Semin Neurol 2019; 39(03): 391-398
DOI: 10.1055/s-0039-1688915
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Treatment of Central Nervous System Manifestations of HIV in the Current Era

Ryan Handoko
1   Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
,
Serena Spudich
1   Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
2   Center for Neuroepidemiology and Clinical Neurological Research, Yale University School of Medicine, New Haven, Connecticut
› Author Affiliations
Further Information

Publication History

Publication Date:
02 August 2019 (online)

Abstract

Treatment of neurological, neurocognitive, and neuropsychiatric impairment in the setting of human immunodeficiency virus (HIV) infection remains a complex problem, given several possible mechanisms of pathogenesis. The etiology must be determined based on clinical judgment and objective evidence, including cerebrospinal fluid (CSF) data from lumbar puncture and neuroimaging information from magnetic resonance imaging, when available and indicated. Other neuroinfectious etiologies must be ruled out, including central nervous system (CNS) opportunistic infections. HIV replication in the CNS (including CSF escape) should be evaluated for and excluded. If CSF HIV is detected, we recommend a treatment switch to antiretrovirals (ARVs) targeted to address any CSF HIV resistance mutations identified, or empiric treatment intensification using ARVs with high CNS penetration. If CSF HIV is not detected, treatment intensification with CCR5 inhibitors may be considered as an adjunct to reduce neuroinflammation. Finally, the current ARV regimen must be examined for possible neurotoxicity. Efavirenz has been well-recognized for its neuropsychiatric adverse effects and potential for causing sleep disturbances. Similar concerns have recently been raised with integrase inhibitors, especially dolutegravir and raltegravir, although further studies are needed to determine the risks for clinically relevant neuropsychiatric side effects from these medications, given their overall high potency and proven success in treating systemic HIV.

 
  • References

  • 1 McArthur JC, Hoover DR, Bacellar H. , et al. Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 1993; 43 (11) 2245-2252
  • 2 Heaton RK, Franklin DR, Ellis RJ. , et al; CHARTER Group; HNRC Group. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 2011; 17 (01) 3-16
  • 3 Letendre S, Marquie-Beck J, Capparelli E. , et al; CHARTER Group. Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 2008; 65 (01) 65-70
  • 4 Letendre SL, Ellis RJ, Ances BM, McCutchan JA. Neurologic complications of HIV disease and their treatment. Top HIV Med 2010; 18 (02) 45-55
  • 5 Cusini A, Vernazza PL, Yerly S. , et al; Swiss HIV Cohort Study. Higher CNS penetration-effectiveness of long-term combination antiretroviral therapy is associated with better HIV-1 viral suppression in cerebrospinal fluid. J Acquir Immune Defic Syndr 2013; 62 (01) 28-35
  • 6 Carvalhal A, Gill MJ, Letendre SL. , et al; Centre for Brain Health in HIV/AIDS. Central nervous system penetration effectiveness of antiretroviral drugs and neuropsychological impairment in the Ontario HIV Treatment Network Cohort Study. J Neurovirol 2016; 22 (03) 349-357
  • 7 Cysique LA, Vaida F, Letendre S. , et al. Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology 2009; 73 (05) 342-348
  • 8 Smurzynski M, Wu K, Letendre S. , et al. Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS 2011; 25 (03) 357-365
  • 9 Tozzi V, Balestra P, Salvatori MF. , et al. Changes in cognition during antiretroviral therapy: comparison of 2 different ranking systems to measure antiretroviral drug efficacy on HIV-associated neurocognitive disorders. J Acquir Immune Defic Syndr 2009; 52 (01) 56-63
