Semin Musculoskelet Radiol 2018; 22(04): 481-505
DOI: 10.1055/s-0038-1667120
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Imaging of the Knee and Surrounding Structures Following Tumor Surgery

Naomi Winn
1   Department of Radiology, The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
,
Radhesh Lalam
1   Department of Radiology, The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
22 August 2018 (online)

Abstract

Limb salvage is a key goal of tumor management around the knee, with surgical, medical, and radiologic treatment options. Primary bone and soft tissue sarcomas are optimally treated in specialist tertiary centers; however, metastatic disease is encountered in all aspects of radiologic practice, with overlap in the management strategies. Both specialist and generalist radiologists therefore need to be familiar with the expected normal appearances following these therapies and be able to recognize potential complications. This review article describes the techniques available for imaging the knee following treatment of bone and soft tissue tumors, with particular reference to artifact reduction. The therapeutic options for managing bone and soft tissue lesion are discussed, with emphasis on imaging appearances. Surgical, medical, and radiologic treatments are described. Complications and their imaging appearances are reviewed including local recurrence of tumor, infection, complications related to metallic implants, postradiation changes, and amputation. Normal imaging appearances and complications following radiologic treatment (namely radiofrequency ablation) of bone and soft tissue tumors are presented.

 
  • References

  • 1 Kransdorf MJ, Murphey MD. Radiologic evaluation of soft-tissue masses: a current perspective. AJR Am J Roentgenol 2000; 175 (03) 575-587
  • 2 Hajdu SI. Soft tissue sarcomas: classification and natural history. CA Cancer J Clin 1981; 31 (05) 271-280
  • 3 Kransdorf MJ. Malignant soft-tissue tumors in a large referral population: distribution of diagnoses by age, sex, and location. AJR Am J Roentgenol 1995; 164 (01) 129-134
  • 4 Kransdorf MJ. Benign soft-tissue tumors in a large referral population: distribution of specific diagnoses by age, sex, and location. AJR Am J Roentgenol 1995; 164 (02) 395-402
  • 5 Lahat G, Lazar A, Lev D. Sarcoma epidemiology and etiology: potential environmental and genetic factors. Surg Clin North Am 2008; 88 (03) 451-481 , v
  • 6 Cancer registration statistics, England statistical bulletins. Available at: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancerregistrationstatisticsengland/previousReleases . Accessed July 23, 2018
  • 7 Burningham Z, Hashibe M, Spector L, Schiffman JD. The epidemiology of sarcoma. Clin Sarcoma Res 2012; 2 (01) 14
  • 8 Corey RM, Swett K, Ward WG. Epidemiology and survivorship of soft tissue sarcomas in adults: a national cancer database report. Cancer Med 2014; 3 (05) 1404-1415
  • 9 Nogueira Drumond JM. Benign bone tumors and tumor-like bone lesions: treatment update and new trends. Rev Bras Ortop 2015; 44 (05) 386-390
  • 10 Macedo F, Ladeira K, Pinho F. , et al. Bone metastases: an overview. Oncol Rev 2017; 11 (01) 321
  • 11 Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 2001; 27 (03) 165-176
  • 12 Selvaggi G, Scagliotti GV. Management of bone metastases in cancer: a review. Crit Rev Oncol Hematol 2005; 56 (03) 365-378
  • 13 Zhou H-Y, Gao F, Bu B. , et al. Primary bone lymphoma: A case report and review of the literature. Oncol Lett 2014; 8 (04) 1551-1556
  • 14 Lalam RK, Cribb GL, Cassar-Pullicino VN. , et al. Radiofrequency thermo-ablation of PVNS in the knee: initial results. Skeletal Radiol 2015; 44 (12) 1777-1784
  • 15 Madewell JE, Ragsdale BD, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part I: internal margins. Radiol Clin North Am 1981; 19 (04) 715-748
  • 16 Sweet DE, Madewell JE, Ragsdale BD. Radiologic and pathologic analysis of solitary bone lesions. Part III: matrix patterns. Radiol Clin North Am 1981; 19 (04) 785-814
