seidel D. J. Am. Chem. Soc. 2019; 141: 8778
    • 36j Kim JH, Paul A, Ghiviriga I, Seidel D. Org. Lett. 2021; 23: 797
    • 36k Chen W, Seidel D. Org. Lett. 2021; 23: 3729
    • 36l Paul A, Kim JH, Daniel SD, Seidel D. Angew. Chem. Int. Ed. 2021; 60: 1625
    • 36m Shen Z, Walker MM, Chen S, Parada GA, Chu DM, Dongbang S, Mayer JM, Houk KN, Ellman JA. J. Am. Chem. Soc. 2021; 143: 126
    • 37a Corey EJ, Felix AM. J. Am. Chem. Soc. 1965; 87: 2518
    • 37b Earle RH, Hurst DT, Viney M. J. Chem. Soc. C 1969; 2093
    • 37c Axten JM, Krim L, Kung HF, Winkler JD. J. Org. Chem. 1998; 63: 9628
    • 37d Garner R. Tetrahedron Lett. 1968; 9: 221
    • 37e Krogsgaard-Larsen N, Begtrup M, Herth MM, Kehler J. Synthesis 2010; 4287
    • 37f Mahoney SJ, Fillion E. Chem. Eur. J. 2012; 18: 68
    • 37g Doyle MP, Protopopova MN, Winchester WR, Daniel KL. Tetrahedron Lett. 1992; 33: 7819
    • 37h Doyle MP, Winchester WR, Hoorn JA. A, Lynch V, Simonsen SH, Ghosh R. J. Am. Chem. Soc. 1993; 115: 9968
    • 37i Watanabe N, Anada M, Hashimoto S.-i, Ikegami S. Synlett 1994; 1031
    • 37j Doyle MP, Kalinin AV. Synlett 1995; 1075
    • 37k Doyle MP, Yan M, Phillips IM, Timmons DJ. Adv. Synth. Catal. 2002; 344: 91
    • 37l Davies HM. L, Hansen T, Hopper DW, Panaro SA. J. Am. Chem. Soc. 1999; 121: 6509
    • 37m Axten JM, Ivy R, Krim L, Winkler JD. J. Am. Chem. Soc. 1999; 121: 6511
    • 37n Davies HM. L, Venkataramani C. Org. Lett. 2001; 3: 1773
    • 37o Davies HM. L, Venkataramani C, Hansen T, Hopper DW. J. Am. Chem. Soc. 2003; 125: 6462
    • 37p Davies HM. L, Hopper DW, Hansen T, Liu Q, Childers SR. Bioorg. Med. Chem. Lett. 2004; 14: 1799
    • 37q Santi M, Müller ST. R, Folgueiras-Amador AA, Uttry A, Hellier P, Wirth T. Eur. J. Org. Chem. 2017; 1889
    • 37r Souza LW, Squitieri RA, Dimirjian CA, Hodur BM, Nickerson LA, Penrod CN, Cordova J, Fettinger JC, Shaw JT. Angew. Chem. Int. Ed. 2018; 57: 15213
    • 37s Asako S, Ishihara S, Hirata K, Takai K. J. Am. Chem. Soc. 2019; 141: 9832
    • 37t Gomes LF. R, Veiros LF, Maulide N, Afonso CA. M. Chem. Eur. J. 2015; 21: 1449
    • 37u Doyle MP, Kalinin AV. Tetrahedron Lett. 1996; 37: 1371
    • 37v Lee S, Lim H.-J, Cha KL, Sulikowski GA. Tetrahedron 1997; 53: 16521
    • 37w Sulikowski GA, Lee S. Tetrahedron Lett. 1999; 40: 8035
    • 37x Toumieux S, Compain P, Martin OR, Selkti M. Org. Lett. 2006; 8: 4493
    • 37y Morin MS. T, Toumieux S, Compain P, Peyrat S, Kalinowska-Tluscik J. Tetrahedron Lett. 2007; 48: 8531
    • 37z He J, Hamann LG, Davies HM. L, Beckwith RE. J. Nat. Commun. 2015; 6: 5943
    • 37aa Zhou AZ, Chen K, Arnold FH. ACS Catal. 2020; 10: 5393
    • 37ab Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861
    • 37ac Davies HM. L, Manning JR. Nature 2008; 451: 417
    • 37ad Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 37ae Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857
    • 37af Sultanova RM, Khanova MD, Zlotskii SS. Chem. Heterocycl. Compd. (Engl. Transl.) 2015; 51: 775
    • 38a Hofmann AW. Chem. Ber. 1883; 16: 558
    • 38b Löffler K, Freytag C. Chem. Ber. 1909; 42: 3427
    • 38c De Armas P, Carrau R, Concepción JI, Francisco CG, Hernández R, Suárez E. Tetrahedron Lett. 1985; 26: 2493
    • 38d Francisco CG, Herrera AJ, Suárez E. J. Org. Chem. 2003; 68: 1012
    • 38e Martínez C, Muñiz K. Angew. Chem. Int. Ed. 2015; 54: 8287
    • 38f Liu T, Myers MC, Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 306
    • 38g Becker P, Duhamel T, Stein CJ, Reiher M, Muñiz K. Angew. Chem. Int. Ed. 2017; 56: 8004
    • 38h Zhang Z, Zhang X, Nagib DA. Chem 2019; 5: 3127
    • 38i Wolff ME. Chem. Rev. 1963; 63: 55
    • 38j Stella L. Angew. Chem., Int. Ed. Engl. 1983; 22: 337
    • 38k Jeffrey JL, Sarpong R. Chem. Sci. 2013; 4: 4092
    • 38l Stateman L, Nakafuku K, Nagib DA. Synthesis 2018; 50: 1569
    • 38m Wawzonek S, Thelen PJ. J. Am. Chem. Soc. 1950; 72: 2118
    • 38n Corey EJ, Hertler WR. J. Am. Chem. Soc. 1960; 82: 1657
    • 38o Fan R, Pu D, Wen F, Wu J. J. Org. Chem. 2007; 72: 8994
    • 38p Qin Q, Yu S. Org. Lett. 2015; 17: 1894
    • 38q Paz NR, Rodríguez-Sosa D, Valdés H, Marticorena R, Melián D, Copano MB, González CC, Herrera AJ. Org. Lett. 2015; 17: 2370
    • 38r Wappes EA, Fosu SC, Chopko TC, Nagib DA. Angew. Chem. Int. Ed. 2016; 55: 9974
    • 38s Short MA, Shehata MF, Sanders MA, Roizen JL. Chem. Sci. 2020; 11: 217
    • 39a Hey DH, Turpin DG. J. Chem. Soc. 1954; 2471
    • 39b Lewin AH, Dinwoodie AH, Cohen T. Tetrahedron 1966; 22: 1527
    • 39c Cohen T, McMullen CH, Smith K. J. Am. Chem. Soc. 1968; 90: 6866
    • 39d Shaaban S, Oh J, Maulide N. Org. Lett. 2016; 18: 345
    • 39e Snieckus V, Cuevas JC, Sloan CP, Liu H, Curran DP. J. Am. Chem. Soc. 1990; 112: 896
    • 39f Curran DP, Abraham AC. Tetrahedron 1993; 49: 4821
    • 39g Murakami M, Hayashi M, Ito Y. J. Org. Chem. 1992; 57: 793
    • 39h Williams L, Booth SE, Undheim K. Tetrahedron 1994; 50: 13697
    • 39i Yoshimitsu T, Arano Y, Nagaoka H. J. Am. Chem. Soc. 2005; 127: 11610
    • 39j Yoshikai N, Mieczkowski A, Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2010; 132: 5568
    • 39k Tian H, Yang H, Zhu C, Fu H. Sci. Rep. 2016; 6: 19931
    • 39l Sarkar S, Cheung KP. S, Gevorgyan V. Chem. Sci. 2020; 11: 12974
    • 39m Robertson J, Peplow MA, Pillai J. Tetrahedron Lett. 1996; 37: 5825
    • 39n Khan TA, Tripoli R, Crawford JJ, Martin CG, Murphy JA. Org. Lett. 2003; 5: 2971
    • 39o Beckwith AL. J, Bowry VW, Bowman WR, Mann E, Parr J, Storey JM. D. Angew. Chem. Int. Ed. 2004; 43: 95
    • 39p Dénès F, Beaufils F, Renaud P. Org. Lett. 2007; 9: 4375
    • 39q Yoshimitsu T, Matsuda K, Nagaoka H, Tsukamoto K, Tanaka T. Org. Lett. 2007; 9: 5115
    • 39r Yoshimitsu T, Atsumi C, Iimori E, Nagaoka H, Tanaka T. Tetrahedron Lett. 2008; 49: 4473
    • 39s Wertjes WC, Wolfe LC, Waller PJ, Kalyani D. Org. Lett. 2013; 15: 5986
    • 39t Hollister KA, Conner ES, Spell ML, Deveaux K, Maneval L, Beal MW, Ragains JR. Angew. Chem. Int. Ed. 2015; 54: 7837
    • 39u Chen J.-Q, Wei Y.-L, Xu G.-Q, Liang Y.-M, Xu P.-F. Chem. Commun. 2016; 52: 6455
    • 39v Liu P, Tang J, Zeng X. Org. Lett. 2016; 18: 5536
    • 39w Huang F.-Q, Dong X, Qi L.-W, Zhang B. Tetrahedron Lett. 2016; 57: 1600
    • 40a Weinberg NL, Brown EA. J. Org. Chem. 1966; 31: 4058
    • 40b Shono T, Matsumura Y, Tsubata K. J. Am. Chem. Soc. 1981; 103: 1172
    • 40c Yoshida J, Suga S, Suzuki S, Kinomura N, Yamamoto A, Fujiwara K. J. Am. Chem. Soc. 1999; 121: 9546
    • 40d Suga S, Okajima M, Yoshida J. Tetrahedron Lett. 2001; 42: 2173
    • 40e Suga S, Suzuki S, Yoshida J. J. Am. Chem. Soc. 2002; 124: 30
    • 40f Kim S, Shoji T, Kitano Y, Chiba K. Chem. Commun. 2013; 49: 6525
    • 40g Shoji T, Kim S, Chiba K. Angew. Chem. Int. Ed. 2017; 56: 4011
    • 40h Suga S, Matsumoto K, Ueoka K, Yoshida JI. J. Am. Chem. Soc. 2006; 128: 7710
    • 40i Yoshida J, Isoe S. Tetrahedron Lett. 1987; 28: 6621
    • 40j Sugawara M, Mori K, Yoshida JI. Electrochim. Acta 1997; 42: 1995
    • 40k Suga S, Watanabe M, Song CH, Yoshida JI. Electrochemistry 2006; 74: 672
    • 40l Mitsudo K, Yamamoto J, Akagi T, Yamashita A, Haisa M, Yoshioka K, Mandai H, Ueoka K, Hempel C, Yoshida J, Suga S. Beilstein J. Org. Chem. 2018; 14: 1192
    • 40m Yoshida J, Ashikari Y, Matsumoto K, Nokami T. J. Synth. Org. Chem. Jpn. 2013; 71: 1136
    • 40n Jones AM, Banks CE. Beilstein J. Org. Chem. 2014; 10: 3056
    • 40o Yoshida J, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
    • 41a Semmelhack MF, Schmid CR. J. Am. Chem. Soc. 1983; 105: 6732
    • 41b Li C, Zeng CC, Hu LM, Yang FL, Yoo SJ, Little RD. Electrochim. Acta 2013; 114: 560
    • 41c Wang F, Rafiee M, Stahl SS. Angew. Chem. Int. Ed. 2018; 57: 6686
    • 41d Lennox AJ. J, Goes SL, Webster MP, Koolman HF, Djuric SW, Stahl SS. J. Am. Chem. Soc. 2018; 140: 11227
    • 41e Gao PS, Weng XJ, Wang ZH, Zheng C, Sun B, Chen ZH, You SL, Mei TS. Angew. Chem. Int. Ed. 2020; 59: 15254
    • 41f Kashiwagi Y, Kurashima F, Kikuchi C, Anzai J, Osa T, Bobbitt JM. Chem. Commun. 1999; 1983
    • 41g Kashiwagi Y, Anzai J. Chem. Pharm. Bull. 2001; 49: 324
    • 41h Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
    • 41i Wang F, Stahl SS. Acc. Chem. Res. 2020; 53: 561
    • 42a Norrish RG. W, Bamford CH. Nature 1937; 140: 195
    • 42b Yang NC, Yang DD. H. J. Am. Chem. Soc. 1958; 80: 2913
    • 42c Clasen RA, Searles S. Chem. Commun. 1966; 289
    • 42d Cohen SG, Parola A, Parsons GH. Chem. Rev. 1973; 73: 141
    • 42e Hasegawa T, Aoyama H, Omote Y. Tetrahedron Lett. 1975; 16: 1901
    • 42f Lindemann U, Wulff-Molder D, Wessig P. Tetrahedron: Asymmetry 1998; 9: 4459
    • 42g Gramain JC, Remuson R, Vallee D. J. Org. Chem. 1985; 50: 710
    • 42h Giese B, Wettstein P, Stahelin C, Barbosa F, Neuburger M, Zehnder M, Wessig P. Angew. Chem. Int. Ed. 1999; 38: 2586
    • 42i Wu JF, Zhang W, Wang CL. Synthesis 2009; 1821
    • 42j Roque JB, Kuroda Y, Jurczyk J, Xu LP, Ham JS, Gottemann LT, Roberts CA, Adpressa D, Sauri J, Joyce LA, Musaev DG, Yeung CS, Sarpong R. ACS Catal. 2020; 10: 2929
    • 42k Ham JS, Park B, Son M, Roque JB, Jurczyk J, Yeung CS, Baik MH, Sarpong R. J. Am. Chem. Soc. 2020; 142: 13041
    • 42l Griesbeck AG, Heckroth H, Schmickler H. Tetrahedron Lett. 1999; 40: 3137
    • 42m Rey V, Pierini AB, Peñéñory AB. J. Org. Chem. 2009; 74: 1223
    • 42n Nishio T, Tabata M, Koyama H, Sakamoto M. Helv. Chim. Acta 2005; 88: 78
    • 42o Nishio T, Koyama H, Sasaki D, Sakamoto M. Helv. Chim. Acta 2005; 88: 996
    • 42p Nishio T, Sakurai N, Iba K, Hamano Y, Sakamoto M. Helv. Chim. Acta 2005; 88: 2603
    • 42q Nechab M, Mondal S, Bertrand MP. Chem. Eur. J. 2014; 20: 16034
    • 43a Davidson RS. Chem. Commun. 1966; 575
    • 43b Hoshikawa T, Yoshioka S, Kamijo S, Inoue M. Synthesis 2013; 45: 874
    • 43c Kamijo S, Takao G, Kamijo K, Hirota M, Tao K, Murafuji T. Angew. Chem. Int. Ed. 2016; 55: 9695
    • 43d Kamijo S, Takao G, Kamijo K, Tsuno T, Ishiguro K, Murafuji T. Org. Lett. 2016; 18: 4912
    • 43e Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
    • 43f Si XJ, Zhang LM, Hashmi AS. K. Org. Lett. 2019; 21: 6329
    • 43g Schultz DM, Levesque F, DiRocco DA, Reibarkh M, Ji YN, Joyce LA, Dropinski JF, Sheng HM, Sherry BD, Davies IW. Angew. Chem. Int. Ed. 2017; 56: 15274
    • 43h Sarver PJ, Bacauanu V, Schultz DM, DiRocco DA, Lam YH, Sherer EC, MacMillan DW. C. Nat. Chem. 2020; 12: 459
    • 43i Yu JP, Zhao CY, Zhou R, Gao WC, Wang S, Liu K, Chen SY, Hu KQ, Mei L, Yuan LY, Chai ZF, Hu HS, Shi WQ. Chem. Eur. J. 2020; 26: 16521
    • 43j Srivastava V, Singh PK, Singh PP. Tetrahedron Lett. 2019; 60: 1333
    • 43k Roberts BP. Chem. Soc. Rev. 1999; 28: 25
    • 43l Nagatomo M, Yoshioka S, Inoue M. Chem. Asian J. 2015; 10: 120
    • 43m Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
    • 43n Capaldo L, Quadri LL, Ravelli D. Green Chem. 2020; 22: 3376
    • 44a Condie AG, Gonzalez-Gomez JC, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
    • 44b Rueping M, Zhu SQ, Koenigs RM. Chem. Commun. 2011; 47: 12709
