J Pediatr Intensive Care 2019; 08(01): 017-024
DOI: 10.1055/s-0038-1677535
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Future Challenges in Pediatric and Neonatal Sepsis: Emerging Pathogens and Antimicrobial Resistance

Laura Folgori
1   Paediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
,
Julia Bielicki
1   Paediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
2   Department of Paediatric Pharmacology, University Children's Hospital Basel, Basel, Switzerland
› Author Affiliations
Further Information

Publication History

05 November 2018

12 December 2018

Publication Date:
17 January 2019 (online)

Abstract

The incidence of severe infections caused by multidrug-resistant (MDR) pathogens is currently rising worldwide, and increasing numbers of neonates and children with serious bloodstream infections due to resistant bacteria are being reported. Severe sepsis and septic shock due to gram-negative bacteria represent a significant cause of morbidity and mortality, and contribute to high health care costs. Antimicrobial resistance among Enterobacteriaceae represents a major problem in both health care-associated and community-acquired infections, with extended-spectrum β-lactamases (ESBLs) and carbapenem-resistant Enterobacteriaceae (CRE) now presenting the main threat. These infections in adult populations have been associated with poor clinical outcomes, but very limited data have been published so far about risk factors and clinical outcome of ESBL-associated and CRE sepsis in the pediatric population. The treatment of these infections in neonates and children is particularly challenging due to the limited number of available effective antimicrobials. Evidence-based use of new and older antibiotics based on both strategic and regulatory clinical trials is paramount to improve management of these severe infections in neonates and children.

