Semin Liver Dis 2020; 40(02): 171-179
DOI: 10.1055/s-0039-3399562
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Neutrophil Extracellular Traps and Liver Disease

Moira B. Hilscher
1   Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
,
Vijay H. Shah
1   Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
› Author Affiliations
Further Information

Publication History

Publication Date:
14 November 2019 (online)

Abstract

Neutrophil extracellular traps, or NETs, are heterogenous, filamentous structures which consist of extracellular DNA, granular proteins, and histones. NETs are extruded by a neutrophil in response to various stimuli. Although NETs were initially implicated in immune defense, subsequent studies have implicated NETs in a spectrum of disease processes, including autoimmune disease, thrombosis, and cancer. NETs also contribute to the pathogenesis of several common liver diseases, including alcohol-associated liver disease and portal hypertension. Although there is much interest in the therapeutic potential of NET inhibition, future clinical applications must be balanced against potential increased risk of infection.

 
  • References

  • 1 Brinkmann V, Reichard U, Goosmann C. , et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 2 Lee KH, Kronbichler A, Park DD. , et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev 2017; 16 (11) 1160-1173
  • 3 Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017; 23 (03) 279-287
  • 4 Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018; 18 (02) 134-147
  • 5 Kim HS, Park CB, Kim MS, Kim SC. cDNA cloning and characterization of Buforin I, an antimicrobial peptide: a cleavage product of histone H2A. Biochem Biophys Res Commun 1996; 229 (02) 381-387
  • 6 Weinrauch Y, Drujan D, Shapiro SD, Weiss J, Zychlinsky A. Neutrophil elastase targets virulence factors of enterobacteria. Nature 2002; 417 (6884): 91-94
  • 7 Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 2007; 5 (08) 577-582
  • 8 Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol 2009; 30 (11) 513-521
  • 9 Honda M, Kubes P. Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenterol Hepatol 2018; 15 (04) 206-221
  • 10 Kolaczkowska E, Jenne CN, Surewaard BG. , et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun 2015; 6: 6673
  • 11 Branzk N, Papayannopoulos V. Molecular mechanisms regulating NETosis in infection and disease. Semin Immunopathol 2013; 35 (04) 513-530
  • 12 Saitoh T, Komano J, Saitoh Y. , et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 2012; 12 (01) 109-116
  • 13 Abi Abdallah DS, Lin C, Ball CJ, King MR, Duhamel GE, Denkers EY. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect Immun 2012; 80 (02) 768-777
  • 14 Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 2006; 8 (04) 668-676
  • 15 Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2010; 2 (06) 576-586
  • 16 Lauth X, von Köckritz-Blickwede M, McNamara CW. , et al. M1 protein allows Group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition. J Innate Immun 2009; 1 (03) 202-214
  • 17 Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191 (03) 677-691
  • 18 Martinod K, Fuchs TA, Zitomersky NL. , et al. PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock. Blood 2015; 125 (12) 1948-1956
  • 19 Achouiti A, Vogl T, Urban CF. , et al. Myeloid-related protein-14 contributes to protective immunity in gram-negative pneumonia derived sepsis. PLoS Pathog 2012; 8 (10) e1002987
  • 20 Branzk N, Lubojemska A, Hardison SE. , et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 2014; 15 (11) 1017-1025
  • 21 Bianchi M, Hakkim A, Brinkmann V. , et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 2009; 114 (13) 2619-2622
  • 22 Urban CF, Ermert D, Schmid M. , et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 2009; 5 (10) e1000639
