Hamostaseologie 2019; 39(02): 152-163
DOI: 10.1055/s-0038-1677520
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Potential of Multidimensional, Large-scale Biodatabases to Elucidate Coagulation and Platelet Pathways as an Approach towards Precision Medicine in Thrombotic Disease

Marina Panova-Noeva
1   Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
2   German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
3   Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
,
Lisa Eggebrecht
1   Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
3   Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
,
Jürgen H. Prochaska
1   Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
2   German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
3   Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
,
Philipp S. Wild
1   Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
2   German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
3   Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
› Author Affiliations
Further Information

Publication History

02 July 2018

29 November 2018

Publication Date:
05 February 2019 (online)

Abstract

Cardiovascular and especially thrombotic diseases remain a major cause of morbidity and mortality worldwide. In past years, significant improvements in understanding disease processes, risk assessment, and prediction of clinical outcome in the field of thrombosis and haemostasis have been made by using large-scale biodatabases. These important research resources enable a comprehensive research approach by integrating clinical, environmental, genomic, and molecular information. Cutting edge, high throughput technologies open new data dimensions for clinical large-scale investigations. Joining multiple information levels from several pathophysiological pathways in contrast to a single marker approach might better model the complexity of disease pathogenesis. This review focuses on the possibilities that ultimately allow conducting wide-scale analyses for unravelling the multifaceted interplay between coagulation and cellular (e.g., platelets) elements in the development of thrombotic disease. It further provides examples for the use of biodatabases in the field of venous thromboembolism, explores the links between venous and arterial thrombotic diseases, and finally informs on the current use of platelet biomarkers in the thrombosis and haemostasis field.

Zusammenfassung

Kardiovaskuläre und insbesondere thrombotische Erkrankungen sind nach wie vor eine der Hauptursachen für Morbidität und Mortalität weltweit. In den vergangenen Jahren wurden signifikante Verbesserungen hinsichtlich des Verständnisses von Krankheitsprozessen, der Risikobewertung und der Vorhersage des klinischen Ergebnisses auf dem Gebiet der Thrombose und Hämostase unter Verwendung von Biodatenbanken im großen Maßstab erzielt. Diese wichtigen Forschungsressourcen ermöglichen einen umfassenden Forschungsansatz, indem klinische, Umwelt-, Genom- und molekulare Informationen integriert werden. Spitzentechnologien mit hohem Durchsatz eröffnen neue Datendimensionen für klinische Großuntersuchungen. Das Zusammenfügen mehrerer Informationsebenen aus mehreren pathophysiologischen Wegen im Gegensatz zu einem einzelnen Marker kann die Komplexität der Pathogenese von Krankheiten besser modellieren. Diese Übersichtsarbeit konzentriert sich auf die Möglichkeiten, welche die Durchführung breit angelegter Analysen ermöglichen, um das vielfältige Wechselspiel zwischen Koagulation und zellulären (z. B. Blutplättchen) Elementen bei der Entwicklung einer thrombotischen Erkrankung aufzuklären. Sie bietet außerdem Beispiele für die Verwendung von Biodatenbanken im Bereich der Venenthromboembolie, untersucht die Verbindungen zwischen venösen und arteriellen thrombotischen Erkrankungen und informiert schließlich über die derzeitige Verwendung von Blutplättchen-Biomarkern im Bereich von Thrombose und Hämostase.