  • 10 Ciccarelli N, Fabbiani M, Colafigli M. , et al. Revised central nervous system neuropenetration-effectiveness score is associated with cognitive disorders in HIV-infected patients with controlled plasma viraemia. Antivir Ther 2013; 18 (02) 153-160
  • 11 Vassallo M, Durant J, Biscay V. , et al. Can high central nervous system penetrating antiretroviral regimens protect against the onset of HIV-associated neurocognitive disorders?. AIDS 2014; 28 (04) 493-501
  • 12 Cysique LA, Waters EK, Brew BJ. Central nervous system antiretroviral efficacy in HIV infection: a qualitative and quantitative review and implications for future research. BMC Neurol 2011; 11: 148
  • 13 Marra CM, Zhao Y, Clifford DB. , et al; AIDS Clinical Trials Group 736 Study Team. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 2009; 23 (11) 1359-1366
  • 14 Baker LM, Paul RH, Heaps-Woodruff JM. , et al. The effect of central nervous system penetration effectiveness of highly active antiretroviral therapy on neuropsychological performance and neuroimaging in HIV infected individuals. J Neuroimmune Pharmacol 2015; 10 (03) 487-492
  • 15 Caniglia EC, Cain LE, Justice A. , et al; HIV-CAUSAL Collaboration. Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions. Neurology 2014; 83 (02) 134-141
  • 16 Gannon PJ, Akay-Espinoza C, Yee AC. , et al. HIV protease inhibitors alter amyloid precursor protein processing via β-site amyloid precursor protein cleaving enzyme-1 translational up-regulation. Am J Pathol 2017; 187 (01) 91-109
  • 17 Garvey L, Winston A, Walsh J. , et al; UK Collaborative HIV Cohort (CHIC) study. Antiretroviral therapy CNS penetration and HIV-1-associated CNS disease. Neurology 2011; 76 (08) 693-700
  • 18 Patel K, Ming X, Williams PL, Robertson KR, Oleske JM, Seage III GR. ; International Maternal Pediatric Adolescent AIDS Clinical Trials 219/219C Study Team. Impact of HAART and CNS-penetrating antiretroviral regimens on HIV encephalopathy among perinatally infected children and adolescents. AIDS 2009; 23 (14) 1893-1901
  • 19 Ellis RJ, Letendre S, Vaida F. , et al. Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin Infect Dis 2014; 58 (07) 1015-1022
  • 20 Tiraboschi JM, Muñoz-Moreno JA, Puertas MC. , et al. Viral and inflammatory markers in cerebrospinal fluid of patients with HIV-1-associated neurocognitive impairment during antiretroviral treatment switch. HIV Med 2015; 16 (06) 388-392
  • 21 Bumpus N, Ma Q, Moore DJ. , et al. Antiretroviral Concentrations in Brain Tissue Are Similar to or Exceed Those in CSF. In Conference on Retroviruses and Opportunistic Infections; 2015 . Seattle, WA: IAS-USA
  • 22 Curley P, Rajoli RK, Moss DM. , et al. Efavirenz is predicted to accumulate in brain tissue: an in silico, in vitro, and in vivo investigation. Antimicrob Agents Chemother 2016; 61 (01) e01841-16
  • 23 Shikuma CM, Nakamoto B, Shiramizu B. , et al. Antiretroviral monocyte efficacy score linked to cognitive impairment in HIV. Antivir Ther 2012; 17 (07) 1233-1242
  • 24 Fabbiani M, Grima P, Milanini B. , et al. Antiretroviral neuropenetration scores better correlate with cognitive performance of HIV-infected patients after accounting for drug susceptibility. Antivir Ther 2015; 20 (04) 441-447
  • 25 Robertson KR, Su Z, Margolis DM. , et al; A5170 Study Team. Neurocognitive effects of treatment interruption in stable HIV-positive patients in an observational cohort. Neurology 2010; 74 (16) 1260-1266
  • 26 Abers MS, Shandera WX, Kass JS. Neurological and psychiatric adverse effects of antiretroviral drugs. CNS Drugs 2014; 28 (02) 131-145
  • 27 Underwood J, Robertson KR, Winston A. Could antiretroviral neurotoxicity play a role in the pathogenesis of cognitive impairment in treated HIV disease?. AIDS 2015; 29 (03) 253-261