  • 23 Milligan KL, Mann D, Rump A. , et al. Complete myeloperoxidase deficiency: beware the “false-positive” dihydrorhodamine oxidation. J Pediatr 2016; 176: 204-206
  • 24 Funchal GA, Jaeger N, Czepielewski RS. , et al. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils. PLoS One 2015; 10 (04) e0124082
  • 25 Hemmers S, Teijaro JR, Arandjelovic S, Mowen KA. PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS One 2011; 6 (07) e22043
  • 26 Fuchs TA, Brill A, Duerschmied D. , et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 27 Laridan E, Martinod K, De Meyer SF. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost 2019; 45 (01) 86-93
  • 28 Boeltz S, Amini P, Anders HJ. , et al. To NET or not to NET: current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ 2019; 26 (03) 395-408
  • 29 Hoppenbrouwers T, Autar ASA, Sultan AR. , et al. In vitro induction of NETosis: comprehensive live imaging comparison and systematic review. PLoS One 2017; 12 (05) e0176472
  • 30 Ginley BG, Emmons T, Lutnick B, Urban CF, Segal BH, Sarder P. Computational detection and quantification of human and mouse neutrophil extracellular traps in flow cytometry and confocal microscopy. Sci Rep 2017; 7 (01) 17755
  • 31 Gupta S, Chan DW, Zaal KJ, Kaplan MJ. A high-throughput real-time imaging technique to quantify NETosis and distinguish mechanisms of cell death in human neutrophils. J Immunol 2018; 200 (02) 869-879
  • 32 van der Linden M, Westerlaken GHA, van der Vlist M, van Montfrans J, Meyaard L. Differential signalling and kinetics of neutrophil extracellular trap release revealed by quantitative live imaging. Sci Rep 2017; 7 (01) 6529
  • 33 Yipp BG, Petri B, Salina D. , et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 2012; 18 (09) 1386-1393
  • 34 Pilsczek FH, Salina D, Poon KK. , et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 2010; 185 (12) 7413-7425
  • 35 Gupta AK, Giaglis S, Hasler P, Hahn S. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS One 2014; 9 (05) e97088
  • 36 Brinkmann V, Abu Abed U, Goosmann C, Zychlinsky A. Immunodetection of NETs in paraffin-embedded tissue. Front Immunol 2016; 7: 513
  • 37 Gavillet M, Martinod K, Renella R. , et al. Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples. Am J Hematol 2015; 90 (12) 1155-1158
  • 38 Nauseef WM, Kubes P. Pondering neutrophil extracellular traps with healthy skepticism. Cell Microbiol 2016; 18 (10) 1349-1357
  • 39 Kraaij T, Tengström FC, Kamerling SW. , et al. A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes. Autoimmun Rev 2016; 15 (06) 577-584
  • 40 Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 2019; 133 (20) 2178-2185
  • 41 Leshner M, Wang S, Lewis C. , et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol 2012; 3: 307
  • 42 Wang Y, Li M, Stadler S. , et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009; 184 (02) 205-213
  • 43 Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A 2015; 112 (09) 2817-2822
  • 44 Hosseinzadeh A, Thompson PR, Segal BH, Urban CF. Nicotine induces neutrophil extracellular traps. J Leukoc Biol 2016; 100 (05) 1105-1112
  • 45 Clark SR, Ma AC, Tavener SA. , et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
  • 46 Byrd AS, O'Brien XM, Johnson CM, Lavigne LM, Reichner JS. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol 2013; 190 (08) 4136-4148
  • 47 McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 2012; 12 (03) 324-333
  • 48 Leppkes M, Maueröder C, Hirth S. , et al. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nat Commun 2016; 7: 10973
  • 49 Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 2009; 16 (11) 1438-1444
  • 50 Szabo G, Kamath PS, Shah VH, Thursz M, Mathurin P. ; EASL-AASLD Joint Meeting. Alcohol-related liver disease: areas of consensus, unmet needs and opportunities for further study. Hepatology 2019; 69 (05) 2271-2283