 
  • References

  • 1 WHO. Cardiovascular disease. Available at: http://www.who.int/cardiovascular_diseases/en/ . Accessed June 27, 2018
  • 2 Fang N, Jiang M, Fan Y. Ideal cardiovascular health metrics and risk of cardiovascular disease or mortality: a meta-analysis. Int J Cardiol 2016; 214: 279-283
  • 3 Roth GA, Forouzanfar MH, Moran AE. , et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med 2015; 372 (14) 1333-1341
  • 4 Vernon ST, Coffey S, Bhindi R. , et al. Increasing proportion of ST elevation myocardial infarction patients with coronary atherosclerosis poorly explained by standard modifiable risk factors. Eur J Prev Cardiol 2017; 24 (17) 1824-1830
  • 5 Deloukas P, Kanoni S, Willenborg C. , et al; CARDIoGRAMplusC4D Consortium; DIAGRAM Consortium; CARDIOGENICS Consortium; MuTHER Consortium; Wellcome Trust Case Control Consortium. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2013; 45 (01) 25-33
  • 6 Clarke SL, Assimes TL. Genome-wide association studies of coronary artery disease: recent progress and challenges ahead. Curr Atheroscler Rep 2018; 20 (09) 47
  • 7 Wells PS, Owen C, Doucette S, Fergusson D, Tran H. Does this patient have deep vein thrombosis?. JAMA 2006; 295 (02) 199-207
  • 8 Dempfle CE, Zips S, Ergül H, Heene DL. ; Fibrin Assay Comparative Trial study group. The Fibrin Assay Comparison Trial (FACT): evaluation of 23 quantitative D-dimer assays as basis for the development of D-dimer calibrators. FACT study group. Thromb Haemost 2001; 85 (04) 671-678
  • 9 Haase C, Joergensen M, Ellervik C, Joergensen MK, Bathum L. Age- and sex-dependent reference intervals for D-dimer: evidence for a marked increase by age. Thromb Res 2013; 132 (06) 676-680
  • 10 Lee JE, Kim YY. How should biobanks prioritize and diversify biosample collections? A 40-year scientific publication trend analysis by the type of biosample. OMICS 2018; 22 (04) 255-263
  • 11 Pazoki R, Dehghan A, Evangelou E. , et al. Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation 2018; 137 (07) 653-661
  • 12 Haas ME, Aragam KG, Emdin CA. , et al; International Consortium for Blood Pressure. Genetic association of albuminuria with cardiometabolic disease and blood pressure. Am J Hum Genet 2018; 103 (04) 461-473
  • 13 Simeon-Dubach D, Perren A. Better provenance for biobank samples. Nature 2011; 475 (7357): 454-455
  • 14 Baker M. Biorepositories: building better biobanks. Nature 2012; 486 (7401): 141-146
  • 15 Larsson A. The need for research infrastructures: a narrative review of large-scale research infrastructures in biobanking. Biopreserv Biobank 2017; 15 (04) 375-383
  • 16 Wild PS, Felix JF, Schillert A. , et al. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function. J Clin Invest 2017; 127 (05) 1798-1812
  • 17 Cohen AT, Agnelli G, Anderson FA. , et al; VTE Impact Assessment Group in Europe (VITAE). Venous thromboembolism (VTE) in Europe. The number of VTE events and associated morbidity and mortality. Thromb Haemost 2007; 98 (04) 756-764
  • 18 van Hylckama Vlieg A, Flinterman LE, Bare LA. , et al. Genetic variations associated with recurrent venous thrombosis. Circ Cardiovasc Genet 2014; 7 (06) 806-813
  • 19 Frank B, Ariza L, Lamparter H. , et al; VTEval study group. Rationale and design of three observational, prospective cohort studies including biobanking to evaluate and improve diagnostics, management strategies and risk stratification in venous thromboembolism: the VTEval Project. BMJ Open 2015; 5 (07) e008157
  • 20 Folsom AR, Delaney JA, Lutsey PL. , et al; Multiethnic Study of Atherosclerosis Investigators. Associations of factor VIIIc, D-dimer, and plasmin-antiplasmin with incident cardiovascular disease and all-cause mortality. Am J Hematol 2009; 84 (06) 349-353