  • 28 Madeddu G, Menzaghi B, Ricci E. , et al; C.I.S.A.I Group. Raltegravir central nervous system tolerability in clinical practice: results from a multicenter observational study. AIDS 2012; 26 (18) 2412-2415
  • 29 Variava E, Sigauke FR, Norman J. , et al. Brief report: late efavirenz-induced ataxia and encephalopathy: a case series. J Acquir Immune Defic Syndr 2017; 75 (05) 577-579
  • 30 Raffi F, Rachlis A, Stellbrink HJ. , et al; SPRING-2 Study Group. Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet 2013; 381 (9868): 735-743
  • 31 Raffi F, Jaeger H, Quiros-Roldan E. , et al; extended SPRING-2 Study Group. Once-daily dolutegravir versus twice-daily raltegravir in antiretroviral-naive adults with HIV-1 infection (SPRING-2 study): 96 week results from a randomised, double-blind, non-inferiority trial. Lancet Infect Dis 2013; 13 (11) 927-935
  • 32 Clotet B, Feinberg J, van Lunzen J. , et al; ING114915 Study Team. Once-daily dolutegravir versus darunavir plus ritonavir in antiretroviral-naive adults with HIV-1 infection (FLAMINGO): 48 week results from the randomised open-label phase 3b study. Lancet 2014; 383 (9936): 2222-2231
  • 33 Molina JM, Clotet B, van Lunzen J. , et al; FLAMINGO study team. Once-daily dolutegravir versus darunavir plus ritonavir for treatment-naive adults with HIV-1 infection (FLAMINGO): 96 week results from a randomised, open-label, phase 3b study. Lancet HIV 2015; 2 (04) e127-e136
  • 34 Bracchi M, Pagani N, Clarke A. , et al. Multicentre open-label pilot study of switching from efavirenz to dolutegravir for central nervous system (CNS) toxicity. In International Congress of Drug Therapy in HIV Infection; 2016 . Glasgow, UK: Journal of the International AIDS Society
  • 35 Kheloufi F, Allemand J, Mokhtari S, Default A. Psychiatric disorders after starting dolutegravir: report of four cases. AIDS 2015; 29 (13) 1723-1725
  • 36 Fulco PP, Gomes DC, Bozymski KM. Dolutegravir-induced paresthesias. AIDS 2017; 31 (11) 1645-1646
  • 37 de Boer MG, van den Berk GE, van Holten N. , et al. Intolerance of dolutegravir-containing combination antiretroviral therapy regimens in real-life clinical practice. AIDS 2016; 30 (18) 2831-2834
  • 38 Cid-Silva P, Llibre JM, Fernández-Bargiela N. , et al. Clinical experience with the integrase inhibitors dolutegravir and elvitegravir in HIV-infected patients: efficacy, safety and tolerance. Basic Clin Pharmacol Toxicol 2017; 121 (05) 442-446
  • 39 Hoffmann C, Welz T, Sabranski M. , et al. Higher rates of neuropsychiatric adverse events leading to dolutegravir discontinuation in women and older patients. HIV Med 2017; 18 (01) 56-63
  • 40 Peñafiel J, de Lazzari E, Padilla M. , et al. Tolerability of integrase inhibitors in a real-life setting. J Antimicrob Chemother 2017; 72 (06) 1752-1759
  • 41 Elzi L, Erb S, Furrer H. , et al; Swiss HIV Cohort Study Group. Adverse events of raltegravir and dolutegravir. AIDS 2017; 31 (13) 1853-1858
  • 42 Fettiplace A, Stainsby C, Winston A. , et al. Psychiatric symptoms in patients receiving dolutegravir. J Acquir Immune Defic Syndr 2017; 74 (04) 423-431
  • 43 Hsu R, Fusco J, Henegar C. , et al. Psychiatric disorders observed in HIV+ patients using 6 common third agents in OPERA. In Conference on Retroviruses and Opportunistic Infections; 2017 . Seattle, WA: IAS-USA
  • 44 Yagura H, Watanabe D, Nakauchi T. , et al. Effect of dolutegravir plasma concentration on central nervous system side effects. In Conference on Retroviruses and Opportunistic Infections; 2017 . Seattle, WA: IAS-USA
  • 45 Yagura H, Watanabe D, Kushida H. , et al. Impact of UGT1A1 gene polymorphisms on plasma dolutegravir trough concentrations and neuropsychiatric adverse events in Japanese individuals infected with HIV-1. BMC Infect Dis 2017; 17 (01) 622