  • 51 Altamirano J, Miquel R, Katoonizadeh A. , et al. A histologic scoring system for prognosis of patients with alcoholic hepatitis. Gastroenterology 2014; 146 (05) 1231-9.e1 , 6
  • 52 Louvet A, Wartel F, Castel H. , et al. Infection in patients with severe alcoholic hepatitis treated with steroids: early response to therapy is the key factor. Gastroenterology 2009; 137 (02) 541-548
  • 53 Michelena J, Altamirano J, Abraldes JG. , et al. Systemic inflammatory response and serum lipopolysaccharide levels predict multiple organ failure and death in alcoholic hepatitis. Hepatology 2015; 62 (03) 762-772
  • 54 Hmoud BS, Patel K, Bataller R, Singal AK. Corticosteroids and occurrence of and mortality from infections in severe alcoholic hepatitis: a meta-analysis of randomized trials. Liver Int 2016; 36 (05) 721-728
  • 55 Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011; 141 (05) 1572-1585
  • 56 O'Brien Jr JM, Lu B, Ali NA. , et al. Alcohol dependence is independently associated with sepsis, septic shock, and hospital mortality among adult intensive care unit patients. Crit Care Med 2007; 35 (02) 345-350
  • 57 Wong F, Bernardi M, Balk R. , et al; International Ascites Club. Sepsis in cirrhosis: report on the 7th meeting of the International Ascites Club. Gut 2005; 54 (05) 718-725
  • 58 Taylor NJ, Nishtala A, Manakkat Vijay GK. , et al. Circulating neutrophil dysfunction in acute liver failure. Hepatology 2013; 57 (03) 1142-1152
  • 59 Bukong TN, Cho Y, Iracheta-Vellve A. , et al. Abnormal neutrophil traps and impaired efferocytosis contribute to liver injury and sepsis severity after binge alcohol use. J Hepatol 2018; 69 (05) 1145-1154
  • 60 Jin L, Batra S, Jeyaseelan S. Diminished neutrophil extracellular trap (NET) formation is a novel innate immune deficiency induced by acute ethanol exposure in polymicrobial sepsis, which can be rescued by CXCL1. PLoS Pathog 2017; 13 (09) e1006637
  • 61 Gracia-Sancho J, Marrone G, Fernández-Iglesias A. Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol 2019; 16 (04) 221-234
  • 62 Hilscher MB, Sehrawat T, Arab JP. , et al. Mechanical stretch increases expression of CXCL1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthrombi, and promote portal hypertension. Gastroenterology 2019; 157 (01) 193-209.e9
  • 63 Gonnert FA, Kunisch E, Gajda M. , et al. Hepatic fibrosis in a long-term murine model of sepsis. Shock 2012; 37 (04) 399-407
  • 64 Protzer U, Maini MK, Knolle PA. Living in the liver: hepatic infections. Nat Rev Immunol 2012; 12 (03) 201-213
  • 65 McDonald B, Jenne CN, Zhuo L, Kimata K, Kubes P. Kupffer cells and activation of endothelial TLR4 coordinate neutrophil adhesion within liver sinusoids during endotoxemia. Am J Physiol Gastrointest Liver Physiol 2013; 305 (11) G797-G806
  • 66 Jiménez-Alcázar M, Rangaswamy C, Panda R. , et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 2017; 358 (6367): 1202-1206
  • 67 Tanaka K, Koike Y, Shimura T. , et al. In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model. PLoS One 2014; 9 (11) e111888
  • 68 Fattahi F, Grailer JJ, Jajou L, Zetoune FS, Andjelkovic AV, Ward PA. Organ distribution of histones after intravenous infusion of FITC histones or after sepsis. Immunol Res 2015; 61 (03) 177-186
  • 69 Saffarzadeh M, Juenemann C, Queisser MA. , et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 2012; 7 (02) e32366
  • 70 Xu J, Zhang X, Pelayo R. , et al. Extracellular histones are major mediators of death in sepsis. Nat Med 2009; 15 (11) 1318-1321
  • 71 Howard TK, Klintmalm GB, Cofer JB, Husberg BS, Goldstein RM, Gonwa TA. The influence of preservation injury on rejection in the hepatic transplant recipient. Transplantation 1990; 49 (01) 103-107
  • 72 Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med 2011; 17 (11) 1391-1401
  • 73 Park SW, Kim M, Brown KM, D'Agati VD, Lee HT. Paneth cell-derived interleukin-17A causes multiorgan dysfunction after hepatic ischemia and reperfusion injury. Hepatology 2011; 53 (05) 1662-1675