  • 17 Lalam R, Bloem JL, Noebauer-Huhmann IM. , et al. ESSR consensus document for detection, characterization, and referral pathway for tumors and tumorlike lesions of bone. Semin Musculoskelet Radiol 2017; 21 (05) 630-647
  • 18 Talbot BS, Weinberg EP. MR imaging with metal-suppression sequences for evaluation of total joint arthroplasty. Radiographics 2016; 36 (01) 209-225
  • 19 Sneag DB, Bogner EA, Potter HG. Magnetic resonance imaging evaluation of the painful total knee arthroplasty. Semin Musculoskelet Radiol 2015; 19 (01) 40-48
  • 20 Ariyachaipanich A, Bae WC, Statum S, Chung CB. Update on MRI pulse sequences for the knee: imaging of cartilage, meniscus, tendon, and hardware. Semin Musculoskelet Radiol 2017; 21 (02) 45-62
  • 21 Chang EY, Bae WC, Chung CB. Imaging the knee in the setting of metal hardware. Magn Reson Imaging Clin N Am 2014; 22 (04) 765-786
  • 22 Ai T, Padua A, Goerner F. , et al. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging. Invest Radiol 2012; 47 (05) 267-276
  • 23 Baur A, Reiser MF. Diffusion-weighted imaging of the musculoskeletal system in humans. Skeletal Radiol 2000; 29 (10) 555-562
  • 24 Khoo MMY, Tyler PA, Saifuddin A, Padhani AR. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol 2011; 40 (06) 665-681
  • 25 Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007; 188 (06) 1622-1635
  • 26 Uhl M, Saueressig U, Koehler G. , et al. Evaluation of tumour necrosis during chemotherapy with diffusion-weighted MR imaging: preliminary results in osteosarcomas. Pediatr Radiol 2006; 36 (12) 1306-1311
  • 27 Hayashida Y, Yakushiji T, Awai K. , et al. Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: Initial results. Eur Radiol 2006; 16 (12) 2637-2643
  • 28 De Keyzer F, Vandecaveye V, Thoeny H. , et al. Dynamic contrast-enhanced and diffusion-weighted MRI for early detection of tumoral changes in single-dose and fractionated radiotherapy: evaluation in a rat rhabdomyosarcoma model. Eur Radiol 2009; 19 (11) 2663-2671
  • 29 Bajpai J, Gamnagatti S, Kumar R. , et al. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis. Pediatr Radiol 2011; 41 (04) 441-450
  • 30 Oka K, Yakushiji T, Sato H, Hirai T, Yamashita Y, Mizuta H. The value of diffusion-weighted imaging for monitoring the chemotherapeutic response of osteosarcoma: a comparison between average apparent diffusion coefficient and minimum apparent diffusion coefficient. Skeletal Radiol 2010; 39 (02) 141-146
  • 31 Baunin C, Schmidt G, Baumstarck K. , et al. Value of diffusion-weighted images in differentiating mid-course responders to chemotherapy for osteosarcoma compared to the histological response: preliminary results. Skeletal Radiol 2012; 41 (09) 1141-1149
  • 32 Nakanishi K, Kobayashi M, Nakaguchi K. , et al. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 2007; 6 (03) 147-155
  • 33 Uhl M, Saueressig U, van Buiren M. , et al. Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest Radiol 2006; 41 (08) 618-623
  • 34 Dallaudière B, Lecouvet F, Vande Berg B. , et al. Diffusion-weighted MR imaging in musculoskeletal diseases: current concepts. Diagn Interv Imaging 2015; 96 (04) 327-340
  • 35 Costa FM, Ferreira EC, Vianna EM. Diffusion-weighted magnetic resonance imaging for the evaluation of musculoskeletal tumors. Magn Reson Imaging Clin N Am 2011; 19 (01) 159-180
  • 36 Pekcevik Y, Kahya MO, Kaya A. Diffusion-weighted magnetic resonance imaging in the diagnosis of bone tumors: preliminary results. J Clin Imaging Sci 2013; 3 (04) 63
  • 37 Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J. Echo-planar imaging of intravoxel incoherent motion. Radiology 1990; 177 (02) 407-414
  • 38 Guerini H, Omoumi P, Guichoux F. , et al. Fat suppression with Dixon techniques in musculoskeletal magnetic resonance imaging: a pictorial review. Semin Musculoskelet Radiol 2015; 19 (04) 335-347
  • 39 Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging 2010; 31 (01) 4-18