  • 21 Akgul O, Uyarel H. D-dimer: a novel predictive marker for cardiovascular disease. Int J Cardiol 2013; 168 (05) 4930-4931
  • 22 Ay C, Dunkler D, Pirker R. , et al. High D-dimer levels are associated with poor prognosis in cancer patients. Haematologica 2012; 97 (08) 1158-1164
  • 23 Cushman M, Folsom AR, Wang L. , et al. Fibrin fragment D-dimer and the risk of future venous thrombosis. Blood 2003; 101 (04) 1243-1248
  • 24 Di Castelnuovo A, de Curtis A, Costanzo S. , et al; MOLI-SANI Project Investigators. Association of D-dimer levels with all-cause mortality in a healthy adult population: findings from the MOLI-SANI study. Haematologica 2013; 98 (09) 1476-1480
  • 25 Jennewein C, Tran N, Paulus P, Ellinghaus P, Eble JA, Zacharowski K. Novel aspects of fibrin(ogen) fragments during inflammation. Mol Med 2011; 17 (5–6): 568-573
  • 26 Lowe GD, Yarnell JW, Sweetnam PM, Rumley A, Thomas HF, Elwood PC. Fibrin D-dimer, tissue plasminogen activator, plasminogen activator inhibitor, and the risk of major ischaemic heart disease in the Caerphilly Study. Thromb Haemost 1998; 79 (01) 129-133
  • 27 Adam SS, Key NS, Greenberg CS. D-dimer antigen: current concepts and future prospects. Blood 2009; 113 (13) 2878-2887
  • 28 Parry BA, Chang AM, Schellong SM. , et al. International, multicenter evaluation of a new D-dimer assay for the exclusion of venous thromboembolism using standard and age-adjusted cut-offs. Thromb Res 2018; 166: 63-70
  • 29 Righini M, Van Es J, Den Exter PL. , et al. Age-adjusted D-dimer cutoff levels to rule out pulmonary embolism: the ADJUST-PE study. JAMA 2014; 311 (11) 1117-1124
  • 30 Schouten HJ, Koek HL, Oudega R. , et al. Validation of two age dependent D-dimer cut-off values for exclusion of deep vein thrombosis in suspected elderly patients in primary care: retrospective, cross sectional, diagnostic analysis. BMJ 2012; 344: e2985
  • 31 Schouten HJ, Geersing GJ, Koek HL. , et al. Diagnostic accuracy of conventional or age adjusted D-dimer cut-off values in older patients with suspected venous thromboembolism: systematic review and meta-analysis. BMJ 2013; 346: f2492
  • 32 Prochaska JH, Frank B, Nagler M. , et al. Age-related diagnostic value of D-dimer testing and the role of inflammation in patients with suspected deep vein thrombosis. Sci Rep 2017; 7 (01) 4591
  • 33 Pawelec G. T-cell immunity in the aging human. Haematologica 2014; 99 (05) 795-797
  • 34 Pawelec G, Goldeck D, Derhovanessian E. Inflammation, ageing and chronic disease. Curr Opin Immunol 2014; 29: 23-28
  • 35 Lindner G, Funk G-C, Pfortmueller CA. , et al. D-dimer to rule out pulmonary embolism in renal insufficiency. Am J Med 2014; 127 (04) 343-347
  • 36 Xi X, Yang J, Wang Z, Zhu C, Li J, Liu S. Potential utility of a renal function adjusted D-dimer cut-off value for improving the exclusion of pulmonary embolism [in Chinese]. Zhonghua Yi Xue Za Zhi 2015; 95 (30) 2433-2436
  • 37 Pfortmueller CA, Lindner G, Funk G-C. , et al. Role of D-dimer testing in venous thromboembolism with concomitant renal insufficiency in critical care. Intensive Care Med 2017; 43 (03) 470-471
  • 38 Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol 2008; 28 (03) 387-391
  • 39 Meng X, Yang J, Dong M. , et al. Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol 2016; 13 (03) 167-179
  • 40 Liesz A, Hu X, Kleinschnitz C, Offner H. Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke 2015; 46 (05) 1422-1430
  • 41 Brandt M, Schönfelder T, Schwenk M. , et al. Deep vein thrombus formation induced by flow reduction in mice is determined by venous side branches. Clin Hemorheol Microcirc 2014; 56 (02) 145-152
  • 42 Ketelhuth DF, Hansson GK. Adaptive response of T and B cells in atherosclerosis. Circ Res 2016; 118 (04) 668-678