 
  • References

  • 1 Liu L, Oza S, Hogan D. , et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 2015; 385 (9966): 430-440
  • 2 Littmann J, Viens AM. The ethical significance of antimicrobial resistance. Public Health Ethics 2015; 8 (03) 209-224
  • 3 Brandenburg K, Schürholz T. Lack of new antiinfective agents: passing into the pre-antibiotic age?. World J Biol Chem 2015; 6 (03) 71-77
  • 4 Gilbert DN, Guidos RJ, Boucher HW. , et al. Infectious Diseases Society of America. The 10 x '20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 2010; 50 (08) 1081-1083
  • 5 Larru B, Gong W, Vendetti N. , et al. Bloodstream infections in hospitalized children: epidemiology and antimicrobial susceptibilities. Pediatr Infect Dis J 2016; 35 (05) 507-510
  • 6 Schindler BD, Kaatz GW. Multidrug efflux pumps of gram-positive bacteria. Drug Resist Updat 2016; 27: 1-13
  • 7 Laxminarayan R, Matsoso P, Pant S. , et al. Access to effective antimicrobials: a worldwide challenge. Lancet 2016; 387 (10014): 168-175
  • 8 Le Doare K, Bielicki J, Heath PT, Sharland M. Systematic review of antibiotic resistance rates among gram-negative bacteria in children with sepsis in resource-limited countries. J Pediatric Infect Dis Soc 2015; 4 (01) 11-20
  • 9 Ivády B, Kenesei É, Tóth-Heyn P. , et al. Factors influencing antimicrobial resistance and outcome of gram-negative bloodstream infections in children. Infection 2016; 44 (03) 309-321
  • 10 Al-Hasan MN, Huskins WC, Lahr BD, Eckel-Passow JE, Baddour LM. Epidemiology and outcome of gram-negative bloodstream infection in children: a population-based study. Epidemiol Infect 2011; 139 (05) 791-796
  • 11 Waters D, Jawad I, Ahmad A. , et al. Aetiology of community-acquired neonatal sepsis in low and middle income countries. J Glob Health 2011; 1 (02) 154-170
  • 12 Lukac PJ, Bonomo RA, Logan LK. Extended-spectrum β-lactamase-producing Enterobacteriaceae in children: old foe, emerging threat. Clin Infect Dis 2015; 60 (09) 1389-1397
  • 13 Murray TS, Peaper DR. The contribution of extended-spectrum β-lactamases to multidrug-resistant infections in children. Curr Opin Pediatr 2015; 27 (01) 124-131
  • 14 Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54 (03) 969-976
  • 15 Logan LK, Meltzer LA, McAuley JB. , et al; CDC Epicenters Prevention Program. Extended-spectrum β-Lactamase-producing Enterobacteriaceae infections in children: a two-center case-case-control study of risk factors and outcomes in Chicago, Illinois. J Pediatric Infect Dis Soc 2014; 3 (04) 312-319
  • 16 Badal RE, Bouchillon SK, Lob SH, Hackel MA, Hawser SP, Hoban DJ. Etiology, extended-spectrum β-lactamase rates and antimicrobial susceptibility of gram-negative bacilli causing intra-abdominal infections in patients in general pediatric and pediatric intensive care units--global data from the Study for Monitoring Antimicrobial Resistance Trends 2008 to 2010. Pediatr Infect Dis J 2013; 32 (06) 636-640
  • 17 Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 1980; 289 (1036): 321-331
  • 18 Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: 20th Informational Supplement. M100–S20. Wayne, PA: CLSI; 2010
  • 19 Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18 (04) 657-686
  • 20 Logan LK, Braykov NP, Weinstein RA, Laxminarayan R. ; CDC Epicenters Prevention Program. Extended-spectrum β-Lactamase-producing and third-generation cephalosporin-resistant Enterobacteriaceae in children: trends in the United States, 1999-2011. J Pediatric Infect Dis Soc 2014; 3 (04) 320-328
  • 21 Fedler KA, Biedenbach DJ, Jones RN. Assessment of pathogen frequency and resistance patterns among pediatric patient isolates: report from the 2004 SENTRY Antimicrobial Surveillance Program on 3 continents. Diagn Microbiol Infect Dis 2006; 56 (04) 427-436
  • 22 Sehgal R, Gaind R, Chellani H, Agarwal P. Extended-spectrum beta lactamase-producing gram-negative bacteria: clinical profile and outcome in a neonatal intensive care unit. Ann Trop Paediatr 2007; 27 (01) 45-54
  • 23 Kim YK, Pai H, Lee HJ. , et al. Bloodstream infections by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother 2002; 46 (05) 1481-1491
  • 24 Wang S, Zhao SY, Xiao SZ. , et al. Antimicrobial resistance and molecular epidemiology of Escherichia coli causing bloodstream infections in three hospitals in Shanghai, China. PLoS One 2016; 11 (01) e0147740