    • 44c Freeman DB, Furst L, Condie AG, Stephenson CR. J. Org. Lett. 2012; 14: 94
    • 44d Rueping M, Zhu SQ, Koenigs RM. Chem. Commun. 2011; 47: 8679
    • 44e Rueping M, Vila C, Koenigs RM, Poscharny K, Fabry DC. Chem. Commun. 2011; 47: 2360
    • 44f Zhao GL, Yang C, Guo L, Sun HN, Chen C, Xia WJ. Chem. Commun. 2012; 48: 2337
    • 44g Rueping M, Koenigs RM, Poscharny K, Fabry DC, Leonori D, Vila C. Chem. Eur. J. 2012; 18: 5170
    • 44h DiRocco DA, Rovis T. J. Am. Chem. Soc. 2012; 134: 8094
    • 44i Bergonzini G, Schindler CS, Wallentin CJ, Jacobsen EN, Stephenson CR. J. Chem. Sci. 2014; 5: 112
    • 44j Pan YH, Kee CW, Chen L, Tan CH. Green Chem. 2011; 13: 2682
    • 44k Liu Q, Li YN, Zhang HH, Chen B, Tung CH, Wu LZ. Chem. Eur. J. 2012; 18: 620
    • 44l Pan YH, Wang S, Kee CW, Dubuisson E, Yang YY, Loh KP, Tan CH. Green Chem. 2011; 13: 3341
    • 44m Fu WJ, Guo WB, Zou GL, Xu C. J. Fluorine Chem. 2012; 140: 88
    • 44n Lin SX, Sun GJ, Kang Q. Chem. Commun. 2017; 53: 7665
    • 44o Zhang T, Liang WW, Huang YX, Li XR, Liu YZ, Yang B, He CX, Zhou XC, Zhang JM. Chem. Commun. 2017; 53: 12536
    • 44p Kohls P, Jadhav D, Pandey G, Reiser O. Org. Lett. 2012; 14: 672
    • 44q Miyake Y, Nakajima K, Nishibayashi Y. Chem. Eur. J. 2012; 18: 16473
    • 44r Espelt LR, Wiensch EM, Yoon TP. J. Org. Chem. 2013; 78: 4107
    • 44s Sharma S, Sharma A. Org. Biomol. Chem. 2019; 17: 4384
    • 44t Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 45a McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
    • 45b Noble A, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
    • 45c Joe CL, Doyle AG. Angew. Chem. Int. Ed. 2016; 55: 4040
    • 45d Leng LY, Fu Y, Liu P, Ready JM. J. Am. Chem. Soc. 2020; 142: 11972
    • 45e Prier CK, MacMillan DW. C. Chem. Sci. 2014; 5: 4173
    • 45f Ahneman DT, Doyle AG. Chem. Sci. 2016; 7: 7002
    • 45g McManus JB, Onuska NP. R, Nicewicz DA. J. Am. Chem. Soc. 2018; 140: 9056
    • 45h McManus JB, Onuska NP. R, Jeffreys MS, Goodwin NC, Nicewicz DA. Org. Lett. 2020; 22: 679
    • 45i Holmberg-Douglas N, Choi Y, Aquila B, Huynh H, Nicewicz DA. ACS Catal. 2021; 11: 3153
    • 45j Cohen SG, Chao HM. J. Am. Chem. Soc. 1968; 90: 165
    • 45k Lewis FD, Ho TI, Simpson JT. J. Org. Chem. 1981; 46: 1077
    • 45l Masuda Y, Ito M, Murakami M. Org. Lett. 2020; 22: 4467
    • 45m Thullen SM, Rovis T. J. Am. Chem. Soc. 2017; 139: 15504
    • 45n Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 45o Guillemard L, Wencel-Delord J. Beilstein J. Org. Chem. 2020; 16: 1754
    • 46a Dai C, Meschini F, Narayanam JM. R, Stephenson CR. J. J. Org. Chem. 2012; 77: 4425
    • 46b Ide T, Barham JP, Fujita M, Kawato Y, Egami H, Hamashima Y. Chem. Sci. 2018; 9: 8453
    • 46c Kobayashi F, Fujita M, Ide T, Ito Y, Yamashita K, Egami H, Hamashima Y. ACS Catal. 2021; 11: 82
    • 46d Wakaki T, Sakai K, Enomoto T, Kondo M, Masaoka S, Oisaki K, Kanai M. Chem. Eur. J. 2018; 24: 8051
    • 46e Grainger R, Heightman TD, Ley SV, Lima F, Johnson CN. Chem. Sci. 2019; 10: 2264
    • 46f Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
    • 46g Le C, Liang YF, Evans RW, Li XM, MacMillan DW. C. Nature 2017; 547: 79
    • 46h Rohe S, Morris AO, McCallum T, Barriault L. Angew. Chem. Int. Ed. 2018; 57: 15664
    • 46i Li WP, Duan YQ, Zhang ML, Cheng J, Zhu CJ. Chem. Commun. 2016; 52: 7596
    • 46j Choi GJ, Zhu QL, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
    • 46k Ye JT, Kalvet I, Schoenebeck F, Rovis T. Nat. Chem. 2018; 10: 1037
    • 46l Ashley MA, Yamauchi C, Chu JC. K, Otsuka S, Yorimitsu H, Rovis T. Angew. Chem. Int. Ed. 2019; 58: 4002
    • 46m Ryder AS. H, Cunningham WB, Ballantyne G, Mules T, Kinsella AG, Turner-Dore J, Alder CM, Edwards LJ, McKay BS. J, Grayson MN, Cresswell AJ. Angew. Chem. Int. Ed. 2020; 59: 14986
    • 46n Treacy SM, Rovis T. J. Am. Chem. Soc. 2021; 143: 2729
    • 46o Xu P, Chen PY, Xu HC. Angew. Chem. Int. Ed. 2020; 59: 14275
    • 47a Han GH, McIntosh MC, Weinreb SM. Tetrahedron Lett. 1994; 35: 5813
    • 47b Ito R, Umezawa N, Higuchi T. J. Am. Chem. Soc. 2005; 127: 834
    • 47c Kim Y, Heo J, Kim D, Chang S, Seo S. Nat. Commun. 2020; 11: 4761
    • 47d Osberger TJ, Rogness DC, Kohrt JT, Stepan AF, White MC. Nature 2016; 537: 214
    • 47e Roque JB, Kuroda Y, Gottemann LT, Sarpong R. Science 2018; 361: 171
    • 47f Roque JB, Kuroda Y, Gottemann LT, Sarpong R. Nature 2018; 564: 244
    • 47g Roque JB, Sarpong R, Musaev DG. J. Am. Chem. Soc. 2021; 143: 3889
    • 47h Kaname M, Yoshifuji S, Sashida H. Tetrahedron Lett. 2008; 49: 2786
    • 47i Xia XF, Shu XZ, Ji KG, Shaukat A, Liu XY, Liang YM. J. Org. Chem. 2011; 76: 342
    • 47j Paciaroni NG, Ratnayake R, Matthews JH, Norwood VM, Arnold AC, Dang LH, Luesch H, Huigens RW. Chem. Eur. J. 2017; 23: 4327
    • 47k Morcillo SP. Angew. Chem. Int. Ed. 2019; 58: 14044
    • 47l Zhang YJ, Sun S, Su YJ, Zhao J, Li YH, Han B, Shi F. Org. Biomol. Chem. 2019; 17: 4970
    • 47m Smolobochkin AV, Gazizov AS, Burilov AR, Pudovik MA, Sinyashin OG. Russ. Chem. Rev. 2019; 88: 1104
    • 47n Su JK, Ma XX, Ou ZL, Song QL. ACS Cent. Sci. 2020; 6: 1819

Corresponding Author

Daniel Seidel
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida
Gainesville, FL 32611
USA   

Publication History

Received: 10 June 2021

Accepted: 18 June 2021

Article published online:
12 August 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

    • 1a Peterson DJ, Hays HR. J. Org. Chem. 1965; 30: 1939
    • 1b Lepley AR, Giumanini AG. J. Org. Chem. 1966; 31: 2055
    • 1c Ahlbrecht H, Dollinger H. Tetrahedron Lett. 1984; 25: 1353
    • 1d Gessner VH, Strohmann C. J. Am. Chem. Soc. 2008; 130: 14412
    • 1e Kessar SV, Singh P, Vohra R, Kaur NP, Singh KN. J. Chem. Soc., Chem. Commun. 1991; 568
    • 1f Kessar SV, Vohra R, Kaur NP. Tetrahedron Lett. 1991; 32: 3221
    • 1g De Ceglie MC, Musio B, Affortunato F, Moliterni A, Altomare A, Florio S, Luisi R. Chem. Eur. J. 2011; 17: 286
    • 1h Singh KN, Singh P, Singh P, Deol YS. Org. Lett. 2012; 14: 2202
    • 1i Lepley AR, Khan WA. J. Org. Chem. 1966; 31: 2061
    • 1j Lepley AR, Khan WA. Chem. Commun. 1967; 1198
    • 1k Kessar SV, Singh P. Chem. Rev. 1997; 97: 721
    • 1l Katritzky AR, Qi M. Tetrahedron 1998; 54: 2647
    • 1m Ferey V, Toupet L, Le Gall T, Mioskowski C. Angew. Chem., Int. Ed. Engl. 1996; 35: 430
    • 1n Vedejs E, Kendall JT. J. Am. Chem. Soc. 1997; 119: 6941
    • 1o Ebden MR, Simpkins NS, Fox DN. A. Tetrahedron 1998; 54: 12923
    • 1p Kessar SV, Singh P, Singh KN, Venugopalan P, Kaur A, Bharatam PV, Sharma AK. J. Am. Chem. Soc. 2007; 129: 4506
    • 1q Harmata M, Carter KW, Jones DE, Kahraman M. Tetrahedron Lett. 1996; 37: 6267
    • 1r Kovács E, Huszka B, Gáti T, Nyerges M, Faigl F, Mucsi Z. J. Org. Chem. 2019; 84: 7100
    • 1s Kovács E, Faigl F, Mucsi Z. J. Org. Chem. 2020; 85: 11226
    • 2a Keefer LK, Fodor CH. J. Am. Chem. Soc. 1970; 92: 5747
    • 2b Seebach D, Enders D. Angew. Chem., Int. Ed. Engl. 1972; 11: 301
    • 2c Seebach D, Enders D. Angew. Chem., Int. Ed. Engl. 1972; 11: 1101
    • 2d Seebach D, Wykypiel W. Synthesis 1979; 423
    • 2e Seebach D, Enders D. J. Med. Chem. 1974; 17: 1225
    • 2f Fraser RR, Passannanti S. Synthesis 1976; 540
    • 2g Wykypiel W, Seebach D. Tetrahedron Lett. 1980; 21: 1927
    • 2h Savignac P, Dreux M, Leroux Y. Tetrahedron Lett. 1974; 15: 2651
    • 2i Savignac P, Leroux Y. J. Organomet. Chem. 1973; 57: C47
    • 2j Magnus P, Roy G. Synthesis 1980; 575
    • 2k Seebach D, Yoshifuji M. Helv. Chim. Acta 1981; 64: 643
    • 2l Beak P, Zajdel WJ. J. Am. Chem. Soc. 1984; 106: 1010
    • 2m Meyers AI, Edwards PD, Rieker WF, Bailey TR. J. Am. Chem. Soc. 1984; 106: 3270
    • 2n Meyers AL, Dickman DA, Boes M. Tetrahedron 1987; 43: 5095
    • 2o Meyers AI. Tetrahedron 1992; 48: 2589
    • 2p Seebach D, Enders D. Angew. Chem., Int. Ed. Engl. 1975; 14: 15
    • 2q Beak P, Reitz DB. Chem. Rev. 1978; 78: 275
    • 2r Beak P, Zajdel WJ, Reitz DB. Chem. Rev. 1984; 84: 471
    • 2s Clayden J. Organolithiums: Selectivity for Synthesis. In Tetrahedron Organic Chemistry Series, Vol. 23. Clayden J. Pergamon; Amsterdam: 2002: 9
    • 2t Fraser RR, Boussard G, Postescu ID, Whiting JJ, Wigfield YY. Can. J. Chem. 1973; 51: 1109
    • 2u Lyle RE, Saavedra JE, Lyle GG, Fribush HM, Marshall JL, Lijinsky W, Singer GM. Tetrahedron Lett. 1976; 17: 4431
    • 2v Seebach D, Lubosch W. Angew. Chem., Int. Ed. Engl. 1976; 15: 313
    • 2w Seebach D, Hassel T. Angew. Chem., Int. Ed. Engl. 1978; 17: 274
    • 2x Meyers AI, Ten Hoeve W. J. Am. Chem. Soc. 1980; 102: 7125
    • 2y Seebach D, Lohmann J.-J, Syfrig MA, Yoshifuji M. Tetrahedron 1983; 39: 1963
    • 2z Gawley RE, Hart G, Goicoechea-Pappas M, Smith AL. J. Org. Chem. 1986; 51: 3076
    • 2aa Gawley RE, Rein K, Chemburkar S. J. Org. Chem. 1989; 54: 3002
    • 2ab Meyers AI, Milot G. J. Org. Chem. 1993; 58: 6538
    • 2ac Nain Singh K, Singh P, Kaur A. Synth. Commun. 2006; 36: 3339
    • 3a Beak P, Lee W.-K. Tetrahedron Lett. 1989; 30: 1197
    • 3b Beak P, Lee WK. J. Org. Chem. 1990; 55: 2578
    • 3c Beak P, Lee WK. J. Org. Chem. 1993; 58: 1109
    • 3d Xiao D, Lavey BJ, Palani A, Wang C, Aslanian RG, Kozlowski JA, Shih N.-Y, McPhail AT, Randolph GP, Lachowicz JE, Duffy RA. Tetrahedron Lett. 2005; 46: 7653
    • 3e Aeyad T, Williams JD, Meijer AJ. H. M, Coldham I. Synlett 2017; 28: 2765
    • 3f Beak P, Wu S, Yum EK, Jun YM. J. Org. Chem. 1994; 59: 276
    • 3g Dieter RK, Li S. Tetrahedron Lett. 1995; 36: 3613
    • 3h Dieter RK, Li S. J. Org. Chem. 1997; 62: 7726
    • 3i Dieter RK, Dieter JW, Alexander CW, Bhinderwala NS. J. Org. Chem. 1996; 61: 2930
    • 3j Dieter RK, Velu SE. J. Org. Chem. 1997; 62: 3798
    • 3k Dieter RK, Lu K, Velu SE. J. Org. Chem. 2000; 65: 8715
    • 3l Barker G, O’Brien P, Campos KR. Org. Lett. 2010; 12: 4176
    • 3m Kwong A, Firth JD, Farmer TJ, O’Brien P. Tetrahedron 2021; 81: 131899
    • 3n Stead D, O’Brien P, Sanderson AJ. Org. Lett. 2005; 7: 4459
    • 3o Berkheij M, van der Sluis L, Sewing C, den Boer DJ, Terpstra JW, Hiemstra H, Iwema Bakker WI, van den Hoogenband A, van Maarseveen JH. Tetrahedron Lett. 2005; 46: 2369
    • 3p Hodgson DM, Humphreys PG, Xu Z, Ward JG. Angew. Chem. Int. Ed. 2007; 46: 2245
    • 3q Li X, Leonori D, Sheikh NS, Coldham I. Chem. Eur. J. 2013; 19: 7724
    • 3r Pizzuti MG, Minnaard AJ, Feringa BL. Org. Biomol. Chem. 2008; 6: 3464
    • 3s Krishnan S, Bagdanoff JT, Ebner DC, Ramtohul YK, Tambar UK, Stoltz BM. J. Am. Chem. Soc. 2008; 130: 13745
    • 3t Dieter RK, Sharma RR, Ryan W. Tetrahedron Lett. 1997; 38: 783
    • 3u Dieter RK, Lu K. J. Org. Chem. 2002; 67: 847
    • 3v Coldham I, Leonori D. Org. Lett. 2008; 10: 3923
    • 4a Kerrick ST, Beak P. J. Am. Chem. Soc. 1991; 113: 9708
    • 4b Beak P, Kerrick ST, Wu S, Chu J. J. Am. Chem. Soc. 1994; 116: 3231
    • 4c Dearden MJ, Firkin CR, Hermet J.-PR, O’Brien P. J. Am. Chem. Soc. 2002; 124: 11870
    • 4d Campos KR, Klapars A, Waldman JH, Dormer PG, Chen C.-Y. J. Am. Chem. Soc. 2006; 128: 3538