  • 43 Klingenberg R, Brokopp CE, Grivès A. , et al. Clonal restriction and predominance of regulatory T cells in coronary thrombi of patients with acute coronary syndromes. Eur Heart J 2015; 36 (17) 1041-1048
  • 44 Luther N, Shahneh F, Brähler M. , et al. Innate effector-memory T-cell activation regulates post-thrombotic vein wall inflammation and thrombus resolution. Circ Res 2016; 119 (12) 1286-1295
  • 45 Prochaska JH, Luther N, Brähler M. , et al. Acute deep vein thrombosis suppresses peripheral T cell effector function. Br J Haematol 2018 (e-pub ahead of print). doi:10.1111/bjh.15192
  • 46 Spronk HMH, Padro T, Siland JE. , et al. Atherothrombosis and thromboembolism: position paper from the Second Maastricht Consensus Conference on Thrombosis. Thromb Haemost 2018; 118 (02) 229-250
  • 47 Teruel-Montoya R, Rosendaal FR, Martínez C. MicroRNAs in hemostasis. J Thromb Haemost 2015; 13 (02) 170-181
  • 48 Konstantinides SV, Barco S, Rosenkranz S. , et al. Late outcomes after acute pulmonary embolism: rationale and design of FOCUS, a prospective observational multicenter cohort study. J Thromb Thrombolysis 2016; 42 (04) 600-609
  • 49 Faber J, Wingerter A, Neu MA. , et al. Burden of cardiovascular risk factors and cardiovascular disease in childhood cancer survivors: data from the German CVSS-study. Eur Heart J 2018; 39 (17) 1555-1562
  • 50 Prandoni P, Villalta S, Bagatella P. , et al. The clinical course of deep-vein thrombosis. Prospective long-term follow-up of 528 symptomatic patients. Haematologica 1997; 82 (04) 423-428
  • 51 Schulman S, Lindmarker P, Holmström M. , et al. Post-thrombotic syndrome, recurrence, and death 10 years after the first episode of venous thromboembolism treated with warfarin for 6 weeks or 6 months. J Thromb Haemost 2006; 4 (04) 734-742
  • 52 Cameron SJ. Vascular medicine: the eye cannot see what the mind does not know. J Am Coll Cardiol 2015; 65 (25) 2760-2763
  • 53 Beebe-Dimmer JL, Pfeifer JR, Engle JS, Schottenfeld D. The epidemiology of chronic venous insufficiency and varicose veins. Ann Epidemiol 2005; 15 (03) 175-184
  • 54 Mekky S, Schilling RS, Walford J. Varicose veins in women cotton workers. An epidemiological study in England and Egypt. BMJ 1969; 2 (5657): 591-595
  • 55 Rutherford RB, Padberg Jr FT, Comerota AJ, Kistner RL, Meissner MH, Moneta GL. Venous severity scoring: an adjunct to venous outcome assessment. J Vasc Surg 2000; 31 (06) 1307-1312
  • 56 Prandoni P, Bilora F, Marchiori A. , et al. An association between atherosclerosis and venous thrombosis. N Engl J Med 2003; 348 (15) 1435-1441
  • 57 Chang SL, Huang YL, Lee MC. , et al. Association of varicose veins with incident venous thromboembolism and peripheral artery disease. JAMA 2018; 319 (08) 807-817
  • 58 Ageno W, Becattini C, Brighton T, Selby R, Kamphuisen PW. Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation 2008; 117 (01) 93-102
  • 59 Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palareti G. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th edition). Chest 2008; 133 (6, Suppl): 160S-198S
  • 60 Investigators RAS. ; ROCKET AF Study Investigators. Rivaroxaban-once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation: rationale and design of the ROCKET AF study. Am Heart J 2010; 159 (03) 340.e1-347.e1
  • 61 Anand SS, Bosch J, Eikelboom JW. , et al; COMPASS Investigators. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet 2018; 391 (10117): 219-229
  • 62 Birocchi S, Scannella E, Ferrari L, Podda GM. ; Gruppo di Autoformazione Metodologica (GrAM). Aspirin in the secondary prevention of unprovoked thromboembolism: the WARFASA and ASPIRE studies. Intern Emerg Med 2013; 8 (08) 757-760