  • 46 Clarke A, Johanssen V, Gerstoft J. , et al. Analysis of neurocognitive function and CNS endpoints in the PROTEA trial: darunavir/ritonavir with or without nucleoside analogues. J Int AIDS Soc 2014; 17 (04) (Suppl. 03) 19526
  • 47 Katlama C, Valantin MA, Algarte-Genin M. , et al. Efficacy of darunavir/ritonavir maintenance monotherapy in patients with HIV-1 viral suppression: a randomized open-label, noninferiority trial, MONOI-ANRS 136. AIDS 2010; 24 (15) 2365-2374
  • 48 Valantin MA, Lambert-Niclot S, Flandre P. , et al; MONOI ANRS 136 Study Group. Long-term efficacy of darunavir/ritonavir monotherapy in patients with HIV-1 viral suppression: week 96 results from the MONOI ANRS 136 study. J Antimicrob Chemother 2012; 67 (03) 691-695
  • 49 Gutmann C, Cusini A, Günthard HF. , et al; Swiss HIV Cohort Study (SHCS). Randomized controlled study demonstrating failure of LPV/r monotherapy in HIV: the role of compartment and CD4-nadir. AIDS 2010; 24 (15) 2347-2354
  • 50 Arribas JR, Girard PM, Paton N. , et al. Efficacy of protease inhibitor monotherapy vs. triple therapy: meta-analysis of data from 2303 patients in 13 randomized trials. HIV Med 2016; 17 (05) 358-367
  • 51 Antinori A, Clarke A, Svedhem-Johansson V. , et al. Week 48 efficacy and central nervous system analysis of darunavir/ritonavir monotherapy versus darunavir/ritonavir with two nucleoside analogues. AIDS 2015; 29 (14) 1811-1820
  • 52 Arenas-Pinto A, Stöhr W, Clarke A. , et al; Protease Inhibitor monotherapy Versus Ongoing Triple therapy (PIVOT) CNS sub-study Team. Evaluation of cerebrospinal fluid virological escape in patients on long-term protease inhibitor monotherapy. Antivir Ther 2017; 22 (06) 535-538
  • 53 Donath M, Wolf T, Stürmer M. , et al; for Frankfurt HIV Cohort Study. HIV-1 replication in central nervous system increases over time on only protease inhibitor therapy. Med Microbiol Immunol (Berl) 2016; 205 (06) 575-583
  • 54 Kahlert C, Bregenzer A, Gutmann C. , et al. Late treatment failures in cerebrospinal fluid in patients on long-term maintenance ART with ritonavir-boosted protease PI monotherapy. Infection 2016; 44 (03) 329-335
  • 55 Ferretti F, Gianotti N, Lazzarin A, Cinque P. Central nervous system HIV infection in “less-drug regimen” antiretroviral therapy simplification strategies. Semin Neurol 2014; 34 (01) 78-88
  • 56 Estébanez M, Stella-Ascariz N, Mingorance J. , et al. A comparative study of neurocognitively impaired patients receiving protease inhibitor monotherapy or triple-drug antiretroviral therapy. J Acquir Immune Defic Syndr 2014; 67 (04) 419-423
  • 57 Ferretti F, Bigoloni A, Passeri L. , et al. Cerebrospinal fluid analysis for HIV replication and biomarkers of immune activation and neurodegeneration in long-term atazanavir/ritonavir monotherapy treated patients. Medicine (Baltimore) 2016; 95 (28) e4144
  • 58 Arenas-Pinto A, Stöhr W, Jäger HR. , et al; PIVOT Neurocognitive sub-study Team. Neurocognitive function and neuroimaging markers in virologically suppressed HIV-positive patients randomized to ritonavir-boosted protease inhibitor monotherapy or standard combination ART: a cross-sectional substudy from the PIVOT trial. Clin Infect Dis 2016; 63 (02) 257-264
  • 59 Di Giambenedetto S, Fabbiani M, Colafigli M. , et al. Safety and feasibility of treatment simplification to atazanavir/ritonavir + lamivudine in HIV-infected patients on stable treatment with two nucleos(t)ide reverse transcriptase inhibitors + atazanavir/ritonavir with virological suppression (Atazanavir and Lamivudine for treatment Simplification, AtLaS pilot study). J Antimicrob Chemother 2013; 68 (06) 1364-1372