    • 4e Seel S, Thaler T, Takatsu K, Zhang C, Zipse H, Straub BF, Mayer P, Knochel P. J. Am. Chem. Soc. 2011; 133: 4774
    • 4f Kasten K, Seling N, O’Brien P. Org. React. 2019; 100: 255
    • 4g Wong JY. F, Barker G. Tetrahedron 2020; 76: 131704
    • 4h Gallagher DJ, Beak P. J. Org. Chem. 1995; 60: 7092
    • 4i Wilkinson TJ, Stehle NW, Beak P. Org. Lett. 2000; 2: 155
    • 4j Phuan P.-W, Ianni JC, Kozlowski MC. J. Am. Chem. Soc. 2004; 126: 15473
    • 4k Coldham I, Leonori D. J. Org. Chem. 2010; 75: 4069
    • 4l Sheikh NS, Leonori D, Barker G, Firth JD, Campos KR, Meijer AJ. H. M, O’Brien P, Coldham I. J. Am. Chem. Soc. 2012; 134: 5300
    • 4m Kizirian J.-C, Caille J.-C, Alexakis A. Tetrahedron Lett. 2003; 44: 8893
    • 4n Hermet J.-PR, Porter DW, Dearden MJ, Harrison JR, Koplin T, O’Brien P, Parmene J, Tyurin V, Whitwood AC, Gilday J, Smith NM. Org. Biomol. Chem. 2003; 1: 3977
    • 4o McGrath MJ, Bilke JL, O’Brien P. Chem. Commun. 2006; 2607
    • 4p McGrath MJ, O’Brien P. J. Am. Chem. Soc. 2005; 127: 16378
    • 5a Coldham I, Raimbault S, Whittaker DT. E, Chovatia PT, Leonori D, Patel JJ, Sheikh NS. Chem. Eur. J. 2010; 16: 4082
    • 5b Millet A, Larini P, Clot E, Baudoin O. Chem. Sci. 2013; 4: 2241
    • 5c Cordier CJ, Lundgren RJ, Fu GC. J. Am. Chem. Soc. 2013; 135: 10946
    • 5d Mu X, Shibata Y, Makida Y, Fu GC. Angew. Chem. Int. Ed. 2017; 56: 5821
    • 5e Beak P, Basu A, Gallagher DJ, Park YS, Thayumanavan S. Acc. Chem. Res. 1996; 29: 552
    • 5f Campos KR. Chem. Soc. Rev. 2007; 36: 1069
    • 5g Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BU. W. Chem. Eur. J. 2012; 18: 10092
    • 5h Coldham I, Dufour S, Haxell TF. N, Howard S, Vennall GP. Angew. Chem. Int. Ed. 2002; 41: 3887
    • 5i Beng TK, Gawley RE. J. Am. Chem. Soc. 2010; 132: 12216
    • 5j Millet A, Dailler D, Larini P, Baudoin O. Angew. Chem. Int. Ed. 2014; 53: 2678
    • 5k Watson RT, Gore VK, Chandupatla KR, Dieter RK, Snyder JP. J. Org. Chem. 2004; 69: 6105
    • 5l Klapars A, Campos KR, Waldman JH, Zewge D, Dormer PG, Chen C.-Y. J. Org. Chem. 2008; 73: 4986
    • 5m Barker G, McGrath JL, Klapars A, Stead D, Zhou G, Campos KR, O’Brien P. J. Org. Chem. 2011; 76: 5936
    • 6a Jun C.-H. Chem. Commun. 1998; 1405
    • 6b Wang D.-H, Hao X.-S, Wu D.-F, Yu J.-Q. Org. Lett. 2006; 8: 3387
    • 6c Pan S, Endo K, Shibata T. Org. Lett. 2011; 13: 4692
    • 6d Chatani N, Asaumi T, Ikeda T, Yorimitsu S, Ishii Y, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2000; 122: 12882
    • 6e Pastine SJ, Gribkov DV, Sames D. J. Am. Chem. Soc. 2006; 128: 14220
    • 6f Chatani N, Asaumi T, Yorimitsu S, Ikeda T, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2001; 123: 10935
    • 6g Tsuchikama K, Kasagawa M, Endo K, Shibata T. Org. Lett. 2009; 11: 1821
    • 6h Schinkel M, Wang L, Bielefeld K, Ackermann L. Org. Lett. 2014; 16: 1876
    • 6i Lahm G, Opatz T. Org. Lett. 2014; 16: 4201
    • 6j Spangler JE, Kobayashi Y, Verma P, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 11876
    • 6k Tran AT, Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 10530
    • 6l Antermite D, Affron DP, Bull JA. Org. Lett. 2018; 20: 3948
    • 6m Reyes RL, Sato M, Iwai T, Sawamura M. J. Am. Chem. Soc. 2020; 142: 589
    • 6n Su B, Bunescu A, Qiu Y, Zuend SJ, Ernst M, Hartwig JF. J. Am. Chem. Soc. 2020; 142: 7912
    • 6o He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 6p Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 6q Zhang M, Wang Q, Peng Y, Chen Z, Wan C, Chen J, Zhao Y, Zhang R, Zhang AQ. Chem. Commun. 2019; 55: 13048
    • 6r Kapoor M, Singh A, Sharma K, Hsu MH. Adv. Synth. Catal. 2020; 362: 4513
    • 7a Topczewski JJ, Cabrera PJ, Saper NI, Sanford MS. Nature 2016; 531: 220
    • 7b Cabrera PJ, Lee M, Sanford MS. J. Am. Chem. Soc. 2018; 140: 5599
    • 7c Aguilera EY, Sanford MS. Angew. Chem. Int. Ed. 2021; 60: 11227
    • 7d Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 7e Zhang S.-Y, He G, Nack WA, Zhao Y, Li Q, Chen G. J. Am. Chem. Soc. 2013; 135: 2124
    • 7f Zhang S.-Y, He G, Zhao Y, Wright K, Nack WA, Chen G. J. Am. Chem. Soc. 2012; 134: 7313
    • 7g He G, Zhao Y, Zhang S, Lu C, Chen G. J. Am. Chem. Soc. 2012; 134: 3
    • 7h He G, Zhao Y, Zhang S, Lu C, Chen G. J. Am. Chem. Soc. 2017; 139: 561
    • 7i Verma P, Richter JM, Chekshin N, Qiao JX, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 5117
    • 7j Nadres ET, Daugulis O. J. Am. Chem. Soc. 2012; 134: 7
    • 7k Ye X, He Z, Ahmed T, Weise K, Akhmedov NG, Petersen JL, Shi X. Chem. Sci. 2013; 4: 3712
    • 7l Li Q, Zhang S.-Y, He G, Nack WA, Chen G. Adv. Synth. Catal. 2014; 356: 1544
    • 7m Wang P.-L, Li Y, Wu Y, Li C, Lan Q, Wang X.-S. Org. Lett. 2015; 17: 3698
    • 7n Huang Z, Wang C, Dong G. Angew. Chem. Int. Ed. 2016; 55: 5299
    • 7o Coomber CE, Benhamou L, Bučar D.-K, Smith PD, Porter MJ, Sheppard TD. J. Org. Chem. 2018; 83: 2495
    • 8a Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
    • 8b Tran LD, Daugulis O. Angew. Chem. Int. Ed. 2012; 51: 5188
    • 8c Affron DP, Davis OA, Bull JA. Org. Lett. 2014; 16: 4956
    • 8d Affron DP, Bull JA. Eur. J. Org. Chem. 2016; 139
    • 8e Maetani M, Zoller J, Melillo B, Verho O, Kato N, Pu J, Comer E, Schreiber SL. J. Am. Chem. Soc. 2017; 139: 11300
    • 8f He J, Li S, Deng Y, Fu H, Laforteza BN, Spangler JE, Homs A, Yu J.-Q. Science 2014; 343: 1216
    • 8g He G, Chen G. Angew. Chem. Int. Ed. 2011; 50: 5192
    • 8h Rodríguez N, Romero-Revilla JA, Fernández-Ibáñez M. Á, Carretero JC. Chem. Sci. 2013; 4: 175
    • 8i Chen K, Hu F, Zhang S.-Q, Shi B.-F. Chem. Sci. 2013; 4: 3906
    • 8j Zhang S.-Y, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2013; 135: 12135
    • 8k Wang B, Nack WA, He G, Zhang S.-Y, Chen G. Chem. Sci. 2014; 5: 3952
    • 8l Gong W, Zhang G, Liu T, Giri R, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 16940
    • 8m Zhang L.-S, Chen G, Wang X, Guo Q.-Y, Zhang X.-S, Pan F, Chen K, Shi Z.-J. Angew. Chem. Int. Ed. 2014; 53: 3899
    • 8n Zhang Q, Yin X.-S, Chen K, Zhang S.-Q, Shi B.-F. J. Am. Chem. Soc. 2015; 137: 8219
    • 8o Ye S, Yang W, Coon T, Fanning D, Neubert T, Stamos D, Yu J.-Q. Chem. Eur. J. 2016; 22: 4748
    • 8p Xu J.-W, Zhang Z.-Z, Rao W.-H, Shi B.-F. J. Am. Chem. Soc. 2016; 138: 10750
    • 8q Zhan B.-B, Li Y, Xu J.-W, Nie X.-L, Fan J, Jin L, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 5858
    • 8r Noisier AF. M, Brimble MA. Chem. Rev. 2014; 114: 8775
    • 8s He G, Wang B, Nack WA, Chen G. Acc. Chem. Res. 2016; 49: 635
    • 8t Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14700
    • 8u Tong H.-R, Li B, Li G, He G, Chen G. CCS Chem. 2020; 3: 1797
    • 9a Wang H, Tong H.-R, He G, Chen G. Angew. Chem. Int. Ed. 2016; 55: 15387
    • 9b Jain P, Verma P, Xia G, Yu J.-Q. Nat. Chem. 2017; 9: 140
    • 9c Jiang H.-J, Zhong X.-M, Yu J, Zhang Y, Zhang X, Wu Y.-D, Gong L.-Z. Angew. Chem. Int. Ed. 2019; 58: 1803
    • 9d Greßies S, Klauck FJ. R, Kim JH, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2018; 57: 9950
    • 9e Chen L, Yang Y, Liu L, Gao Q, Xu S. J. Am. Chem. Soc. 2020; 142: 12062
    • 10a Wu Y, Chen Y.-Q, Liu T, Eastgate MD, Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14554
    • 10b Liu Y, Ge H. Nat. Chem. 2017; 9: 26
    • 10c Kapoor M, Liu D, Young MC. J. Am. Chem. Soc. 2018; 140: 6818
    • 10d Chen Y.-Q, Wang Z, Wu Y, Wisniewski SR, Qiao JX, Ewing WR, Eastgate MD, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 17884
    • 10e Chen Y.-Q, Singh S, Wu Y, Wang Z, Hao W, Verma P, Qiao JX, Sunoj RB, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 9966
    • 10f Yada A, Liao W, Sato Y, Murakami M. Angew. Chem. Int. Ed. 2017; 56: 1073
    • 10g St John-Campbell S, Ou AK, Bull JA. Chem. Eur. J. 2018; 24: 17838
    • 10h St John-Campbell S, Bull JA. Org. Biomol. Chem. 2018; 16: 4582
    • 10i Niu B, Yang K, Lawrence B, Ge H. ChemSusChem 2019; 12: 2955
    • 10j Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
    • 11a McNally A, Haffemayer B, Collins BS. L, Gaunt MJ. Nature 2014; 510: 129
    • 11b Smalley AP, Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 10632
    • 11c Willcox D, Chappell BG. N, Hogg KF, Calleja J, Smalley AP, Gaunt MJ. Science 2016; 354: 851
    • 11d Smalley AP, Cuthbertson JD, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 1412
    • 11e Whitehurst WG, Blackwell JH, Hermann GN, Gaunt MJ. Angew. Chem. Int. Ed. 2019; 58: 9054
    • 11f Zhuang Z, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 12015
    • 11g Calleja J, Pla D, Gorman TW, Domingo V, Haffemayer B, Gaunt MJ. Nat. Chem. 2015; 7: 1009
    • 11h Cabrera-Pardo JR, Trowbridge A, Nappi M, Ozaki K, Gaunt MJ. Angew. Chem. Int. Ed. 2017; 56: 11958
    • 11i Chen K, Wang D, Li Z.-W, Liu Z, Pan F, Zhang Y.-F, Shi Z.-J. Org. Chem. Front. 2017; 4: 2097
    • 11j Png ZM, Cabrera-Pardo JR, Peiró Cadahía J, Gaunt MJ. Chem. Sci. 2018; 9: 7628
    • 11k Lin H, Pan X, Barsamian AL, Kamenecka TM, Bannister TD. ACS Catal. 2019; 9: 4887
    • 11l Rodrigalvarez J, Nappi M, Azuma H, Flodén NJ, Burns ME, Gaunt MJ. Nat. Chem. 2020; 12: 76
    • 11m He C, Whitehurst WG, Gaunt MJ. Chem 2019; 5: 1031
    • 12a Li Q, Liskey CW, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 8755
    • 12b Lee M, Sanford MS. J. Am. Chem. Soc. 2015; 137: 12796
    • 12c Howell JM, Feng K, Clark JR, Trzepkowski LJ, White MC. J. Am. Chem. Soc. 2015; 137: 14590
    • 12d Zhao J, Nanjo T, de Lucca EC, White MC. Nat. Chem. 2019; 11: 213
    • 12e Clark JR, Feng K, Sookezian A, White MC. Nat. Chem. 2018; 10: 583
    • 12f Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Science 2020; 368: 736
    • 12g Su B, Lee T, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 18032
    • 12h Mack JB. C, Gipson JD, Du Bois J, Sigman MS. J. Am. Chem. Soc. 2017; 139: 9503
    • 12i Mbofana CT, Chong E, Lawniczak J, Sanford MS. Org. Lett. 2016; 18: 4258
    • 12j Nanjo T, de Lucca EC, White MC. J. Am. Chem. Soc. 2017; 139: 14586
    • 12k Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
    • 12l Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
    • 13a Clerici MG, Maspero F. Synthesis 1980; 305
    • 13b Nugent WA, Ovenall DW, Holmes SJ. Organometallics 1983; 2: 161
    • 13c Herzon SB, Hartwig JF. J. Am. Chem. Soc. 2007; 129: 6690
    • 13d Herzon SB, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 14940
    • 13e Kubiak R, Prochnow I, Doye S. Angew. Chem. Int. Ed. 2009; 48: 1153
    • 13f Bexrud JA, Eisenberger P, Leitch DC, Payne PR, Schafer LL. J. Am. Chem. Soc. 2009; 131: 2116
    • 13g Nako AE, Oyamada J, Nishiura M, Hou Z. Chem. Sci. 2016; 7: 6429
    • 13h Reznichenko AL, Hultzsch KC. J. Am. Chem. Soc. 2012; 134: 3300
    • 13i Roesky PW. Angew. Chem. Int. Ed. 2009; 48: 4892
    • 13j Kruger K, Tillack A, Beller M. ChemSusChem 2009; 2: 715
    • 13k Chong E, Garcia P, Schafer L. Synthesis 2014; 46: 2884
    • 13l Hannedouche J, Schulz E. Organometallics 2018; 37: 4313
    • 13m Edwards PM, Schafer LL. Chem. Commun. 2018; 54: 12543