  • 25 Blomberg B, Jureen R, Manji KP. , et al. High rate of fatal cases of pediatric septicemia caused by gram-negative bacteria with extended-spectrum beta-lactamases in Dar es Salaam, Tanzania. J Clin Microbiol 2005; 43 (02) 745-749
  • 26 Blaschke AJ, Korgenski EK, Daly JA, LaFleur B, Pavia AT, Byington CL. Extended-spectrum beta-lactamase-producing pathogens in a children's hospital: a 5-year experience. Am J Infect Control 2009; 37 (06) 435-441
  • 27 Zaoutis TE, Goyal M, Chu JH. , et al. Risk factors for and outcomes of bloodstream infection caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species in children. Pediatrics 2005; 115 (04) 942-949
  • 28 Stapleton PJ, Murphy M, McCallion N, Brennan M, Cunney R, Drew RJ. Outbreaks of extended spectrum beta-lactamase-producing Enterobacteriaceae in neonatal intensive care units: a systematic review. Arch Dis Child Fetal Neonatal Ed 2016; 101 (01) F72-F78
  • 29 Stone PW, Gupta A, Loughrey M. , et al. Attributable costs and length of stay of an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae outbreak in a neonatal intensive care unit. Infect Control Hosp Epidemiol 2003; 24 (08) 601-606
  • 30 Pitout JD, Laupland KB, Church DL, Menard ML, Johnson JR. Virulence factors of Escherichia coli isolates that produce CTX-M-type extended-spectrum beta-lactamases. Antimicrob Agents Chemother 2005; 49 (11) 4667-4670
  • 31 Drew RJ, Turton JF, Hill RL. , et al. Emergence of carbapenem-resistant Enterobacteriaceae in a UK paediatric hospital. J Hosp Infect 2013; 84 (04) 300-304
  • 32 Sievert DM, Ricks P, Edwards JR. , et al; National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol 2013; 34 (01) 1-14
  • 33 Logan LK. Carbapenem-resistant Enterobacteriaceae: an emerging problem in children. Clin Infect Dis 2012; 55 (06) 852-859
  • 34 Little ML, Qin X, Zerr DM, Weissman SJ. Molecular diversity in mechanisms of carbapenem resistance in paediatric Enterobacteriaceae. Int J Antimicrob Agents 2012; 39 (01) 52-57
  • 35 Chiotos K, Han JH, Tamma PD. Carbapenem-resistant Enterobacteriaceae infections in children. Curr Infect Dis Rep 2016; 18 (01) 2
  • 36 Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011; 17 (10) 1791-1798
  • 37 Centers for Disease Control and Prevention. Carbapenem-resistant Enterobacteriaceae (CRE) infection; 2015. Available at: http://www.cdc.gov/hai/organisms/cre/cre-clinicians.html . Accessed August 23, 2016
  • 38 Centers for Disease Control and Prevention. FAQs about choosing and implementing a CRE definition; 2015. Available at: http://www.cdc.gov/hai/organisms/cre/definition.html . Accessed August 23, 2016
  • 39 Chea N, Bulens SN, Kongphet-Tran T. , et al. Improved phenotype-based definition for identifying carbapenemase producers among carbapenem-resistant Enterobacteriaceae. Emerg Infect Dis 2015; 21 (09) 1611-1616
  • 40 Kitchel B, Rasheed JK, Patel JB. , et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 2009; 53 (08) 3365-3370
  • 41 Temkin E, Adler A, Lerner A, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci 2014; 1323: 22-42
  • 42 Guh AY, Bulens SN, Mu Y. , et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in 7 US communities, 2012-2013. JAMA 2015; 314 (14) 1479-1487
  • 43 Cantón R, Akóva M, Carmeli Y. , et al; European Network on Carbapenemases. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 2012; 18 (05) 413-431
  • 44 Fischer J, Rodríguez I, Schmoger S. , et al. Salmonella enterica subsp. enterica producing VIM-1 carbapenemase isolated from livestock farms. J Antimicrob Chemother 2013; 68 (02) 478-480
  • 45 Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect 2014; 20 (09) 862-872
  • 46 Munoz-Price LS, Poirel L, Bonomo RA. , et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013; 13 (09) 785-796
  • 47 Logan LK, Renschler JP, Gandra S, Weinstein RA, Laxminarayan R. ; Centers for Disease Control; Prevention Epicenters Program. Carbapenem-resistant Enterobacteriaceae in children, United States, 1999-2012. Emerg Infect Dis 2015; 21 (11) 2014-2021
  • 48 Kehl SC, Dowzicky MJ. Global assessment of antimicrobial susceptibility among gram-negative organisms collected from pediatric patients between 2004 and 2012: results from the Tigecycline Evaluation and Surveillance Trial. J Clin Microbiol 2015; 53 (04) 1286-1293