  • 60 Mondi A, Fabbiani M, Ciccarelli N. , et al. Efficacy and safety of treatment simplification to atazanavir/ritonavir+lamivudine in HIV-infected patients with virological suppression: 144 week follow-up of the AtLaS pilot study. J Antimicrob Chemother 2015; 70 (06) 1843-1849
  • 61 Perez-Molina JA, Rubio R, Rivero A. , et al; GESIDA 7011 Study Group. Dual treatment with atazanavir-ritonavir plus lamivudine versus triple treatment with atazanavir-ritonavir plus two nucleos(t)ides in virologically stable patients with HIV-1 (SALT): 48 week results from a randomised, open-label, non-inferiority trial. Lancet Infect Dis 2015; 15 (07) 775-784
  • 62 Yilmaz A, Watson V, Else L, Gisslèn M. Cerebrospinal fluid maraviroc concentrations in HIV-1 infected patients. AIDS 2009; 23 (18) 2537-2540
  • 63 Tiraboschi JM, Niubo J, Curto J, Podzamczer D. Maraviroc concentrations in cerebrospinal fluid in HIV-infected patients. J Acquir Immune Defic Syndr 2010; 55 (05) 606-609
  • 64 Croteau D, Best BM, Letendre S. , et al; CHARTER Group. Lower than expected maraviroc concentrations in cerebrospinal fluid exceed the wild-type CC chemokine receptor 5-tropic HIV-1 50% inhibitory concentration. AIDS 2012; 26 (07) 890-893
  • 65 Spudich SS, Huang W, Nilsson AC. , et al. HIV-1 chemokine coreceptor utilization in paired cerebrospinal fluid and plasma samples: a survey of subjects with viremia. J Infect Dis 2005; 191 (06) 890-898
  • 66 Garvey L, Nelson M, Latch N. , et al. CNS effects of a CCR5 inhibitor in HIV-infected subjects: a pharmacokinetic and cerebral metabolite study. J Antimicrob Chemother 2012; 67 (01) 206-212
  • 67 Vera JH, Garvey LJ, Allsop JM. , et al. Alterations in cerebrospinal fluid chemokines are associated with maraviroc exposure and in vivo metabolites measurable by magnetic resonance spectroscopy. HIV Clin Trials 2012; 13 (04) 222-227
  • 68 Kelly KM, Beck SE, Metcalf Pate KA. , et al. Neuroprotective maraviroc monotherapy in simian immunodeficiency virus-infected macaques: reduced replicating and latent SIV in the brain. AIDS 2013; 27 (18) F21-F28
  • 69 Melica G, Canestri A, Peytavin G. , et al. Maraviroc-containing regimen suppresses HIV replication in the cerebrospinal fluid of patients with neurological symptoms. AIDS 2010; 24 (13) 2130-2133
  • 70 Robertson KR, Miyahara S, Lee A. , et al; AIDS Clinical Trials Group (ACTG) 5303 team. Neurocognition with maraviroc compared with tenofovir in HIV. AIDS 2016; 30 (15) 2315-2321
  • 71 Valcour VG, Spudich SS, Sailasuta N. , et al; SEARCH 010/RV 254 Study Group. Neurological response to cART vs. cART plus integrase inhibitor and CCR5 antagonist initiated during acute HIV. PLoS One 2015; 10 (11) e0142600
  • 72 Winston A, Bouliotis G, Kulasegaram R. , et al. A randomised controlled trial of maraviroc-intensified bPI ART on cognitive function. In Conference on Retroviruses and Opportunistic Infections; 2016 . Boston, MA: IAS-USA
  • 73 Ndhlovu LC, Umaki T, Chew GM. , et al. Treatment intensification with maraviroc (CCR5 antagonist) leads to declines in CD16-expressing monocytes in cART-suppressed chronic HIV-infected subjects and is associated with improvements in neurocognitive test performance: implications for HIV-associated neurocognitive disease (HAND). J Neurovirol 2014; 20 (06) 571-582
  • 74 Gates TM, Cysique LA, Siefried KJ, Chaganti J, Moffat KJ, Brew BJ. Maraviroc-intensified combined antiretroviral therapy improves cognition in virally suppressed HIV-associated neurocognitive disorder. AIDS 2016; 30 (04) 591-600
  • 75 Ndhlovu LC, D’Antoni M, Paul R. , et al. Cenicriviroc improves neurocognition and reduces monocyte activation in treated HIV. In Conference on Retroviruses and Opportunistic Infections; 2017 . Seattle, WA: IAS-USA