    • 13n Eisenberger P, Ayinla RO, Lauzon JM, Schafer LL. Angew. Chem. Int. Ed. 2009; 48: 8361
    • 13o Bytschkov I, Doye S. Eur. J. Org. Chem. 2001; 4411
    • 13p Ramanathan B, Odom AL. J. Am. Chem. Soc. 2006; 128: 9344
    • 13q Zi G, Zhang F, Song H. Chem. Commun. 2010; 46: 6296
    • 13r Reznichenko AL, Emge TJ, Audörsch S, Klauber EG, Hultzsch KC, Schmidt B. Organometallics 2011; 30: 921
    • 13s Payne PR, Garcia P, Eisenberger P, Yim JC.-H, Schafer LL. Org. Lett. 2013; 15: 2182
    • 13t Luhning LH, Strehl J, Schmidtmann M, Doye S. Chem. Eur. J. 2017; 23: 4197
    • 13u Geik D, Rosien M, Bielefeld J, Schmidtmann M, Doye S. Angew. Chem. Int. Ed. 2021; 60: 9936
    • 14a Leonard NJ, Hay AS, Fulmer RW, Gash VW. J. Am. Chem. Soc. 1955; 77: 439
    • 14b Leonard NJ, Morrow DF. J. Am. Chem. Soc. 1958; 80: 371
    • 14c Leonard NJ, Hauck FP. J. Am. Chem. Soc. 1957; 79: 5279
    • 14d Van Tamelen EE, Foltz RL. J. Am. Chem. Soc. 1969; 91: 7372
    • 14e Gutzwiller J, Pizzolato G, Uskoković M. J. Am. Chem. Soc. 1971; 93: 5907
    • 14f Openshaw HT, Whittaker N. J. Chem. Soc. 1963; 1449
    • 14g Bartlett MF, Lambert BF, Taylor WI. J. Am. Chem. Soc. 1964; 86: 729
    • 14h Barczaibeke M, Dornyei G, Kajtar M, Szantay C. Tetrahedron 1976; 32: 1019
    • 14i Sakai S, Kubo A, Haginiwa J. Tetrahedron Lett. 1969; 10: 1485
    • 14j Butler RN. Chem. Rev. 1984; 84: 249
    • 15a Rosenblatt DH, Moore KA, Streaty RA, Hayes AJ, Harrison BL. J. Org. Chem. 1963; 28: 2790
    • 15b Chen CK, Hortmann AG, Marzabadi MR. J. Am. Chem. Soc. 1988; 110: 4829
    • 15c Moriarty RM, Vaid RK, Duncan MP, Ochiai M, Inenaga M, Nagao Y. Tetrahedron Lett. 1988; 29: 6913
    • 15d Shen H, Zhang XH, Liu Q, Pan J, Hu W, Xiong Y, Zhu XM. Tetrahedron Lett. 2015; 56: 5628
    • 15e Tsang AS. K, Todd MH. Tetrahedron Lett. 2009; 50: 1199
    • 15f Chu LL, Qing FL. Chem. Commun. 2010; 46: 6285
    • 15g Allen JM, Lambert TH. J. Am. Chem. Soc. 2011; 133: 1260
    • 15h Xie ZY, Liu L, Chen WF, Zheng HB, Xu QQ, Yuan HQ, Lou HX. Angew. Chem. Int. Ed. 2014; 53: 3904
    • 15i Richter H, Mancheño OG. Eur. J. Org. Chem. 2010; 4460
    • 15j Fang L, Li ZH, Jiang ZJ, Tan ZY, Xie YY. Eur. J. Org. Chem. 2016; 3559
    • 15k Zhdankin VV, Kuehl CJ, Krasutsky AP, Bolz JT, Mismash B, Woodward JK, Simonsen AJ. Tetrahedron Lett. 1995; 36: 7975
    • 15l Huang WZ, Ni CF, Zhao YC, Hu JB. New J. Chem. 2013; 37: 1684
    • 15m Oss G, de Vos SD, Luc KN. H, Harper JB, Nguyen TV. J. Org. Chem. 2018; 83: 1000
    • 15n Zhang RP, Qin Y, Zhang L, Luo SZ. J. Org. Chem. 2019; 84: 2542
    • 15o Chen WL, Wang LY, Li YJ. Eur. J. Org. Chem. 2020; 103
    • 15p Singh P, Batra A, Singh KN, Mritunjay M. Synthesis 2021; 53: 1556
    • 16a Murahashi S.-I, Imada Y. Chem. Rev. 2019; 119: 4684
    • 16b Largeron M. Eur. J. Org. Chem. 2013; 5225
    • 16c Franck B, Randau D. Angew. Chem., Int. Ed. Engl. 1966; 5: 131
    • 16d Gupta RN, Spenser ID. Can. J. Chem. 1969; 47: 445
    • 16e Claxton GP, Allen L, Grisar JM. Org. Synth. 1977; 56: 118
    • 16f Kessler H, Moehrle H, Zimmermann G. J. Org. Chem. 1977; 42: 66
    • 16g Nutt RF, Joullie MM. J. Am. Chem. Soc. 1982; 104: 5852
    • 16h Davis BG, Maughan MA. T, Chapman TM, Villard R, Courtney S. Org. Lett. 2002; 4: 103
    • 16i Gravel E, Poupon E, Hocquemiller R. Tetrahedron 2006; 62: 5248
    • 16j Gomm A, Lewis W, Green AP, O’Reilly E. Chem. Eur. J. 2016; 22: 12692
    • 16k Gu R, Flidrova K, Lehn J.-M. J. Am. Chem. Soc. 2018; 140: 5560
    • 16l van der Heijden G, van Schaik TB, Mouarrawis V, de Wit MJ. M, Velde CM. L. V, Ruijter E, Orru RV. A. Eur. J. Org. Chem. 2019; 5313
    • 16m Nomura Y, Ogawa K, Takeuchi Y, Tomoda S. Chem. Lett. 1977; 693
    • 16n Ogawa K, Nomura Y, Takeuchi Y, Tomoda S. J. Chem. Soc., Perkin Trans. 1 1982; 3031
    • 16o Ochiai M, Inenaga M, Nagao Y, Moriarty RM, Vaid RK, Duncan MP. Tetrahedron Lett. 1988; 29: 6917
    • 16p Boto A, Hernández R, Suárez E. Tetrahedron Lett. 1999; 40: 5945
    • 16q Huang W.-J, Singh OV, Chen C.-H, Chiou S.-Y, Lee S.-S. Helv. Chim. Acta 2002; 85: 1069
    • 16r Castedo L, Riguera R, Rodriguez MJ. Tetrahedron 1982; 38: 1569
    • 16s Su F, Mathew SC, Möhlmann L, Antonietti M, Wang X, Blechert S. Angew. Chem. Int. Ed. 2011; 50: 657
    • 16t Wendlandt AE, Stahl SS. Org. Lett. 2012; 14: 2850
    • 16u Chen B, Wang L, Gao S. ACS Catal. 2015; 5: 5851
    • 16v Mitsui H, Zenki S.-I, Shiota T, Murahashi S.-I. J. Chem. Soc., Chem. Commun. 1984; 874
    • 16w Murahashi S, Mitsui H, Shiota T, Tsuda T, Watanabe S. J. Org. Chem. 1990; 55: 1736
    • 16x Matassini C, Parmeggiani C, Cardona F, Goti A. Org. Lett. 2015; 17: 4082
    • 16y Lisnyak VG, Lynch-Colameta T, Snyder SA. Angew. Chem. Int. Ed. 2018; 57: 15162
    • 17a Murahashi S, Naota T, Yonemura K. J. Am. Chem. Soc. 1988; 110: 8256
    • 17b Boess E, Wolf LM, Malakar S, Salamone M, Bietti M, Thiel W, Klussmann M. ACS Catal. 2016; 6: 3253
    • 17c Li ZP, Li CJ. J. Am. Chem. Soc. 2004; 126: 11810
    • 17d Volla CM. R, Vogel P. Org. Lett. 2009; 11: 1701
    • 17e Li ZP, Li CJ. J. Am. Chem. Soc. 2005; 127: 6968
    • 17f Xie J, Huang ZZ. Angew. Chem. Int. Ed. 2010; 49: 10181
    • 17g Xu ZW, Yu XQ, Feng XJ, Bao M. J. Org. Chem. 2011; 76: 6901
    • 17h Wang YD, Zhu J, Guo R, Lindberg H, Wang YM. Chem. Sci. 2020; 11: 12316
    • 17i Li CJ. Acc. Chem. Res. 2009; 42: 335
    • 17j Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 17k Zhang C, Tang CH, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 17l Girard SA, Knauber T, Li CJ. Angew. Chem. Int. Ed. 2014; 53: 74
    • 17m Qin Y, Zhu LH, Luo SZ. Chem. Rev. 2017; 117: 9433
    • 17n Huang CY, Kang H, Li JB, Li CJ. J. Org. Chem. 2019; 84: 12705
    • 17o Zhang JS, Liu L, Chen TQ, Han LB. ChemSusChem 2020; 13: 4776
    • 18a Murahashi SI, Komiya N, Terai H, Nakae T. J. Am. Chem. Soc. 2003; 125: 15312
    • 18b Scott M, Sud A, Boess E, Klussmann M. J. Org. Chem. 2014; 79: 12033
    • 18c Basle O, Li CJ. Green Chem. 2007; 9: 1047
    • 18d Meng QY, Liu Q, Zhong JJ, Zhang HH, Li ZJ, Chen B, Tung CH, Wu LZ. Org. Lett. 2012; 14: 5992
    • 18e Alagiri K, Kumara RG. S, Prabhu KR. Chem. Commun. 2011; 47: 11787
    • 18f Wang TT, Schrempp M, Berndhauser A, Schiemann O, Menche D. Org. Lett. 2015; 17: 3982
    • 18g Sonobe T, Oisaki K, Kanai M. Chem. Sci. 2012; 3: 3249
    • 18h Li X, Zhao H, Chen XW, Jiang HF, Zhang M. Org. Chem. Front. 2020; 7: 425
    • 18i Wang FF, Luo CP, Deng GJ, Yang L. Green Chem. 2014; 16: 2428
    • 18j Brzozowski M, Forni JA, Savage GP, Polyzos A. Chem. Commun. 2015; 51: 334
    • 18k Sharma K, Borah A, Neog K, Gogoi P. ChemistrySelect 2016; 1: 4620
    • 18l Groll B, Schaaf P, Schnürch M. Monatsh. Chem. 2017; 148: 91
    • 18m Zhang Y, Wei BW, Wang WX, Deng LL, Nie LJ, Luo HQ, Fan XL. RSC Adv. 2017; 7: 1229
    • 18n Zhu ZQ, Xiao LJ, Chen Y, Xie ZB, Zhu HB, Le ZG. Synthesis 2018; 50: 2775
    • 18o Ramana DV, Chandrasekharam M. Adv. Synth. Catal. 2018; 360: 4080
    • 18p Odachowski M, Greaney MF, Turner NJ. ACS Catal. 2018; 8: 10032
    • 18q Peng K, Dong ZB. Adv. Synth. Catal. 2021; 363: 1185
    • 18r Afsina CM. A, Aneeja T, Neetha M, Anilkumar G. Eur. J. Org. Chem. 2021; 1776
    • 19a Dominguez E, Lete E. J. Heterocycl. Chem. 1984; 21: 525
    • 19b Rao SN, Reddy NN. K, Samanta S, Adimurthy S. J. Org. Chem. 2017; 82: 13632
    • 19c Nobuta T, Tada N, Fujiya A, Kariya A, Miura T, Itoh A. Org. Lett. 2013; 15: 574
    • 19d Nobuta T, Fujiya A, Yamaguchi T, Tada N, Miura T, Itoh A. RSC Adv. 2013; 3: 10189
    • 19e Huang HM, Li YJ, Ye Q, Yu WB, Han L, Jia JH, Gao JR. J. Org. Chem. 2014; 79: 1084
    • 19f Kumar RA, Saidulu G, Prasad KR, Kumar GS, Sridhar B, Reddy KR. Adv. Synth. Catal. 2012; 354: 2985
    • 19g Li LT, Li HY, Xing LJ, Wen LJ, Wang P, Wang B. Org. Biomol. Chem. 2012; 10: 9519
    • 19h Liu D, Lei AW. Chem. Asian J. 2015; 10: 806
    • 19i Deb ML, Borpatra PJ, Saikia PJ, Baruah PK. Synlett 2017; 28: 461
    • 19j Debnath S, Das T, Gayen S, Ghosh T, Maiti DK. ACS Omega 2019; 4: 20410
    • 20a Shu XZ, Yang YF, Xia XF, Ji KG, Liu XY, Liang YM. Org. Biomol. Chem. 2010; 8: 4077
    • 20b Meng QY, Zhong JJ, Liu Q, Gao XW, Zhang HH, Lei T, Li ZJ, Feng K, Chen B, Tung CH, Wu LZ. J. Am. Chem. Soc. 2013; 135: 19052
    • 20c Zhong JJ, Meng QY, Liu B, Li XB, Gao XW, Lei T, Wu CJ, Li ZJ, Tung CH, Wu LZ. Org. Lett. 2014; 16: 1988
    • 20d Gao XW, Meng QY, Li JX, Zhong JJ, Lei T, Li XB, Tung CH, Wu LZ. ACS Catal. 2015; 5: 2391
    • 20e Chen XW, Li YB, Chen L, Zhu ZZ, Li B, Huang YB, Zhang M. J. Org. Chem. 2019; 84: 3559
    • 20f Niu LB, Wang SC, Liu JM, Yi H, Liang XA, Liu TY, Lei AW. Chem. Commun. 2018; 54: 1659
    • 20g Zhou AX, Mao LL, Wang GW, Yang SD. Chem. Commun. 2014; 50: 8529
    • 20h Cao L, Zhao H, Tan ZD, Guan RQ, Jiang HF, Zhang M. Org. Lett. 2020; 22: 4781
    • 20i Sun X, Hu Y, Nie SZ, Yan YY, Zhang XJ, Yan M. Adv. Synth. Catal. 2013; 355: 2179
    • 20j Nie SZ, Sun X, Wei WT, Zhang XJ, Yan M, Xiao JL. Org. Lett. 2013; 15: 2394
    • 20k Sun X, Lv XH, Ye LM, Hu Y, Chen YY, Zhang XJ, Yan M. Org. Biomol. Chem. 2015; 13: 7381
    • 20l Fu NK, Li LJ, Yang Q, Luo SZ. Org. Lett. 2017; 19: 2122
    • 20m Khusnutdinova JR, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2014; 136: 2998
    • 20n He KH, Li Y. ChemSusChem 2014; 7: 2788
    • 20o Chen C, Chen X, Zhao H, Jiang H, Zhang M. Org. Lett. 2017; 19: 3390
    • 20p Chen B, Wu LZ, Tung CH. Acc. Chem. Res. 2018; 51: 2512
    • 20q Tang S, Zeng L, Lei AW. J. Am. Chem. Soc. 2018; 140: 13128
    • 20r Wang HM, Gao XL, Lv ZC, Abdelilah T, Lei AW. Chem. Rev. 2019; 119: 6769
    • 21a Li ZP, Li CJ. Org. Lett. 2004; 6: 4997
    • 21b Li ZP, MacLeod PD, Li CJ. Tetrahedron: Asymmetry 2006; 17: 590
    • 21c Zhang G, Ma YX, Wang SL, Kong WD, Wang R. Chem. Sci. 2013; 4: 2645
    • 21d Dubs C, Hamashima Y, Sasamoto N, Seidel TM, Suzuki S, Hashizume D, Sodeoka M. J. Org. Chem. 2008; 73: 5859
    • 21e Zhang JM, Tiwari B, Xing C, Chen XK, Chi YG. R. Angew. Chem. Int. Ed. 2012; 51: 3649
    • 21f Zhang G, Ma YX, Wang SL, Zhang YH, Wang R. J. Am. Chem. Soc. 2012; 134: 12334
    • 21g Ma YX, Zhang G, Zhang JL, Yang DX, Wang R. Org. Lett. 2014; 16: 5358
    • 21h Huang TY, Liu XH, Lang JW, Xu J, Lin LL, Feng XM. ACS Catal. 2017; 7: 5654
    • 21i Zhao YL, Wang Y, Luo YC, Fu XZ, Xu PF. Tetrahedron Lett. 2015; 56: 3703
    • 21j Cheng MX, Yang SD. Synlett 2017; 28: 159
    • 21k Gandhi S. Org. Biomol. Chem. 2019; 17: 9683
    • 21l Phillips AM. F, da Silva M, Pombeiro AJ. L. Catalysts 2020; 10: 529
    • 21m Rostoll-Berenguer J, Blay G, Pedro JR, Vila C. Adv. Synth. Catal. 2021; 363: 602
    • 22a Schreiber SL. Tetrahedron Lett. 1980; 21: 1027
    • 22b Xu XL, Li XN, Ma L, Ye N, Weng BJ. J. Am. Chem. Soc. 2008; 130: 14048
    • 22c Wang SJ, Wang ZY, Zheng XQ. Chem. Commun. 2009; 47: 7372
    • 22d Shu XZ, Xia XF, Yang YF, Ji KG, Liu XY, Liang YM. J. Org. Chem. 2009; 74: 7464
    • 22e Xia XF, Shu XZ, Ji KG, Yang YF, Shaukat A, Liu XY, Liang YM. J. Org. Chem. 2010; 75: 2893
    • 22f Takasu N, Oisaki K, Kanai M. Org. Lett. 2013; 15: 1918