  • 49 Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 2011; 53 (01) 60-67
  • 50 Munoz-Price LS, Quinn JP. Deconstructing the infection control bundles for the containment of carbapenem-resistant Enterobacteriaceae. Curr Opin Infect Dis 2013; 26 (04) 378-387
  • 51 Falagas ME, Tansarli GS, Karageorgopoulos DE, Vardakas KZ. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis 2014; 20 (07) 1170-1175
  • 52 Viau RA, Hujer AM, Marshall SH. , et al. “Silent” dissemination of Klebsiella pneumoniae isolates bearing K. pneumoniae carbapenemase in a long-term care facility for children and young adults in Northeast Ohio. Clin Infect Dis 2012; 54 (09) 1314-1321
  • 53 Datta S, Roy S, Chatterjee S. , et al. A five-year experience of carbapenem resistance in Enterobacteriaceae causing neonatal septicaemia: predominance of NDM-1. PLoS One 2014; 9 (11) e112101
  • 54 Folgori L, Bielicki J, Heath PT, Sharland M. Antimicrobial-resistant Gram-negative infections in neonates: burden of disease and challenges in treatment. Curr Opin Infect Dis 2017; 30 (03) 281-288
  • 55 Goldstein B, Giroir B, Randolph A. International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005; 6 (01) 2-8
  • 56 Plunkett A, Tong J. Sepsis in children. BMJ 2015; 350: h3017
  • 57 Kissoon N, Carapetis J. Pediatric sepsis in the developing world. J Infect 2015; 71 (Suppl. 01) S21-S26
  • 58 Smuszkiewicz P, Szałek E, Tomczak H, Grześkowiak E. Continuous infusion of antibiotics in critically ill patients. Curr Clin Pharmacol 2013; 8 (01) 13-24
  • 59 Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet 2005; 44 (10) 1009-1034
  • 60 Hsu AJ, Tamma PD. Treatment of multidrug-resistant gram-negative infections in children. Clin Infect Dis 2014; 58 (10) 1439-1448
  • 61 Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother 2012; 67 (12) 2793-2803
  • 62 Morrill HJ, Pogue JM, Kaye KS, LaPlante KL. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect Dis 2015; 2 (02) ofv050
  • 63 Qureshi ZA, Paterson DL, Potoski BA. , et al. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother 2012; 56 (04) 2108-2113
  • 64 Purdy J, Jouve S, Yan JL. , et al. Pharmacokinetics and safety profile of tigecycline in children aged 8 to 11 years with selected serious infections: a multicenter, open-label, ascending-dose study. Clin Ther 2012; 34 (02) 496-507.e1
  • 65 Traunmüller F, Popovic M, Konz KH, Vavken P, Leithner A, Joukhadar C. A reappraisal of current dosing strategies for intravenous fosfomycin in children and neonates. Clin Pharmacokinet 2011; 50 (08) 493-503
  • 66 Antibiotics Currently in Clinical Development. 2018. Available at: https://www.pewtrusts.org/-/media/assets/2018/09/antibiotics_currently_in_global_clinical_development_sept2018.pdf?la=en&hash=BDE8590154A21A3167CB62A80D663534906C4308 . Accessed September 18, 2018
  • 67 Falagas ME, Mavroudis AD, Vardakas KZ. The antibiotic pipeline for multi-drug resistant gram negative bacteria: what can we expect?. Expert Rev Anti Infect Ther 2016; 14 (08) 747-763
  • 68 Dose-finding, Pharmacokinetics, Safety, and Tolerability of Meropenem-Vaborbactam in Pediatric Subjects with Serious Bacterial Infections. Available at: https://clinicaltrials.gov/ct2/show/NCT02687906?term=Carbavance&rank=4 . Accessed September 18, 2018
  • 69 Kaye KS, Pogue JM. Infections caused by resistant gram-negative bacteria: epidemiology and management. Pharmacotherapy 2015; 35 (10) 949-962
  • 70 Folgori L, Tersigni C, Hsia Y. , et al. The relationship between gram-negative colonization and bloodstream infections in neonates: a systematic review and meta-analysis. Clin Microbiol Infect 2018; 24 (03) 251-257
  • 71 Gutiérrez-Gutiérrez B, Sojo-Dorado J, Bravo-Ferrer J. , et al; EURECA project team. EUropean prospective cohort study on Enterobacteriaceae showing REsistance to CArbapenems (EURECA): a protocol of a European multicentre observational study. BMJ Open 2017; 7 (04) e015365
  • 72 Centers for Disease Control and Prevention. Emerging Infections Program – Healthcare–associated Infections Projects. Multi-Site Gram-Negative Bacilli Surveillance Initiative (MuGSI). Available at; https://www.cdc.gov/HAI/eip/mugsi.html . Accessed August 23, 2016
  • 73 Global Antimicrobial Resistance, Prescribing, and Efficacy among Neonates and Children. Available at: http://garpec.org/ . Accessed January 24, 2016