  • 74 Dar WA, Sullivan E, Bynon JS, Eltzschig H, Ju C. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms. Liver Int 2019; 39 (05) 788-801
  • 75 Klune JR, Tsung A. Molecular biology of liver ischemia/reperfusion injury: established mechanisms and recent advancements. Surg Clin North Am 2010; 90 (04) 665-677
  • 76 Huang H, Tohme S, Al-Khafaji AB. , et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 2015; 62 (02) 600-614
  • 77 Al-Khafaji AB, Tohme S, Yazdani HO, Miller D, Huang H, Tsung A. Superoxide induces neutrophil extracellular trap formation in a TLR-4 and NOX-dependent mechanism. Mol Med 2016; 22: 621-631
  • 78 Scozzi D, Wang X, Liao F. , et al. Neutrophil extracellular trap fragments stimulate innate immune responses that prevent lung transplant tolerance. Am J Transplant 2019; 19 (04) 1011-1023
  • 79 Sayah DM, Mallavia B, Liu F. , et al; Lung Transplant Outcomes Group Investigators. Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 2015; 191 (04) 455-463
  • 80 von Meijenfeldt FA, Burlage LC, Bos S, Adelmeijer J, Porte RJ, Lisman T. Elevated plasma levels of cell-free DNA during liver transplantation are associated with activation of coagulation. Liver Transpl 2018; 24 (12) 1716-1725
  • 81 Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015; 313 (22) 2263-2273
  • 82 Williams CD, Stengel J, Asike MI. , et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 2011; 140 (01) 124-131
  • 83 Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 2013; 10 (11) 686-690
  • 84 Camilleri M, Malhi H, Acosta A. Gastrointestinal complications of obesity. Gastroenterology 2017; 152 (07) 1656-1670
  • 85 Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med 2017; 377 (21) 2063-2072
  • 86 Gastaldelli A, Cusi K, Pettiti M. , et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 2007; 133 (02) 496-506
  • 87 van der Poorten D, Milner KL, Hui J. , et al. Visceral fat: a key mediator of steatohepatitis in metabolic liver disease. Hepatology 2008; 48 (02) 449-457
  • 88 Sanyal AJ, Campbell-Sargent C, Mirshahi F. , et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001; 120 (05) 1183-1192
  • 89 Talukdar S, Oh DY, Bandyopadhyay G. , et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 2012; 18 (09) 1407-1412
  • 90 Mansuy-Aubert V, Zhou QL, Xie X. , et al. Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab 2013; 17 (04) 534-548
  • 91 Bodey B, Bodey Jr B, Siegel SE, Luck JV, Kaiser HE. Immunophenotypic characterization of human primary and metastatic melanoma infiltrating leukocytes. Anticancer Res 1996; 16 (6B): 3439-3446
  • 92 Erpenbeck L, Schön MP. Neutrophil extracellular traps: protagonists of cancer progression?. Oncogene 2017; 36 (18) 2483-2490
  • 93 Fridlender ZG, Sun J, Kim S. , et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009; 16 (03) 183-194
  • 94 Beauvillain C, Delneste Y, Scotet M. , et al. Neutrophils efficiently cross-prime naive T cells in vivo. Blood 2007; 110 (08) 2965-2973
  • 95 Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 2010; 120 (04) 1151-1164
  • 96 Demers M, Wong SL, Martinod K. , et al. Priming of neutrophils toward NETosis promotes tumor growth. OncoImmunology 2016; 5 (05) e1134073
  • 97 Millrud CR, Kågedal Å, Kumlien Georén S. , et al. NET-producing CD16high CD62Ldim neutrophils migrate to tumor sites and predict improved survival in patients with HNSCC. Int J Cancer 2017; 140 (11) 2557-2567
  • 98 Berger-Achituv S, Brinkmann V, Abed UA. , et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol 2013; 4: 48
  • 99 Cools-Lartigue J, Spicer J, McDonald B. , et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 2013; 67484
  • 100 Boone BA, Orlichenko L, Schapiro NE. , et al. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther 2015; 22 (06) 326-334
  • 101 Albrengues J, Shields MA, Ng D. , et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018; 361 (6409): eaao4227