    • 22g Griffiths RJ, Kong WC, Richards SA, Burley GA, Willis MC, Talbot EP. A. Chem. Sci. 2018; 9: 2295
    • 22h He Y, Yang JT, Liu QM, Zhang XY, Fan XS. J. Org. Chem. 2020; 85: 15600
    • 22i Rong XN, Guo JW, Hu ZQ, Huang LH, Gu YG, Cai YP, Liang G, Xia QQ. Eur. J. Org. Chem. 2021; 701
    • 22j Wang F, Zhang XY, He Y, Fan XS. J. Org. Chem. 2020; 85: 2220
    • 22k Jiang F, Achard M, Bruneau C. Chem. Eur. J. 2015; 21: 14319
    • 22l Cai YG, Zhang RH, Sun DL, Xu S, Zhou QG. Synlett 2017; 28: 1630
    • 22m Zhou MJ, Zhu SF, Zhou QL. Chem. Commun. 2017; 53: 8770
    • 22n He Y, Wang F, Zhang XY, Fan XS. Chem. Commun. 2017; 53: 4002
    • 22o Liu GQ, Opatz T. Adv. Heterocycl. Chem. 2018; 125: 107
    • 22p Shi XN, Chen X, Wang MH, Zhang XY, Fan XS. J. Org. Chem. 2018; 83: 6524
    • 22q He Y, Zheng Z, Liu YJ, Qiao JJ, Zhang XY, Fan XS. Chem. Commun. 2019; 55: 12372
    • 22r He KX, Zhang T, Zhang SW, Sun Z, Zhang YX, Yuan Y, Jia XD. Org. Lett. 2019; 21: 5030
    • 23a Konstantinova LS, Rakitin OA, Rees CW. Chem. Rev. 2004; 104: 2617
    • 23b Rakitin O. А. Chem. Heterocycl. Compd. (Engl. Transl.) 2020; 56: 837
    • 23c Rees CW, Marcos CF, Polo C, Torroba T, Rakitin OA. Angew. Chem., Int. Ed. Engl. 1997; 36: 281
    • 23d Marcos CF, Polo C, Rakitin OA, Rees CW, Torroba T. Chem. Commun. 1997; 879
    • 23e Rees CW, White AJ. P, Williams DJ, Rakitin OA, Marcos CF, Polo C, Torroba T. J. Org. Chem. 1998; 63: 2189
    • 23f Konstantinova LS, Obruchnikova NV, Rakitin OA, Rees CW, Torroba T. J. Chem. Soc., Perkin Trans. 1 2000; 3421
    • 23g Barriga S, Konstantinova SL, Marcos FC, Rakitin AO, Rees WC, Torroba T, White JP. A, Williams JD. J. Chem. Soc., Perkin Trans. 1 1999; 2237
    • 23h Konstantinova LS, Berezin AA, Lysov KA, Rakitin OA. Russ. Chem. Bull., Int. Ed. 2006; 55: 147
    • 23i Amelichev SA, Konstantinova LS, Lyssenko KA, Rakitin OA, Rees CW. Org. Biomol. Chem. 2005; 3: 3496
    • 23j Konstantinova LS, Amelichev SA, Rakitin OA. Russ. Chem. Bull., Int. Ed. 2006; 55: 2081
    • 23k Konstantinova LS, Rakitin OA, Rees CW, Souvorova LI, Golovanov DG, Lyssenko KA. Org. Lett. 2003; 5: 1939
    • 23l Konstantinova LS, Bastrakov MA, Starosotnikov AM, Glukhov IV, Lysov KA, Rakitin OA, Shevelev SA. Mendeleev Commun. 2010; 20: 353
    • 24a Lounasmaa M, Koskinen A. Heterocycles 1984; 22: 1591
    • 24b Grierson D. Org. React. 1990; 39: 85
    • 24c Langlois N, Gueritte F, Langlois Y, Potier P. J. Am. Chem. Soc. 1976; 98: 7017
    • 24d Han-ya Y, Tokuyama H, Fukuyama T. Angew. Chem. Int. Ed. 2011; 50: 4884
    • 24e Ahond A, Cave A, Kan-Fan C, Husson HP, De Rostolan J, Potier P. J. Am. Chem. Soc. 1968; 90: 5622
    • 24f Aimi N, Yamanaka E, Endo J, Sakai S, Haginiwa J. Tetrahedron 1973; 29: 2015
    • 24g Kende AS, Liu K, Jos Brands KM. J. Am. Chem. Soc. 1995; 117: 10597
    • 24h Wenkert E, Chauncy B, Wentland SH. Synth. Commun. 1973; 3: 73
    • 24i Beugelmans R, Negron G, Roussi G. J. Chem. Soc., Chem. Commun. 1983; 31
    • 24j Chastanet J, Roussi G. Heterocycles 1985; 23: 653
    • 24k Chastanet J, Roussi G. J. Org. Chem. 1985; 50: 2910
    • 24l Chastanet J, Roussi G. J. Org. Chem. 1988; 53: 3808
    • 24m Davoren JE, Gray DL, Harris AR, Nason DM, Xu W. Synlett 2010; 2490
    • 24n Takano S, Sugihara Y, Ogasawara K. Heterocycles 1992; 34: 1519
    • 24o Mirzayans PM, Krenske EH, Williams CM. Aust. J. Chem. 2014; 67: 1309
    • 24p Bernier D, Wefelscheid UK, Woodward S. Org. Prep. Proced. Int. 2009; 41: 173
    • 24q Cui L, Peng Y, Zhang L. J. Am. Chem. Soc. 2009; 131: 8394
    • 24r Cui L, Ye L, Zhang L. Chem. Commun. 2010; 46: 3351
    • 24s Noey EL, Luo YD, Zhang LM, Houk KN. J. Am. Chem. Soc. 2012; 134: 1078
    • 25a Nishiguchi T, Tachi K, Fukuzumi K. J. Org. Chem. 1975; 40: 237
    • 25b Yoshida T, Okano T, Otsuka S. J. Chem. Soc., Chem. Commun. 1979; 870
    • 25c Murahashi SI, Naota T, Taki H. J. Chem. Soc., Chem. Commun. 1985; 613
    • 25d Gu XQ, Chen W, Morales-Morales D, Jensen CM. J. Mol. Catal. A: Chem. 2002; 189: 119
    • 25e Zhang XW, Fried A, Knapp S, Goldman AS. Chem. Commun. 2003; 2060
    • 25f Kamiguchi S, Nakamura A, Suzuki A, Kodomari M, Nomura M, Iwasawa Y, Chihara T. J. Catal. 2005; 230: 204
    • 25g Yi CS, Lee DW. Organometallics 2009; 28: 947
    • 25h Wang ZH, Tonks I, Belli J, Jensen CM. J. Organomet. Chem. 2009; 694: 2854
    • 25i Brayton DF, Jensen CM. Chem. Commun. 2014; 50: 5987
    • 25j Lu YS. J, Zhang XW, Malakar S, Krogh-Jespersen K, Hasanayn F, Goldman AS. J. Org. Chem. 2020; 85: 3020
    • 25k Wang YL, Qian L, Huang ZD, Liu GX, Huang Z. Chin. J. Chem. 2020; 38: 837
    • 25l Fujita K, Tanaka Y, Kobayashi M, Yamaguchi R. J. Am. Chem. Soc. 2014; 136: 4829
    • 25m Yamaguchi R, Ikeda C, Takahashi Y, Fujita K. J. Am. Chem. Soc. 2009; 131: 8410
    • 25n Wu JJ, Talwar D, Johnston S, Yan M, Xiao JL. Angew. Chem. Int. Ed. 2013; 52: 6983
    • 25o Talwar D, Gonzalez-de-Castro A, Li HY, Xiao JL. Angew. Chem. Int. Ed. 2015; 54: 5223
    • 25p Manas MG, Sharninghausen LS, Lin E, Crabtree RH. J. Organomet. Chem. 2015; 792: 184
    • 25q Zhang DL, Iwai T, Sawamura M. Org. Lett. 2020; 22: 5240
    • 25r Tseng KN. T, Rizzi AM, Szymczak NK. J. Am. Chem. Soc. 2013; 135: 16352
    • 25s Hale LV. A, Malakar T, Tseng KN. T, Zimmerman PM, Paul A, Szymczak NK. ACS Catal. 2016; 6: 4799
    • 25t Muthaiah S, Hong SH. Adv. Synth. Catal. 2012; 354: 3045
    • 25u Dutta I, Yadav S, Sarbajna A, De S, Holscher M, Leitner W, Bera JK. J. Am. Chem. Soc. 2018; 140: 8662
    • 25v Wang QF, Chai HN, Yu ZK. Organometallics 2018; 37: 584
    • 25w Stubbs JM, Hazlehurst RJ, Boyle PD, Blacquiere JM. Organometallics 2017; 36: 1692
    • 25x Kojima M, Kanai M. Angew. Chem. Int. Ed. 2016; 55: 12224
    • 25y Maier AF. G, Tussing S, Schneider T, Florke U, Qu ZW, Grimme S, Paradies J. Angew. Chem. Int. Ed. 2016; 55: 12219
    • 25z Wu Y, Yi H, Lei AW. ACS Catal. 2018; 8: 1192
    • 25aa Chen WD, Tang H, Wang WL, Fu Q, Luo JF. Adv. Synth. Catal. 2020; 362: 3905
    • 25ab Yang RC, Yue SS, Tan W, Xie YF, Cai H. J. Org. Chem. 2020; 85: 7501
    • 25ac Huang YQ, Song HJ, Liu YX, Wang QM. Chem. Eur. J. 2018; 24: 2065
    • 25ad Liu TT, Wu KK, Wang LD, Yu ZK. Adv. Synth. Catal. 2019; 361: 3958
    • 25ae Kato S, Saga Y, Kojima M, Fuse H, Matsunaga S, Fukatsu A, Kondo M, Masaoka S, Kanai M. J. Am. Chem. Soc. 2017; 139: 2204
    • 25af Kim J, Kim S, Choi G, Lee GS, Kim D, Choi J, Ihee H, Hong SH. Chem. Sci. 2021; 12: 1915
    • 25ag He KH, Tan FF, Zhou CZ, Zhou GJ, Yang XL, Li Y. Angew. Chem. Int. Ed. 2017; 56: 3080
    • 25ah Chakraborty S, Brennessel WW, Jones WD. J. Am. Chem. Soc. 2014; 136: 8564
    • 25ai Bolig AD, Brookhart M. J. Am. Chem. Soc. 2007; 129: 14544
    • 26a Grigg R, Mitchell TR. B, Sutthivaiyakit S, Tongpenyai N. J. Chem. Soc., Chem. Commun. 1981; 611
    • 26b Sundararaju B, Tang Z, Achard M, Sharma GV. M, Toupet L, Bruneau C. Adv. Synth. Catal. 2010; 352: 3141
    • 26c Sundararaju B, Achard M, Sharma GV. M, Bruneau C. J. Am. Chem. Soc. 2011; 133: 10340
    • 26d Boudiar T, Sahli Z, Sundararaju B, Achard M, Kabouche Z, Doucet H, Bruneau C. J. Org. Chem. 2012; 77: 3674
    • 26e Murugesh V, Bruneau C, Achard M, Sahoo AR, Sharma GV. M, Suresh S. Chem. Commun. 2017; 53: 10448
    • 26f Murugesh V, Sahoo AR, Achard M, Sharma GV. M, Bruneau C, Suresh S. Adv. Synth. Catal. 2021; 363: 453
    • 26g Chen Y, Wan HL, Huang Y, Liu S, Wang FY, Lu CF, Nie JQ, Chen ZX, Yang GC, Ma C. Org. Lett. 2020; 22: 7797
    • 26h Yuan KD, Jiang F, Sahli Z, Achard M, Roisnel T, Bruneau C. Angew. Chem. Int. Ed. 2012; 51: 8876
    • 26i Sahli Z, Sundararaju B, Achard M, Bruneau C. Green Chem. 2013; 15: 775
    • 26j Bruneau C. Top. Organomet. Chem. 2014; 48: 195
    • 26k Irrgang T, Kempe R. Chem. Rev. 2019; 119: 2524
    • 27a Rügheimer L. Ber. Dtsch. Chem. Ges. 1891; 24: 2186
    • 27b Rügheimer L. Ber. Dtsch. Chem. Ges. 1892; 25: 2421
    • 27c Poirier RH, Morin RD, McKim AM, Bearse AE. J. Org. Chem. 1961; 26: 4275
    • 27d Platonova AY, Seidel D. Tetrahedron Lett. 2015; 56: 3147
    • 27e Burrows EP, Hutton RF, Burrows WD. J. Org. Chem. 1962; 27: 316
    • 27f Sainsbury M, Dyke SF, Brown DW, Lugton WG. D. Tetrahedron 1968; 24: 427
    • 27g Dannhardt G, Mayer KK, Obergrusberger I, Roelcke J. Arch. Pharm. (Weinheim Ger.) 1986; 319: 977
    • 27h Cook AG, Switek KA, Cutler KA, Witt AN. Lett. Org. Chem. 2004; 1: 1
    • 27i Polackova V, Veverkova E, Toma S, Bogdal D. Synth. Commun. 2009; 39: 1871
    • 27j Xue X, Yu A, Cai Y, Cheng J.-P. Org. Lett. 2011; 13: 6054
    • 27k Moura NM. M, Nunez C, Santos SM, Faustino MA. F, Cavaleiro JA. S, Paz FA. A, Neves M, Capelo JL, Lodeiro C. Chem. Eur. J. 2014; 20: 6684
    • 27l Burrows WD, Burrows EP. J. Org. Chem. 1963; 28: 1180
    • 27m Oda M, Fukuchi Y, Ito S, Thanh NC, Kuroda S. Tetrahedron Lett. 2007; 48: 9159
    • 27n Pahadi NK, Paley M, Jana R, Waetzig SR, Tunge JA. J. Am. Chem. Soc. 2009; 131: 16626
    • 27o Mao H, Xu R, Wan J, Jiang Z, Sun C, Pan Y. Chem. Eur. J. 2010; 16: 13352
    • 27p Deb I, Das D, Seidel D. Org. Lett. 2011; 13: 812
    • 27q Ma L, Paul A, Breugst M, Seidel D. Chem. Eur. J. 2016; 22: 18179
    • 28a Ardill H, Grigg R, Sridharan V, Surendrakumar S, Thianpatanagul S, Kanajun S. J. Chem. Soc., Chem. Commun. 1986; 602
    • 28b Grigg R, Gunaratne HQ. N, Henderson D, Sridharan V. Tetrahedron 1990; 46: 1599
    • 28c Ardill H, Fontaine XL. R, Grigg R, Henderson D, Montgomery J, Sridharan V, Surendrakumar S. Tetrahedron 1990; 46: 6449
    • 28d Mantelingu K, Lin Y, Seidel D. Org. Lett. 2014; 16: 5910
    • 28e Rahman M, Bagdi AK, Mishra S, Hajra A. Chem. Commun. 2014; 50: 2951
    • 28f Deb I, Seidel D. Tetrahedron Lett. 2010; 51: 2945
    • 28g Kang Y, Richers MT, Sawicki CH, Seidel D. Chem. Commun. 2015; 51: 10648
    • 28h Cheng Y.-F, Rong H.-J, Yi C.-B, Yao J.-J, Qu J. Org. Lett. 2015; 17: 4758
    • 28i Vasu D, Fuentes de Arriba AL, Leitch JA, de Gombert A, Dixon DJ. Chem. Sci. 2019; 10: 3401
    • 28j Wittland C, Arend M, Risch N. Synthesis 1996; 367
    • 28k Yang H.-T, Tan Y.-C, Ge J, Wu H, Li J.-X, Yang Y, Sun X.-Q, Miao C.-B. J. Org. Chem. 2016; 81: 11201
    • 28l Zheng K, Zhuang S, You M, Shu W, Wu A, Wu Y. ChemistrySelect 2017; 2: 10762
    • 28m Strada A, Fredditori M, Zanoni G, Protti S. Molecules 2019; 24: 1318
    • 29a Ma L, Chen W, Seidel D. J. Am. Chem. Soc. 2012; 134: 15305
    • 29b Das D, Sun AX, Seidel D. Angew. Chem. Int. Ed. 2013; 52: 3765
    • 29c Zheng Q.-H, Meng W, Jiang G.-J, Yu Z.-X. Org. Lett. 2013; 15: 5928
    • 29d Lin W, Cao T, Fan W, Han Y, Kuang J, Luo H, Miao B, Tang X, Yu Q, Yuan W, Zhang J, Zhu C, Ma S. Angew. Chem. Int. Ed. 2014; 53: 277
    • 29e Lin W, Ma S. Org. Chem. Front. 2014; 1: 338
    • 29f Chen W, Wilde RG, Seidel D. Org. Lett. 2014; 16: 730
    • 29g Haldar S, Mahato S, Jana CK. Asian J. Org. Chem. 2014; 3: 44
    • 29h Chen W, Kang Y, Wilde RG, Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5179
    • 29i Zheng K.-L, Shu W.-M, Ma J.-R, Wu Y.-D, Wu A.-X. Org. Lett. 2016; 18: 3526
    • 29j Mandal S, Dwari S, Jana CK. J. Org. Chem. 2018; 83: 8874