  • 63 Bern M, McCarthy N. Multiple markers of hypercoagulation in patients with history of venous thromboembolic disease. Blood Coagul Fibrinolysis 2013; 24 (01) 59-63
  • 64 Bouman AC, Smits JJ, Ten Cate H, Ten Cate-Hoek AJ. Markers of coagulation, fibrinolysis and inflammation in relation to post-thrombotic syndrome. J Thromb Haemost 2012; 10 (08) 1532-1538
  • 65 Prochaska JH, Göbel S, Keller K. , et al. Quality of oral anticoagulation with phenprocoumon in regular medical care and its potential for improvement in a telemedicine-based coagulation service--results from the prospective, multi-center, observational cohort study thrombEVAL. BMC Med 2015; 13: 14
  • 66 Michal M, Prochaska JH, Keller K. , et al. Symptoms of depression and anxiety predict mortality in patients undergoing oral anticoagulation: results from the thrombEVAL study program. Int J Cardiol 2015; 187: 614-619
  • 67 Prochaska JH, Göbel S, Keller K. , et al. e-Health-based management of patients receiving oral anticoagulation therapy: results from the observational thrombEVAL study. J Thromb Haemost 2017; 15 (07) 1375-1385
  • 68 Apostolakis S, Lane DA, Guo Y, Buller H, Lip GY. Performance of the HEMORR(2)HAGES, ATRIA, and HAS-BLED bleeding risk-prediction scores in patients with atrial fibrillation undergoing anticoagulation: the AMADEUS (evaluating the use of SR34006 compared to warfarin or acenocoumarol in patients with atrial fibrillation) study. J Am Coll Cardiol 2012; 60 (09) 861-867
  • 69 Hijazi Z, Oldgren J, Lindbäck J. , et al; ARISTOTLE and RE-LY Investigators. The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: a derivation and validation study. Lancet 2016; 387 (10035): 2302-2311
  • 70 Kyrle PA, Rosendaal FR, Eichinger S. Risk assessment for recurrent venous thrombosis. Lancet 2010; 376 (9757): 2032-2039
  • 71 Kearon C, Akl EA. Duration of anticoagulant therapy for deep vein thrombosis and pulmonary embolism. Blood 2014; 123 (12) 1794-1801
  • 72 Trégouët DA, Delluc A, Roche A. , et al. Is there still room for additional common susceptibility alleles for venous thromboembolism?. J Thromb Haemost 2016; 14 (09) 1798-1802
  • 73 Kremers BMM, Ten Cate H, Spronk HMH. Pleiotropic effects of the hemostatic system. J Thromb Haemost 2018 (e-pub ahead of print). doi: 10.1111/jth.14161
  • 74 Borissoff JI, Spronk HM, ten Cate H. The hemostatic system as a modulator of atherosclerosis. N Engl J Med 2011; 364 (18) 1746-1760
  • 75 Weijs B, Blaauw Y, Rennenberg RJ. , et al. Patients using vitamin K antagonists show increased levels of coronary calcification: an observational study in low-risk atrial fibrillation patients. Eur Heart J 2011; 32 (20) 2555-2562
  • 76 Chatrou ML, Winckers K, Hackeng TM, Reutelingsperger CP, Schurgers LJ. Vascular calcification: the price to pay for anticoagulation therapy with vitamin K-antagonists. Blood Rev 2012; 26 (04) 155-166
  • 77 Zemer-Wassercug N, Haim M, Leshem-Lev D. , et al. The effect of dabigatran and rivaroxaban on platelet reactivity and inflammatory markers. J Thromb Thrombolysis 2015; 40 (03) 340-346
  • 78 Lee IO, Kratz MT, Schirmer SH, Baumhäkel M, Böhm M. The effects of direct thrombin inhibition with dabigatran on plaque formation and endothelial function in apolipoprotein E-deficient mice. J Pharmacol Exp Ther 2012; 343 (02) 253-257
  • 79 Dong A, Mueller P, Yang F, Yang L, Morris A, Smyth SS. Direct thrombin inhibition with dabigatran attenuates pressure overload-induced cardiac fibrosis and dysfunction in mice. Thromb Res 2017; 159: 58-64
  • 80 Hara T, Fukuda D, Tanaka K. , et al. Rivaroxaban, a novel oral anticoagulant, attenuates atherosclerotic plaque progression and destabilization in ApoE-deficient mice. Atherosclerosis 2015; 242 (02) 639-646