  • 102 Houghton AM, Rzymkiewicz DM, Ji H. , et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 2010; 16 (02) 219-223
  • 103 Sangaletti S, Tripodo C, Vitali C. , et al. Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov 2014; 4 (01) 110-129
  • 104 Mano Y, Shirabe K, Yamashita Y. , et al. Preoperative neutrophil-to-lymphocyte ratio is a predictor of survival after hepatectomy for hepatocellular carcinoma: a retrospective analysis. Ann Surg 2013; 258 (02) 301-305
  • 105 Malik HZ, Prasad KR, Halazun KJ. , et al. Preoperative prognostic score for predicting survival after hepatic resection for colorectal liver metastases. Ann Surg 2007; 246 (05) 806-814
  • 106 Tohme S, Yazdani HO, Al-Khafaji AB. , et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res 2016; 76 (06) 1367-1380
  • 107 Pieterse E, Rother N, Garsen M. , et al. Neutrophil extracellular traps drive endothelial-to-mesenchymal transition. Arterioscler Thromb Vasc Biol 2017; 37 (07) 1371-1379
  • 108 Erpenbeck L, Schön MP. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood 2010; 115 (17) 3427-3436
  • 109 Mittal S, El-Serag HB, Sada YH. , et al. Hepatocellular carcinoma in the absence of cirrhosis in United States veterans is associated with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2016; 14 (01) 124-31.e1
  • 110 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144 (05) 646-674
  • 111 Ludwig J, Viggiano TR, McGill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 1980; 55 (07) 434-438
  • 112 van der Windt DJ, Sud V, Zhang H. , et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 2018; 68 (04) 1347-1360
  • 113 Fujii M, Shibazaki Y, Wakamatsu K. , et al. A murine model for non-alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma. Med Mol Morphol 2013; 46 (03) 141-152
  • 114 Baeck C, Wehr A, Karlmark KR. , et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 2012; 61 (03) 416-426
  • 115 Donnellan E, Kevane B, Bird BR, Ainle FN. Cancer and venous thromboembolic disease: from molecular mechanisms to clinical management. Curr Oncol 2014; 21 (03) 134-143
  • 116 Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 2005; 293 (06) 715-722
  • 117 Demers M, Krause DS, Schatzberg D. , et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A 2012; 109 (32) 13076-13081
  • 118 Rabe C, Pilz T, Klostermann C. , et al. Clinical characteristics and outcome of a cohort of 101 patients with hepatocellular carcinoma. World J Gastroenterol 2001; 7 (02) 208-215
  • 119 Schöniger-Hekele M, Müller C, Kutilek M, Oesterreicher C, Ferenci P, Gangl A. Hepatocellular carcinoma in Austria: aetiological and clinical characteristics at presentation. Eur J Gastroenterol Hepatol 2000; 12 (08) 941-948
  • 120 Pirisi M, Avellini C, Fabris C. , et al. Portal vein thrombosis in hepatocellular carcinoma: age and sex distribution in an autopsy study. J Cancer Res Clin Oncol 1998; 124 (07) 397-400
  • 121 Ikai I, Itai Y, Okita K. , et al. Report of the 15th follow-up survey of primary liver cancer. Hepatol Res 2004; 28 (01) 21-29
  • 122 Li SH, Wang QX, Yang ZY. , et al. Prognostic value of the neutrophil-to-lymphocyte ratio for hepatocellular carcinoma patients with portal/hepatic vein tumor thrombosis. World J Gastroenterol 2017; 23 (17) 3122-3132
  • 123 Seo JD, Gu JY, Jung HS, Kim YJ, Kim HK. Contact system activation and neutrophil extracellular trap markers: risk factors for portal vein thrombosis in patients with hepatocellular carcinoma. Clin Appl Thromb Hemost 2019; 25: 1076029618825310
  • 124 Gordon RA, Herter JM, Rosetti F. , et al. Lupus and proliferative nephritis are PAD4 independent in murine models. JCI Insight 2017; 2 (10) 92926
  • 125 Konig MF, Andrade F. A critical reappraisal of neutrophil extracellular traps and NETosis mimics based on differential requirements for protein citrullination. Front Immunol 2016; 7: 461