    • 29k Chen W, Seidel D. Org. Lett. 2014; 16: 3158
    • 29l Zhu Z, Seidel D. Org. Lett. 2016; 18: 631
    • 29m Yan J.-M, Bai Q.-F, Xu C, Feng G. Synthesis 2016; 48: 3730
    • 29n Haldar S, Saha S, Mandal S, Jana CK. Green Chem. 2018; 20: 3463
    • 29o Jiang D, Wu Z, Wang J. Chin. J. Chem. 2020; 38: 135
    • 29p Seidel D. Org. Chem. Front. 2014; 1: 426
    • 29q Seidel D. Acc. Chem. Res. 2015; 48: 317
    • 29r Mahato S, Jana CK. Chem. Rec. 2016; 16: 1477
    • 29s Das D, Seidel D. Org. Lett. 2013; 15: 4358
    • 29t Mandal S, Mahato S, Jana CK. Org. Lett. 2015; 17: 3762
    • 29u Zhou S, Tong R. Chem. Eur. J. 2016; 22: 7084
    • 29v Huang J, Li L, Xiao T, Mao Z.-w, Zhou L. Asian J. Org. Chem. 2016; 5: 1204
    • 29w Du Y, Yu A, Jia J, Zhang Y, Meng X. Chem. Commun. 2017; 53: 1684
    • 29x Yi C.-B, She Z.-Y, Cheng Y.-F, Qu J. Org. Lett. 2018; 20: 668
    • 29y Haldar S, Jana CK. Org. Biomol. Chem. 2019; 17: 1800
    • 29z Rahman I, Deka B, Thakuria R, Deb ML, Baruah PK. Org. Biomol. Chem. 2020; 18: 6514
    • 30a Zhang C, De C K, Mal R, Seidel D. J. Am. Chem. Soc. 2008; 130: 416
    • 30b Dieckmann A, Richers MT, Platonova AY, Zhang C, Seidel D, Houk KN. J. Org. Chem. 2013; 78: 4132
    • 30c Richers MT, Deb I, Platonova AY, Zhang C, Seidel D. Synthesis 2013; 45: 1730
    • 30d Zheng L, Yang F, Dang Q, Bai X. Org. Lett. 2008; 10: 889
    • 30e Richers MT, Breugst M, Platonova AY, Ullrich A, Dieckmann A, Houk KN, Seidel D. J. Am. Chem. Soc. 2014; 136: 6123
    • 30f Jarvis CL, Richers MT, Breugst M, Houk KN, Seidel D. Org. Lett. 2014; 16: 3556
    • 30g Mahato S, Haque MA, Dwari S, Jana CK. RSC Adv. 2014; 4: 46214
    • 30h Kirkeby EK, Roberts AG. Chem. Commun. 2020; 56: 9118
    • 30i Zhang C, Das D, Seidel D. Chem. Sci. 2011; 2: 233
    • 30j Ma L, Seidel D. Chem. Eur. J. 2015; 21: 12908
    • 30k Kang Y, Chen W, Breugst M, Seidel D. J. Org. Chem. 2015; 80: 9628
    • 30l Chen W, Seidel D. Org. Lett. 2016; 18: 1024
    • 30m Zhu Z, Seidel D. Org. Lett. 2017; 19: 2841
    • 30n Li J, Qin C, Yu Y, Fan H, Fu Y, Li H, Wang W. Adv. Synth. Catal. 2017; 359: 2191
    • 30o Li J, Fu Y, Qin C, Yu Y, Li H, Wang W. Org. Biomol. Chem. 2017; 15: 6474
    • 30p Zhu Z, Chandak HS, Seidel D. Org. Lett. 2018; 20: 4090
    • 30q Paul A, Chandak HS, Ma L, Seidel D. Org. Lett. 2020; 22: 976
    • 30r Rickertsen DR. L, Ma L, Paul A, Abboud KA, Seidel D. SynOpen 2020; 4: 123
    • 30s Zhu Z, Lv X, Anesini JE, Seidel D. Org. Lett. 2017; 19: 6424
    • 30t Liu Y, Wu J, Jin Z, Jiang H. Synlett 2018; 29: 1061
    • 30u Afanasyev OI, Podyacheva E, Rudenko A, Tsygankov AA, Makarova M, Chusov D. J. Org. Chem. 2020; 85: 9347
    • 31a Pinnow J. Ber. Dtsch. Chem. Ges. 1895; 28: 3039
    • 31b Ruiz MD. R, Vasella A. Helv. Chim. Acta 2011; 94: 785
    • 31c Meth-Cohn O, Naqui MA. Chem. Commun. 1967; 1157
    • 31d Ryabukhin SV, Plaskon AS, Volochnyuk DM, Shivanyuk AN, Tolmachev AA. J. Org. Chem. 2007; 72: 7417
    • 31e Verboom W, Reinhoudt DN, Visser R, Harkema S. J. Org. Chem. 1984; 49: 269
    • 31f Nijhuis WH. N, Verboom W, Abu El-Fadl A, Harkema S, Reinhoudt DN. J. Org. Chem. 1989; 54: 199
    • 31g Nijhuis WH. N, Verboom W, Abu El-Fadl A, Van Hummel GJ, Reinhoudt DN. J. Org. Chem. 1989; 54: 209
    • 31h Verboom W, Hamzink MR. J, Reinhoudt DN, Visser R. Tetrahedron Lett. 1984; 25: 4309
    • 31i Noguchi M, Yamada H, Sunagawa T. J. Chem. Soc., Perkin Trans. 1 1998; 3327
    • 31j Reinhoudt DN, Visser GW, Verboom W, Benders PH, Pennings ML. M. J. Am. Chem. Soc. 1983; 105: 4775
    • 31k Jiang S, Janousek Z, Viehe HG. Tetrahedron Lett. 1994; 35: 1185
    • 31l Jiang S, Janousek Z, Viehe HG. Bull. Soc. Chim. Belg. 1993; 102: 663
    • 31m De Boeck B, Janousek Z, Viehe HG. Tetrahedron 1995; 51: 13239
    • 31n Polonka-Balint A, Saraceno C, Ludányi K, Bényei A, Matyus P. Synlett 2008; 2846
    • 31o Foldi AA, Ludanyi K, Benyei AC, Matyus P. Synlett 2010; 2109
    • 31p Barluenga J, Fananas-Mastral M, Aznar F, Valdes C. Angew. Chem. Int. Ed. 2008; 47: 6594
    • 31q Meth-Cohn O, Suschitzky H. Adv. Heterocycl. Chem. 1972; 14: 211
    • 31r Meth-Cohn O. Adv. Heterocycl. Chem. 1996; 65: 1
    • 31s Matyus P, Elias O, Tapolcsanyi P, Polonka-Balint A, Halasz-Dajka B. Synthesis 2006; 2625
    • 31t Platonova AY, Glukhareva TV, Zimovets OA, Morzherin YY. Chem. Heterocycl. Compd. (Engl. Transl.) 2013; 49: 357
    • 32a Peng B, Maulide N. Chem. Eur. J. 2013; 19: 13274
    • 32b Haibach MC, Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5010
    • 32c Kwon SJ, Kim DY. Chem. Rec. 2016; 16: 1191
    • 32d An X.-D, Xiao J. Org. Chem. Front. 2021; 8: 1364
    • 32e Zhang C, Murarka S, Seidel D. J. Org. Chem. 2009; 74: 419
    • 32f Mori K, Ohshima Y, Ehara K, Akiyama T. Chem. Lett. 2009; 38: 524
    • 32g Murarka S, Zhang C, Konieczynska MD, Seidel D. Org. Lett. 2009; 11: 129
    • 32h Zhou G, Zhang J. Chem. Commun. 2010; 46: 6593
    • 32i Jurberg ID, Peng B, Woestefeld E, Wasserloos M, Maulide N. Angew. Chem. Int. Ed. 2012; 51: 1950
    • 32j Haibach MC, Deb I, De C K, Seidel D. J. Am. Chem. Soc. 2011; 133: 2100
    • 32k Wang P.-F, Huang Y.-P, Wen X, Sun H, Xu Q.-L. Eur. J. Org. Chem. 2015; 6727
    • 32l Wang P.-F, Jiang C.-H, Wen X, Xu Q.-L, Sun H. J. Org. Chem. 2015; 80: 1155
    • 32m Li S.-S, Zhou L, Wang L, Zhao H, Yu L, Xiao J. Org. Lett. 2018; 20: 138
    • 32n Liu S, Qu J, Wang B. Chem. Commun. 2018; 54: 7928
    • 32o Bai G, Dong F, Xu L, Liu Y, Wang L, Li S.-S. Org. Lett. 2019; 21: 6225
    • 32p Wang S, Shen Y.-B, Li L.-F, Qiu B, Yu L, Liu Q, Xiao J. Org. Lett. 2019; 21: 8904
    • 32q An X.-D, Duan K, Li X.-J, Yang J.-M, Lu Y.-N, Liu Q, Xiao J. J. Org. Chem. 2019; 84: 11839
    • 32r Suh CW, Kwon SJ, Kim DY. Org. Lett. 2017; 19: 1334
    • 32s Li S.-S, Lv X, Ren D, Shao C.-L, Liu Q, Xiao J. Chem. Sci. 2018; 9: 8253
    • 32t Lv X, Hu F, Duan K, Li S.-S, Liu Q, Xiao J. J. Org. Chem. 2019; 84: 1833
    • 32u Shen Y.-B, Li L.-F, Xiao M.-Y, Yang J.-M, Liu Q, Xiao J. J. Org. Chem. 2019; 84: 13935
    • 32v Mori K, Kurihara K, Yabe S, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2014; 136: 3744
    • 33a Murarka S, Deb I, Zhang C, Seidel D. J. Am. Chem. Soc. 2009; 131: 13226
    • 33b Kang YK, Kim SM, Kim DY. J. Am. Chem. Soc. 2010; 132: 11847
    • 33c Kang YK, Kim DY. Adv. Synth. Catal. 2013; 355: 3131
    • 33d Kang YK, Kim DY. Chem. Commun. 2014; 50: 222
    • 33e Suh CW, Kim DY. Org. Lett. 2014; 16: 5374
    • 33f Zhou G, Liu F, Zhang J. Chem. Eur. J. 2011; 17: 3101
    • 33g Mori K, Ehara K, Kurihara K, Akiyama T. J. Am. Chem. Soc. 2011; 133: 6166
    • 33h Cao W, Liu X, Wang W, Lin L, Feng X. Org. Lett. 2011; 13: 600
    • 33i Lv J, Luo S. Chem. Commun. 2013; 49: 847
    • 33j He Y.-P, Du Y.-L, Luo S.-W, Gong L.-Z. Tetrahedron Lett. 2011; 52: 7064
    • 33k Mori K, Isogai R, Kamei Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2018; 140: 6203
    • 33l Wang M. ChemCatChem 2013; 5: 1291
    • 33m Xiao M, Zhu S, Shen Y, Wang L, Xiao J. Chin. J. Org. Chem. 2018; 38: 328
    • 33n Cao W, Liu X, Guo J, Lin L, Feng X. Chem. Eur. J. 2015; 21: 1632
    • 33o He Y.-P, Wu H, Chen D.-F, Yu J, Gong L.-Z. Chem. Eur. J. 2013; 19: 5232
    • 33p Mao Z, Mo F, Lin X. Synlett 2016; 27: 546
    • 33q Du H.-J, Lin C, Wen X, Xu Q.-L. Tetrahedron 2018; 74: 7480
    • 34a Ten Broeke J, Douglas AW, Grabowski EJ. J. J. Org. Chem. 1976; 41: 3159
    • 34b Heathcock CH, Hansen MM, Ruggeri RB, Kath JC. J. Org. Chem. 1992; 57: 2544
    • 34c Heathcock CH. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 14323
    • 34d Tantillo DJ. Org. Lett. 2016; 18: 4482
    • 34e Pastine SJ, McQuaid KM, Sames D. J. Am. Chem. Soc. 2005; 127: 12180
    • 34f Vadola PA, Sames D. J. Am. Chem. Soc. 2009; 131: 16525
    • 34g Sugiishi T, Nakamura H. J. Am. Chem. Soc. 2012; 134: 2504
    • 34h Cui Y, Lin W, Ma S. Chem. Sci. 2019; 10: 1796
    • 34i Huang Y.-W, Frontier AJ. Org. Lett. 2016; 18: 4896
    • 34j Lecomte M, Evano G. Angew. Chem. Int. Ed. 2016; 55: 4547
    • 34k Machida M, Mori K. Chem. Lett. 2018; 47: 868
    • 34l Zhang X, Anderson JC. Angew. Chem. Int. Ed. 2019; 58: 18040
    • 34m Kataoka M, Otawa Y, Ido N, Mori K. Org. Lett. 2019; 21: 9334
    • 34n Ye J, Ma S. Org. Chem. Front. 2014; 1: 1210
    • 35a Shang M, Chan JZ, Cao M, Chang Y, Wang Q, Cook B, Torker S, Wasa M. J. Am. Chem. Soc. 2018; 140: 10593
    • 35b Millot N, Santini CC, Fenet B, Basset JM. Eur. J. Inorg. Chem. 2002; 3328
    • 35c Chen G.-Q, Kehr G, Daniliuc CG, Bursch M, Grimme S, Erker G. Chem. Eur. J. 2017; 23: 4723
    • 35d Zhang J, Park S, Chang S. J. Am. Chem. Soc. 2018; 140: 13209
    • 35e Zhou M, Park S, Dang L. Org. Chem. Front. 2020; 7: 944
    • 35f Chang Y, Cao M, Chan JZ, Zhao C, Wang Y, Yang R, Wasa M. J. Am. Chem. Soc. 2021; 143: 2441
    • 35g Chan JZ, Yesilcimen A, Cao M, Zhang Y, Zhang B, Wasa M. J. Am. Chem. Soc. 2020; 142: 16493
    • 35h Chan JZ, Chang Y, Wasa M. Org. Lett. 2019; 21: 984
    • 35i Li R, Chen Y, Jiang K, Wang F, Lu C, Nie J, Chen Z, Yang G, Chen Y.-C, Zhao Y, Ma C. Chem. Commun. 2019; 55: 1217
    • 35j Maier AF. G, Tussing S, Zhu H, Wicker G, Tzvetkova P, Flörke U, Daniliuc CG, Grimme S, Paradies J. Chem. Eur. J. 2018; 24: 16287
    • 35k Tian J.-J, Zeng N.-N, Liu N, Tu X.-S, Wang X.-C. ACS Catal. 2019; 9: 295
    • 35l Fang H, Xie K, Kemper S, Oestreich M. Angew. Chem. Int. Ed. 2021; 60: 8542
    • 35m Zhou L, Shen Y.-B, An X.-D, Li X.-J, Li S.-S, Liu Q, Xiao J. Org. Lett. 2019; 21: 8543
    • 35n Chang Y, Yesilcimen A, Cao M, Zhang Y, Zhang B, Chan JZ, Wasa M. J. Am. Chem. Soc. 2019; 141: 14570
    • 35o Zhou L, An X.-D, Yang S, Li X.-J, Shao C.-L, Liu Q, Xiao J. Org. Lett. 2020; 22: 776
    • 35p Ma Y, Lou S.-J, Hou Z. Chem. Soc. Rev. 2021; 50: 1945
    • 35q Basak S, Winfrey L, Kustiana BA, Melen RL, Morrill LC, Pulis AP. Chem. Soc. Rev. 2021; 50: 3720
    • 36a Fandrick DR, Hart CA, Okafor IS, Mercadante MA, Sanyal S, Masters JT, Sarvestani M, Fandrick KR, Stockdill JL, Grinberg N, Gonnella N, Lee H, Senanayake CH. Org. Lett. 2016; 18: 6192
    • 36b Wittig G, Schmidt HJ, Renner H. Chem. Ber. 1962; 95: 2377
    • 36c Wittig G, Hesse A. Liebigs Ann. Chem. 1971; 746: 174
    • 36d Wittig G, Häusler G. Liebigs Ann. Chem. 1971; 746: 185
    • 36e Chen W, Ma L, Paul A, Seidel D. Nat. Chem. 2018; 10: 165
    • 36f Chen W, Paul A, Abboud KA, Seidel D. Nat. Chem. 2020; 12: 545
    • 36g Majewski M, Gleave DM. J. Organomet. Chem. 1994; 470: 1
    • 36h Scully FE. J. Org. Chem. 1980; 45: 1515
    • 36i Paul A, Seidel D. J. Am. Chem. Soc. 2019; 141: 8778
    • 36j Kim JH, Paul A, Ghiviriga I, Seidel D. Org. Lett. 2021; 23: 797
    • 36k Chen W, Seidel D. Org. Lett. 2021; 23: 3729
    • 36l Paul A, Kim JH, Daniel SD, Seidel D. Angew. Chem. Int. Ed. 2021; 60: 1625
    • 36m Shen Z, Walker MM, Chen S, Parada GA, Chu DM, Dongbang S, Mayer JM, Houk KN, Ellman JA. J. Am. Chem. Soc. 2021; 143: 126
    • 37a Corey EJ, Felix AM. J. Am. Chem. Soc. 1965; 87: 2518
    • 37b Earle RH, Hurst DT, Viney M. J. Chem. Soc. C 1969; 2093