  • 81 Sparkenbaugh EM, Chantrathammachart P, Mickelson J. , et al. Differential contribution of FXa and thrombin to vascular inflammation in a mouse model of sickle cell disease. Blood 2014; 123 (11) 1747-1756
  • 82 Spronk HM, De Jong AM, Verheule S. , et al. Hypercoagulability causes atrial fibrosis and promotes atrial fibrillation. Eur Heart J 2017; 38 (01) 38-50
  • 83 Schnabel RB, Wild PS, Prochaska JH. , et al; Gutenberg Health Study Investigators. Sex differences in correlates of intermediate phenotypes and prevalent cardiovascular disease in the general population. Front Cardiovasc Med 2015; 2: 15
  • 84 Weitz JI. Factor XI and factor XII as targets for new anticoagulants. Thromb Res 2016; 141 (Suppl. 02) S40-S45
  • 85 Ridker PM, Everett BM, Thuren T. , et al; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377 (12) 1119-1131
  • 86 Glynn RJ, Danielson E, Fonseca FA. , et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N Engl J Med 2009; 360 (18) 1851-1861
  • 87 Kunutsor SK, Seidu S, Khunti K. Statins and secondary prevention of venous thromboembolism: pooled analysis of published observational cohort studies. Eur Heart J 2017; 38 (20) 1608-1612
  • 88 Jilma-Stohlawetz P, Ratzinger F, Schörgenhofer C, Jilma B, Quehenberger P. Effect of preanalytical time-delay on platelet function as measured by multiplate, PFA-100 and VerifyNow. Scand J Clin Lab Invest 2016; 76 (03) 249-255
  • 89 Bath PM, Butterworth RJ. Platelet size: measurement, physiology and vascular disease. Blood Coagul Fibrinolysis 1996; 7 (02) 157-161
  • 90 Panova-Noeva M, Schulz A, Spronk HM. , et al. Clinical determinants of thrombin generation measured in presence and absence of platelets-results from the Gutenberg Health Study. Thromb Haemost 2018; 118 (05) 873-882
  • 91 Panova-Noeva M, Schulz A, Hermanns MI. , et al. Sex-specific differences in genetic and nongenetic determinants of mean platelet volume: results from the Gutenberg Health Study. Blood 2016; 127 (02) 251-259
  • 92 Chu SG, Becker RC, Berger PB. , et al. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost 2010; 8 (01) 148-156
  • 93 Coban E, Yilmaz A, Sari R. The effect of weight loss on the mean platelet volume in obese patients. Platelets 2007; 18 (03) 212-216
  • 94 Klovaite J, Benn M, Yazdanyar S, Nordestgaard BG. High platelet volume and increased risk of myocardial infarction: 39,531 participants from the general population. J Thromb Haemost 2011; 9 (01) 49-56
  • 95 Braekkan SK, Mathiesen EB, Njølstad I, Wilsgaard T, Størmer J, Hansen JB. Mean platelet volume is a risk factor for venous thromboembolism: the Tromsø Study, Tromsø, Norway. J Thromb Haemost 2010; 8 (01) 157-162
  • 96 Bonaccio M, Di Castelnuovo A, Costanzo S. , et al; MOLI-SANI study Investigators. Mean platelet volume is associated with lower risk of overall and non-vascular mortality in a general population. Results from the Moli-sani study. Thromb Haemost 2017; 117 (06) 1129-1140
  • 97 Riedl J, Kaider A, Reitter EM. , et al. Association of mean platelet volume with risk of venous thromboembolism and mortality in patients with cancer. Results from the Vienna Cancer and Thrombosis Study (CATS). Thromb Haemost 2014; 111 (04) 670-678
  • 98 Riedl J, Kaider A, Marosi C. , et al. Decreased platelet reactivity in patients with cancer is associated with high risk of venous thromboembolism and poor prognosis. Thromb Haemost 2017; 117 (01) 90-98
  • 99 Siasos G, Oikonomou E, Zaromitidou M. , et al. High platelet reactivity is associated with vascular function in patients after percutaneous coronary intervention receiving clopidogrel. Int J Cardiol 2014; 177 (01) 192-196
  • 100 Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation 2005; 111 (03) 363-368