    • 37c Axten JM, Krim L, Kung HF, Winkler JD. J. Org. Chem. 1998; 63: 9628
    • 37d Garner R. Tetrahedron Lett. 1968; 9: 221
    • 37e Krogsgaard-Larsen N, Begtrup M, Herth MM, Kehler J. Synthesis 2010; 4287
    • 37f Mahoney SJ, Fillion E. Chem. Eur. J. 2012; 18: 68
    • 37g Doyle MP, Protopopova MN, Winchester WR, Daniel KL. Tetrahedron Lett. 1992; 33: 7819
    • 37h Doyle MP, Winchester WR, Hoorn JA. A, Lynch V, Simonsen SH, Ghosh R. J. Am. Chem. Soc. 1993; 115: 9968
    • 37i Watanabe N, Anada M, Hashimoto S.-i, Ikegami S. Synlett 1994; 1031
    • 37j Doyle MP, Kalinin AV. Synlett 1995; 1075
    • 37k Doyle MP, Yan M, Phillips IM, Timmons DJ. Adv. Synth. Catal. 2002; 344: 91
    • 37l Davies HM. L, Hansen T, Hopper DW, Panaro SA. J. Am. Chem. Soc. 1999; 121: 6509
    • 37m Axten JM, Ivy R, Krim L, Winkler JD. J. Am. Chem. Soc. 1999; 121: 6511
    • 37n Davies HM. L, Venkataramani C. Org. Lett. 2001; 3: 1773
    • 37o Davies HM. L, Venkataramani C, Hansen T, Hopper DW. J. Am. Chem. Soc. 2003; 125: 6462
    • 37p Davies HM. L, Hopper DW, Hansen T, Liu Q, Childers SR. Bioorg. Med. Chem. Lett. 2004; 14: 1799
    • 37q Santi M, Müller ST. R, Folgueiras-Amador AA, Uttry A, Hellier P, Wirth T. Eur. J. Org. Chem. 2017; 1889
    • 37r Souza LW, Squitieri RA, Dimirjian CA, Hodur BM, Nickerson LA, Penrod CN, Cordova J, Fettinger JC, Shaw JT. Angew. Chem. Int. Ed. 2018; 57: 15213
    • 37s Asako S, Ishihara S, Hirata K, Takai K. J. Am. Chem. Soc. 2019; 141: 9832
    • 37t Gomes LF. R, Veiros LF, Maulide N, Afonso CA. M. Chem. Eur. J. 2015; 21: 1449
    • 37u Doyle MP, Kalinin AV. Tetrahedron Lett. 1996; 37: 1371
    • 37v Lee S, Lim H.-J, Cha KL, Sulikowski GA. Tetrahedron 1997; 53: 16521
    • 37w Sulikowski GA, Lee S. Tetrahedron Lett. 1999; 40: 8035
    • 37x Toumieux S, Compain P, Martin OR, Selkti M. Org. Lett. 2006; 8: 4493
    • 37y Morin MS. T, Toumieux S, Compain P, Peyrat S, Kalinowska-Tluscik J. Tetrahedron Lett. 2007; 48: 8531
    • 37z He J, Hamann LG, Davies HM. L, Beckwith RE. J. Nat. Commun. 2015; 6: 5943
    • 37aa Zhou AZ, Chen K, Arnold FH. ACS Catal. 2020; 10: 5393
    • 37ab Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861
    • 37ac Davies HM. L, Manning JR. Nature 2008; 451: 417
    • 37ad Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 37ae Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857
    • 37af Sultanova RM, Khanova MD, Zlotskii SS. Chem. Heterocycl. Compd. (Engl. Transl.) 2015; 51: 775
    • 38a Hofmann AW. Chem. Ber. 1883; 16: 558
    • 38b Löffler K, Freytag C. Chem. Ber. 1909; 42: 3427
    • 38c De Armas P, Carrau R, Concepción JI, Francisco CG, Hernández R, Suárez E. Tetrahedron Lett. 1985; 26: 2493
    • 38d Francisco CG, Herrera AJ, Suárez E. J. Org. Chem. 2003; 68: 1012
    • 38e Martínez C, Muñiz K. Angew. Chem. Int. Ed. 2015; 54: 8287
    • 38f Liu T, Myers MC, Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 306
    • 38g Becker P, Duhamel T, Stein CJ, Reiher M, Muñiz K. Angew. Chem. Int. Ed. 2017; 56: 8004
    • 38h Zhang Z, Zhang X, Nagib DA. Chem 2019; 5: 3127
    • 38i Wolff ME. Chem. Rev. 1963; 63: 55
    • 38j Stella L. Angew. Chem., Int. Ed. Engl. 1983; 22: 337
    • 38k Jeffrey JL, Sarpong R. Chem. Sci. 2013; 4: 4092
    • 38l Stateman L, Nakafuku K, Nagib DA. Synthesis 2018; 50: 1569
    • 38m Wawzonek S, Thelen PJ. J. Am. Chem. Soc. 1950; 72: 2118
    • 38n Corey EJ, Hertler WR. J. Am. Chem. Soc. 1960; 82: 1657
    • 38o Fan R, Pu D, Wen F, Wu J. J. Org. Chem. 2007; 72: 8994
    • 38p Qin Q, Yu S. Org. Lett. 2015; 17: 1894
    • 38q Paz NR, Rodríguez-Sosa D, Valdés H, Marticorena R, Melián D, Copano MB, González CC, Herrera AJ. Org. Lett. 2015; 17: 2370
    • 38r Wappes EA, Fosu SC, Chopko TC, Nagib DA. Angew. Chem. Int. Ed. 2016; 55: 9974
    • 38s Short MA, Shehata MF, Sanders MA, Roizen JL. Chem. Sci. 2020; 11: 217
    • 39a Hey DH, Turpin DG. J. Chem. Soc. 1954; 2471
    • 39b Lewin AH, Dinwoodie AH, Cohen T. Tetrahedron 1966; 22: 1527
    • 39c Cohen T, McMullen CH, Smith K. J. Am. Chem. Soc. 1968; 90: 6866
    • 39d Shaaban S, Oh J, Maulide N. Org. Lett. 2016; 18: 345
    • 39e Snieckus V, Cuevas JC, Sloan CP, Liu H, Curran DP. J. Am. Chem. Soc. 1990; 112: 896
    • 39f Curran DP, Abraham AC. Tetrahedron 1993; 49: 4821
    • 39g Murakami M, Hayashi M, Ito Y. J. Org. Chem. 1992; 57: 793
    • 39h Williams L, Booth SE, Undheim K. Tetrahedron 1994; 50: 13697
    • 39i Yoshimitsu T, Arano Y, Nagaoka H. J. Am. Chem. Soc. 2005; 127: 11610
    • 39j Yoshikai N, Mieczkowski A, Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2010; 132: 5568
    • 39k Tian H, Yang H, Zhu C, Fu H. Sci. Rep. 2016; 6: 19931
    • 39l Sarkar S, Cheung KP. S, Gevorgyan V. Chem. Sci. 2020; 11: 12974
    • 39m Robertson J, Peplow MA, Pillai J. Tetrahedron Lett. 1996; 37: 5825
    • 39n Khan TA, Tripoli R, Crawford JJ, Martin CG, Murphy JA. Org. Lett. 2003; 5: 2971
    • 39o Beckwith AL. J, Bowry VW, Bowman WR, Mann E, Parr J, Storey JM. D. Angew. Chem. Int. Ed. 2004; 43: 95
    • 39p Dénès F, Beaufils F, Renaud P. Org. Lett. 2007; 9: 4375
    • 39q Yoshimitsu T, Matsuda K, Nagaoka H, Tsukamoto K, Tanaka T. Org. Lett. 2007; 9: 5115
    • 39r Yoshimitsu T, Atsumi C, Iimori E, Nagaoka H, Tanaka T. Tetrahedron Lett. 2008; 49: 4473
    • 39s Wertjes WC, Wolfe LC, Waller PJ, Kalyani D. Org. Lett. 2013; 15: 5986
    • 39t Hollister KA, Conner ES, Spell ML, Deveaux K, Maneval L, Beal MW, Ragains JR. Angew. Chem. Int. Ed. 2015; 54: 7837
    • 39u Chen J.-Q, Wei Y.-L, Xu G.-Q, Liang Y.-M, Xu P.-F. Chem. Commun. 2016; 52: 6455
    • 39v Liu P, Tang J, Zeng X. Org. Lett. 2016; 18: 5536
    • 39w Huang F.-Q, Dong X, Qi L.-W, Zhang B. Tetrahedron Lett. 2016; 57: 1600
    • 40a Weinberg NL, Brown EA. J. Org. Chem. 1966; 31: 4058
    • 40b Shono T, Matsumura Y, Tsubata K. J. Am. Chem. Soc. 1981; 103: 1172
    • 40c Yoshida J, Suga S, Suzuki S, Kinomura N, Yamamoto A, Fujiwara K. J. Am. Chem. Soc. 1999; 121: 9546
    • 40d Suga S, Okajima M, Yoshida J. Tetrahedron Lett. 2001; 42: 2173
    • 40e Suga S, Suzuki S, Yoshida J. J. Am. Chem. Soc. 2002; 124: 30
    • 40f Kim S, Shoji T, Kitano Y, Chiba K. Chem. Commun. 2013; 49: 6525
    • 40g Shoji T, Kim S, Chiba K. Angew. Chem. Int. Ed. 2017; 56: 4011
    • 40h Suga S, Matsumoto K, Ueoka K, Yoshida JI. J. Am. Chem. Soc. 2006; 128: 7710
    • 40i Yoshida J, Isoe S. Tetrahedron Lett. 1987; 28: 6621
    • 40j Sugawara M, Mori K, Yoshida JI. Electrochim. Acta 1997; 42: 1995
    • 40k Suga S, Watanabe M, Song CH, Yoshida JI. Electrochemistry 2006; 74: 672
    • 40l Mitsudo K, Yamamoto J, Akagi T, Yamashita A, Haisa M, Yoshioka K, Mandai H, Ueoka K, Hempel C, Yoshida J, Suga S. Beilstein J. Org. Chem. 2018; 14: 1192
    • 40m Yoshida J, Ashikari Y, Matsumoto K, Nokami T. J. Synth. Org. Chem. Jpn. 2013; 71: 1136
    • 40n Jones AM, Banks CE. Beilstein J. Org. Chem. 2014; 10: 3056
    • 40o Yoshida J, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
    • 41a Semmelhack MF, Schmid CR. J. Am. Chem. Soc. 1983; 105: 6732
    • 41b Li C, Zeng CC, Hu LM, Yang FL, Yoo SJ, Little RD. Electrochim. Acta 2013; 114: 560
    • 41c Wang F, Rafiee M, Stahl SS. Angew. Chem. Int. Ed. 2018; 57: 6686
    • 41d Lennox AJ. J, Goes SL, Webster MP, Koolman HF, Djuric SW, Stahl SS. J. Am. Chem. Soc. 2018; 140: 11227
    • 41e Gao PS, Weng XJ, Wang ZH, Zheng C, Sun B, Chen ZH, You SL, Mei TS. Angew. Chem. Int. Ed. 2020; 59: 15254
    • 41f Kashiwagi Y, Kurashima F, Kikuchi C, Anzai J, Osa T, Bobbitt JM. Chem. Commun. 1999; 1983
    • 41g Kashiwagi Y, Anzai J. Chem. Pharm. Bull. 2001; 49: 324
    • 41h Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
    • 41i Wang F, Stahl SS. Acc. Chem. Res. 2020; 53: 561
    • 42a Norrish RG. W, Bamford CH. Nature 1937; 140: 195
    • 42b Yang NC, Yang DD. H. J. Am. Chem. Soc. 1958; 80: 2913
    • 42c Clasen RA, Searles S. Chem. Commun. 1966; 289
    • 42d Cohen SG, Parola A, Parsons GH. Chem. Rev. 1973; 73: 141
    • 42e Hasegawa T, Aoyama H, Omote Y. Tetrahedron Lett. 1975; 16: 1901
    • 42f Lindemann U, Wulff-Molder D, Wessig P. Tetrahedron: Asymmetry 1998; 9: 4459
    • 42g Gramain JC, Remuson R, Vallee D. J. Org. Chem. 1985; 50: 710
    • 42h Giese B, Wettstein P, Stahelin C, Barbosa F, Neuburger M, Zehnder M, Wessig P. Angew. Chem. Int. Ed. 1999; 38: 2586
    • 42i Wu JF, Zhang W, Wang CL. Synthesis 2009; 1821
    • 42j Roque JB, Kuroda Y, Jurczyk J, Xu LP, Ham JS, Gottemann LT, Roberts CA, Adpressa D, Sauri J, Joyce LA, Musaev DG, Yeung CS, Sarpong R. ACS Catal. 2020; 10: 2929
    • 42k Ham JS, Park B, Son M, Roque JB, Jurczyk J, Yeung CS, Baik MH, Sarpong R. J. Am. Chem. Soc. 2020; 142: 13041
    • 42l Griesbeck AG, Heckroth H, Schmickler H. Tetrahedron Lett. 1999; 40: 3137
    • 42m Rey V, Pierini AB, Peñéñory AB. J. Org. Chem. 2009; 74: 1223
    • 42n Nishio T, Tabata M, Koyama H, Sakamoto M. Helv. Chim. Acta 2005; 88: 78
    • 42o Nishio T, Koyama H, Sasaki D, Sakamoto M. Helv. Chim. Acta 2005; 88: 996
    • 42p Nishio T, Sakurai N, Iba K, Hamano Y, Sakamoto M. Helv. Chim. Acta 2005; 88: 2603
    • 42q Nechab M, Mondal S, Bertrand MP. Chem. Eur. J. 2014; 20: 16034
    • 43a Davidson RS. Chem. Commun. 1966; 575
    • 43b Hoshikawa T, Yoshioka S, Kamijo S, Inoue M. Synthesis 2013; 45: 874
    • 43c Kamijo S, Takao G, Kamijo K, Hirota M, Tao K, Murafuji T. Angew. Chem. Int. Ed. 2016; 55: 9695
    • 43d Kamijo S, Takao G, Kamijo K, Tsuno T, Ishiguro K, Murafuji T. Org. Lett. 2016; 18: 4912
    • 43e Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
    • 43f Si XJ, Zhang LM, Hashmi AS. K. Org. Lett. 2019; 21: 6329
    • 43g Schultz DM, Levesque F, DiRocco DA, Reibarkh M, Ji YN, Joyce LA, Dropinski JF, Sheng HM, Sherry BD, Davies IW. Angew. Chem. Int. Ed. 2017; 56: 15274
    • 43h Sarver PJ, Bacauanu V, Schultz DM, DiRocco DA, Lam YH, Sherer EC, MacMillan DW. C. Nat. Chem. 2020; 12: 459
    • 43i Yu JP, Zhao CY, Zhou R, Gao WC, Wang S, Liu K, Chen SY, Hu KQ, Mei L, Yuan LY, Chai ZF, Hu HS, Shi WQ. Chem. Eur. J. 2020; 26: 16521
    • 43j Srivastava V, Singh PK, Singh PP. Tetrahedron Lett. 2019; 60: 1333
    • 43k Roberts BP. Chem. Soc. Rev. 1999; 28: 25
    • 43l Nagatomo M, Yoshioka S, Inoue M. Chem. Asian J. 2015; 10: 120
    • 43m Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
    • 43n Capaldo L, Quadri LL, Ravelli D. Green Chem. 2020; 22: 3376
    • 44a Condie AG, Gonzalez-Gomez JC, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
    • 44b Rueping M, Zhu SQ, Koenigs RM. Chem. Commun. 2011; 47: 12709
    • 44c Freeman DB, Furst L, Condie AG, Stephenson CR. J. Org. Lett. 2012; 14: 94
    • 44d Rueping M, Zhu SQ, Koenigs RM. Chem. Commun. 2011; 47: 8679
    • 44e Rueping M, Vila C, Koenigs RM, Poscharny K, Fabry DC. Chem. Commun. 2011; 47: 2360
    • 44f Zhao GL, Yang C, Guo L, Sun HN, Chen C, Xia WJ. Chem. Commun. 2012; 48: 2337
    • 44g Rueping M, Koenigs RM, Poscharny K, Fabry DC, Leonori D, Vila C. Chem. Eur. J. 2012; 18: 5170
    • 44h DiRocco DA, Rovis T. J. Am. Chem. Soc. 2012; 134: 8094
    • 44i Bergonzini G, Schindler CS, Wallentin CJ, Jacobsen EN, Stephenson CR. J. Chem. Sci. 2014; 5: 112
    • 44j Pan YH, Kee CW, Chen L, Tan CH. Green Chem. 2011; 13: 2682
    • 44k Liu Q, Li YN, Zhang HH, Chen B, Tung CH, Wu LZ. Chem. Eur. J. 2012; 18: 620
    • 44l Pan YH, Wang S, Kee CW, Dubuisson E, Yang YY, Loh KP, Tan CH. Green Chem. 2011; 13: 3341
    • 44m Fu WJ, Guo WB, Zou GL, Xu C. J. Fluorine Chem. 2012; 140: 88
    • 44n Lin SX, Sun GJ, Kang Q. Chem. Commun. 2017; 53: 7665
    • 44o Zhang T, Liang WW, Huang YX, Li XR, Liu YZ, Yang B, He CX, Zhou XC, Zhang JM. Chem. Commun. 2017; 53: 12536
    • 44p Kohls P, Jadhav D, Pandey G, Reiser O. Org. Lett. 2012; 14: 672
    • 44q Miyake Y, Nakajima K, Nishibayashi Y. Chem. Eur. J. 2012; 18: 16473
    • 44r Espelt LR, Wiensch EM, Yoon TP. J. Org. Chem. 2013; 78: 4107
    • 44s Sharma S, Sharma A. Org. Biomol. Chem. 2019; 17: 4384
    • 44t Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 45a McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
    • 45b Noble A, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
    • 45c Joe CL, Doyle AG. Angew. Chem. Int. Ed. 2016; 55: 4040
    • 45d Leng LY, Fu Y, Liu P, Ready JM. J. Am. Chem. Soc. 2020; 142: 11972
    • 45e Prier CK, MacMillan DW. C. Chem. Sci. 2014; 5: 4173
    • 45f Ahneman DT, Doyle AG. Chem. Sci. 2016; 7: 7002
    • 45g McManus JB, Onuska NP. R, Nicewicz DA. J. Am. Chem. Soc. 2018; 140: 9056
    • 45h McManus JB, Onuska NP. R, Jeffreys MS, Goodwin NC, Nicewicz DA. Org. Lett. 2020; 22: 679
    • 45i Holmberg-Douglas N, Choi Y, Aquila B, Huynh H, Nicewicz DA. ACS Catal. 2021; 11: 3153
    • 45j Cohen SG, Chao HM. J. Am. Chem. Soc. 1968; 90: 165
    • 45k Lewis FD, Ho TI, Simpson JT. J. Org. Chem. 1981; 46: 1077
    • 45l Masuda Y, Ito M, Murakami M. Org. Lett. 2020; 22: 4467
    • 45m Thullen SM, Rovis T. J. Am. Chem. Soc. 2017; 139: 15504
    • 45n Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 45o Guillemard L, Wencel-Delord J. Beilstein J. Org. Chem. 2020; 16: 1754
    • 46a Dai C, Meschini F, Narayanam JM. R, Stephenson CR. J. J. Org. Chem. 2012; 77: 4425
    • 46b Ide T, Barham JP, Fujita M, Kawato Y, Egami H, Hamashima Y. Chem. Sci. 2018; 9: 8453
    • 46c Kobayashi F, Fujita M, Ide T, Ito Y, Yamashita K, Egami H, Hamashima Y. ACS Catal. 2021; 11: 82
    • 46d Wakaki T, Sakai K, Enomoto T, Kondo M, Masaoka S, Oisaki K, Kanai M. Chem. Eur. J. 2018; 24: 8051
    • 46e Grainger R, Heightman TD, Ley SV, Lima F, Johnson CN. Chem. Sci. 2019; 10: 2264
    • 46f Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
    • 46g Le C, Liang YF, Evans RW, Li XM, MacMillan DW. C. Nature 2017; 547: 79
    • 46h Rohe S, Morris AO, McCallum T, Barriault L. Angew. Chem. Int. Ed. 2018; 57: 15664
    • 46i Li WP, Duan YQ, Zhang ML, Cheng J, Zhu CJ. Chem. Commun. 2016; 52: 7596
    • 46j Choi GJ, Zhu QL, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
    • 46k Ye JT, Kalvet I, Schoenebeck F, Rovis T. Nat. Chem. 2018; 10: 1037
    • 46l Ashley MA, Yamauchi C, Chu JC. K, Otsuka S, Yorimitsu H, Rovis T. Angew. Chem. Int. Ed. 2019; 58: 4002
    • 46m Ryder AS. H, Cunningham WB, Ballantyne G, Mules T, Kinsella AG, Turner-Dore J, Alder CM, Edwards LJ, McKay BS. J, Grayson MN, Cresswell AJ. Angew. Chem. Int. Ed. 2020; 59: 14986
    • 46n Treacy SM, Rovis T. J. Am. Chem. Soc. 2021; 143: 2729
    • 46o Xu P, Chen PY, Xu HC. Angew. Chem. Int. Ed. 2020; 59: 14275
    • 47a Han GH, McIntosh MC, Weinreb SM. Tetrahedron Lett. 1994; 35: 5813
    • 47b Ito R, Umezawa N, Higuchi T. J. Am. Chem. Soc. 2005; 127: 834
    • 47c Kim Y, Heo J, Kim D, Chang S, Seo S. Nat. Commun. 2020; 11: 4761
    • 47d Osberger TJ, Rogness DC, Kohrt JT, Stepan AF, White MC. Nature 2016; 537: 214
    • 47e Roque JB, Kuroda Y, Gottemann LT, Sarpong R. Science 2018; 361: 171
    • 47f Roque JB, Kuroda Y, Gottemann LT, Sarpong R. Nature 2018; 564: 244
    • 47g Roque JB, Sarpong R, Musaev DG. J. Am. Chem. Soc. 2021; 143: 3889
    • 47h Kaname M, Yoshifuji S, Sashida H. Tetrahedron Lett. 2008; 49: 2786
    • 47i Xia XF, Shu XZ, Ji KG, Shaukat A, Liu XY, Liang YM. J. Org. Chem. 2011; 76: 342
    • 47j Paciaroni NG, Ratnayake R, Matthews JH, Norwood VM, Arnold AC, Dang LH, Luesch H, Huigens RW. Chem. Eur. J. 2017; 23: 4327
    • 47k Morcillo SP. Angew. Chem. Int. Ed. 2019; 58: 14044
    • 47l Zhang YJ, Sun S, Su YJ, Zhao J, Li YH, Han B, Shi F. Org. Biomol. Chem. 2019; 17: 4970
    • 47m Smolobochkin AV, Gazizov AS, Burilov AR, Pudovik MA, Sinyashin OG. Russ. Chem. Rev. 2019; 88: 1104
    • 47n Su JK, Ma XX, Ou ZL, Song QL. ACS Cent. Sci. 2020; 6: 1819

Zoom Image
(from left to right) Subhradeep Dutta was born and raised in West Bengal, India. He earned a B.Sc. degree in chemistry from Calcutta University (India) in 2016 and an M.Sc. degree in chemistry from the Indian Institute of Technology Kanpur (IITK) in 2018 under the guidance of Prof. Basker Sundararaju. In August 2018, he moved to the University of Florida (USA) for his graduate studies, joining the group of Prof. Daniel Seidel. His research focuses on developing methods towards the C–H bond functionalization of cyclic amines.


Bowen Li was born and raised in Shandong, P. R. of China. He earned a B.Sc. degree in the School of Chemistry and Chemical Engineering at Shanghai Jiao Tong University (P. R. of China) working with Prof. Wanbin Zhang. In 2019, he moved to the University of Florida (USA) for his graduate studies, joining the group of Prof. Daniel Seidel. His research focuses on asymmetric catalysis and C–H bond functionalization.


Dillon Rickertsen was born in Denver, Colorado, USA. He earned a B.Sc. degree in the Department of Chemistry at the University of Colorado, Denver (USA), working with Prof. Scott Reed. In 2019, he moved to the University of Florida for his graduate studies, joining the group of Prof. Daniel Seidel. His research is focused on developing methodologies for the C–H bond functionalization of amines.


Daniel Valles was born in Caracas, Venezuela and raised in Weston, Florida, USA. He attended the California Institute of Technology (Caltech) (USA) working with Prof. Peter Dervan, Prof. Sarah Reisman, and Dr. Scott Virgil. In 2018, he started his Ph.D. research at the University of Florida under the direction of Prof. Daniel Seidel. His research focuses on the functionalization of C–H bonds on cyclic amines.


Daniel Seidel studied chemistry at the Friedrich-Schiller-Universität Jena (Germany) and at the University of Texas at Austin (USA) (Diplom 1998). He performed his graduate studies in the lab of Prof. Jonathan L. Sessler, obtaining his Ph.D. in 2002. From 2002–2005, he was an Ernst Schering Postdoctoral Fellow in the group of Prof. David A. Evans at Harvard University (USA). He started his independent career at Rutgers University (USA) in 2005 and was promoted to Associate Professor in 2011 and Full Professor in 2014. In the summer of 2017, his research group moved to the University of Florida (USA).
Zoom Image
Figure 1 Deprotonation of tertiary amines.[1]
Zoom Image
Figure 2 Deprotonation of protected amines, part I.[2]
Zoom Image
Figure 3 Deprotonation of protected amines, part II.[3]
Zoom Image
Figure 4 Deprotonation of protected amines, part III.[4]
Zoom Image
Figure 5 Deprotonation of protected amines, part IV.[5]
Zoom Image
Figure 6 Transition-metal-catalyzed reactions with substrates containing directing groups, part I.[6]
Zoom Image
Figure 7 Transition-metal-catalyzed reactions with substrates containing directing groups, part II.[7]
Zoom Image
Figure 8 Transition-metal-catalyzed reactions with substrates containing directing groups, functionalization of amino acid derivatives.[8]
Zoom Image
Figure 9 Transition-metal-catalyzed reactions with substrates containing directing groups, catalytic enantioselective approaches.[9]
Zoom Image
Figure 10 Transition-metal-catalyzed reactions involving transient directing groups (TDGs).[10]
Zoom Image
Figure 11 Native-amine-directed transition-metal-catalyzed reactions.[11]
Zoom Image
Figure 12 Undirected transition-metal-catalyzed reactions.[12]
Zoom Image
Figure 13 Hydroaminoalkylation.[13]
Zoom Image
Figure 14 Oxidative methods, stoichiometric metal-based oxidants.[14]
Zoom Image
Figure 15 Oxidative methods, stoichiometric nonmetallic oxidants.[15]
Zoom Image
Figure 16 Oxidative preparation of building blocks.[16]
Zoom Image
Figure 17 Metal-catalyzed cross-dehydrogenative-coupling (CDC) reactions.[17]
Zoom Image
Figure 18 Metal-catalyzed cross-dehydrogenative-coupling (CDC) reactions with oxygen as the terminal oxidant.[18]
Zoom Image
Figure 19 Iodine-catalyzed cross-dehydrogenative-coupling (CDC) reactions.[19]
Zoom Image
Figure 20 Acceptorless cross-dehydrogenative-coupling (CDC) reactions with hydrogen evolution.[20]
Zoom Image
Figure 21 Catalytic enantioselective cross-dehydrogenative-coupling (CDC) reactions.[21]
Zoom Image
Figure 22 Oxidative β-functionalization.[22]
Zoom Image
Figure 23 Oxidative formation of sulfur-rich heterocycles.[23]
Zoom Image
Figure 24 Reactions involving amine N-oxides.[24]
Zoom Image
Figure 25 Dehydrogenation/aromatization.[25]
Zoom Image
Figure 26 Hydrogen borrowing.[26]
Zoom Image
Figure 27 Condensation-based methods involving azomethine ylide intermediates, aromatization.[27]
Zoom Image
Figure 28 Condensation-based methods involving azomethine ylide intermediates, pericyclic reactions.[28]
Zoom Image
Figure 29 Condensation-based methods involving azomethine ylide intermediates, redox-neutral 3-component coupling reactions.[29]
Zoom Image
Figure 30 Condensation-based methods involving azomethine ylide intermediates, redox-annulations.[30]
Zoom Image
Figure 31 Internal redox transformations involving [1,n]-H transfers, the ‘tert-amino effect’.[31]
Zoom Image
Figure 32 Lewis and Brønsted acid catalyzed internal redox transformations involving [1,n]-H transfers.[32]
Zoom Image
Figure 33 Catalytic enantioselective internal redox transformations involving [1,n]-H transfers.[33]
Zoom Image
Figure 34 Internal redox transformations involving [1,n]-H transfers in non-conjugated systems.[34]
Zoom Image
Figure 35 (Redox-neutral) methods involving intermolecular hydride transfer.[35]
Zoom Image
Figure 36 Li-amide-based imine and 1-azaallyl anion generation from unprotected azacycles.[36]
Zoom Image
Figure 37 Reactions involving carbenes or metal carbenoids.[37]
Zoom Image
Figure 38 Hofmann–Löffler–Freytag (HLF) reaction.[38]
Zoom Image
Figure 39 Miscellaneous radical-based methods.[39]
Zoom Image
Figure 40 Electrochemical approaches, cation pool method.[40]
Zoom Image
Figure 41 Electrochemical approaches, 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO) catalysis.[41]
Zoom Image
Figure 42 Intramolecular hydrogen atom transfer (HAT).[42]
Zoom Image
Figure 43 Direct hydrogen atom transfer (HAT).[43]
Zoom Image
Figure 44 Photoredox approaches, part I.[44]
Zoom Image
Figure 45 Photoredox approaches, part II.[45]
Zoom Image
Figure 46 Indirect hydrogen atom transfer (HAT).[46]
Zoom Image
Figure 47 Deconstructive functionalization.[47]