  • 101 Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 2010; 55 (13) 1318-1327
  • 102 Kee MF, Myers DR, Sakurai Y, Lam WA, Qiu Y. Platelet mechanosensing of collagen matrices. PLoS One 2015; 10 (04) e0126624
  • 103 Panova-Noeva M, Arnold N, Hermanns MI. , et al. Mean platelet volume and arterial stiffness - clinical relationship and common genetic variability. Sci Rep 2017; 7: 40229
  • 104 Dzau VJ, Gibbons GH. Vascular remodeling: mechanisms and implications. J Cardiovasc Pharmacol 1993; 21 (Suppl. 01) S1-S5
  • 105 Henn V, Slupsky JR, Gräfe M. , et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391 (6667): 591-594
  • 106 Arnold N, Gori T, Schnabel RB. , et al. Relation between arterial stiffness and markers of inflammation and hemostasis - data from the population-based Gutenberg Health Study. Sci Rep 2017; 7 (01) 6346
  • 107 Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194: 927-929
  • 108 Jurk K. Analysis of platelet function and dysfunction. Hamostaseologie 2015; 35 (01) 60-72
  • 109 Müller KA, Karathanos A, Tavlaki E. , et al. Combination of high on-treatment platelet aggregation and low deaggregation better predicts long-term cardiovascular events in PCI patients under dual antiplatelet therapy. Platelets 2014; 25 (06) 439-446
  • 110 Crescente M, Mezzasoma AM, Del Pinto M. , et al. Incomplete inhibition of platelet function as assessed by the platelet function analyzer (PFA-100) identifies a subset of cardiovascular patients with high residual platelet response while on aspirin. Platelets 2011; 22 (03) 179-187
  • 111 Breet NJ, de Jong C, Bos WJ. , et al. The impact of renal function on platelet reactivity and clinical outcome in patients undergoing percutaneous coronary intervention with stenting. Thromb Haemost 2014; 112 (06) 1174-1181
  • 112 Breet NJ, van Werkum JW, Bouman HJ. , et al. Comparison of platelet function tests in predicting clinical outcome in patients undergoing coronary stent implantation. JAMA 2010; 303 (08) 754-762
  • 113 Wisman PP, Roest M, Asselbergs FW. , et al. Platelet-reactivity tests identify patients at risk of secondary cardiovascular events: a systematic review and meta-analysis. J Thromb Haemost 2014; 12 (05) 736-747
  • 114 Nagatsuka K, Miyata S, Kada A. , et al. Cardiovascular events occur independently of high on-aspirin platelet reactivity and residual COX-1 activity in stable cardiovascular patients. Thromb Haemost 2016; 116 (02) 356-368
  • 115 Heemskerk JW, Mattheij NJ, Cosemans JM. Platelet-based coagulation: different populations, different functions. J Thromb Haemost 2013; 11 (01) 2-16
  • 116 Agbani EO, Poole AW. Procoagulant platelets: generation, function, and therapeutic targeting in thrombosis. Blood 2017; 130 (20) 2171-2179
  • 117 Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002; 324 (7329): 71-86
  • 118 Eikelboom JW, Connolly SJ, Bosch J. , et al; COMPASS Investigators. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med 2017; 377 (14) 1319-1330
  • 119 Bauersachs R, Zannad F. Rivaroxaban: a new treatment paradigm in the setting of vascular protection?. Thromb Haemost 2018; 118 (S 01): S12-S22
  • 120 Lutsey PL, Folsom AR, Heckbert SR, Cushman M. Peak thrombin generation and subsequent venous thromboembolism: the Longitudinal Investigation of Thromboembolism Etiology (LITE) study. J Thromb Haemost 2009; 7 (10) 1639-1648
  • 121 Besser M, Baglin C, Luddington R, van Hylckama Vlieg A, Baglin T. High rate of unprovoked recurrent venous thrombosis is associated with high thrombin-generating potential in a prospective cohort study. J Thromb Haemost 2008; 6 (10) 1720-1725
  • 122 Ten Cate H, Hemker HC. Thrombin generation and atherothrombosis: what does the evidence indicate?. J Am Heart Assoc 2016; 5 (08) e003553