  • 40 Kenneally BE, Gutowski CJ, Reynolds AW, Morrison WB, Abraham JA. Utility of opposed-phase magnetic resonance imaging in differentiating sarcoma from benign bone lesions. J Bone Oncol 2015; 4 (04) 110-114
  • 41 Verstraete KL, Dierick A, De Deene Y. , et al. First-pass images of musculoskeletal lesions: a new and useful diagnostic application of dynamic contrast-enhanced MRI. Magn Reson Imaging 1994; 12 (05) 687-702
  • 42 Tsili AC, Argyropoulou MI, Astrakas LG. , et al. Dynamic contrast-enhanced subtraction MRI for characterizing intratesticular mass lesions. AJR Am J Roentgenol 2013; 200 (03) 578-585
  • 43 Verstraete KL, Lang P. Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol 2000; 34 (03) 229-246
  • 44 Stradiotti P, Curti A, Castellazzi G, Zerbi A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J 2009; 18 (Suppl. 01) 102-108
  • 45 Andersson KM, Nowik P, Persliden J, Thunberg P, Norrman E. Metal artefact reduction in CT imaging of hip prostheses—an evaluation of commercial techniques provided by four vendors. Br J Radiol 2015; 88 (1052): 20140473
  • 46 Morsbach F, Bickelhaupt S, Wanner GA, Krauss A, Schmidt B, Alkadhi H. Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions. Radiology 2013; 268 (01) 237-244
  • 47 Sarcoma. Quality standard [QS78]. Available at: https://www.nice.org.uk/guidance/qs78 . Accessed July 23, 2018
  • 48 Pass B, Jafari M, Rowbotham E, Hensor EMA, Gupta H, Robinson P. Do quantitative and qualitative shear wave elastography have a role in evaluating musculoskeletal soft tissue masses?. Eur Radiol 2017; 27 (02) 723-731
  • 49 Tagliafico A, Truini M, Spina B. , et al. Follow-up of recurrences of limb soft tissue sarcomas in patients with localized disease: performance of ultrasound. Eur Radiol 2015; 25 (09) 2764-2770
  • 50 Eggermont AM. Evolving imaging technology: contrast-enhanced Doppler ultrasound is early and rapid predictor of tumour response. Ann Oncol 2005; 16 (07) 995-996
  • 51 Zhao F, Ahlawat S, Farahani SJ. , et al. Can MR imaging be used to predict tumor grade in soft-tissue sarcoma?. Radiology 2014; 272 (01) 192-201
  • 52 Nagata S, Nishimura H, Uchida M. , et al. Diffusion-weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis. Radiat Med 2008; 26 (05) 287-295
  • 53 van Rijswijk CSP, Kunz P, Hogendoorn PCW, Taminiau AH, Doornbos J, Bloem JL. Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging 2002; 15 (03) 302-307
  • 54 Dudeck O, Zeile M, Pink D. , et al. Diffusion-weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft-tissue sarcomas. J Magn Reson Imaging 2008; 27 (05) 1109-1113
  • 55 Murphey MD, Rhee JH, Lewis RB, Fanburg-Smith JC, Flemming DJ, Walker EA. Pigmented villonodular synovitis: radiologic-pathologic correlation. RadioGraphics 2008; 28 (05) 1493-1518
  • 56 Tam HT, Ng WH, Wong KC, Griffith JF. Heavily mineralised malignant synovial sarcoma mimicking a benign extraskeletal chondroma. J Hong Kong Coll Radiol 2010; 12 (04) 174-177
  • 57 Gelfand MJ, Sharp SE. [F-18]2-fluoro-2-deoxyglucose (FDG) positron emission tomography after limb salvage surgery: post-surgical appearance, attenuation correction and local complications. Pediatr Radiol 2015; 45 (08) 1182-1188
  • 58 Grimer R, Judson I, Peake D, Seddon B. Guidelines for the management of soft tissue sarcomas. Sarcoma 2010; 2010 (10) 506182
  • 59 Noebauer-Huhmann IM, Weber MA, Lalam RK. , et al. Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging. Semin Musculoskelet Radiol 2015; 19 (05) e1
  • 60 Cool P, Cribb G. The impact and efficacy of surveillance in patients with sarcoma of the extremities. Bone Joint Res 2017; 6 (04) 224-230
  • 61 Zhang S, Zhang J, Wang X. Comparison of tumor curettage and resection for treatment of giant cell tumor of the bone around the knee joint. Pak J Med Sci 2016; 32 (03) 662-666
  • 62 Lv C, Tu C, Min L, Duan H. Allograft arthrodesis of the knee for giant cell tumors. Orthopedics 2012; 35 (03) e397-e402
  • 63 Sobti A, Agrawal P, Agarwala S, Agarwal M. Giant cell tumor of bone—an overview. Arch Bone Jt Surg 2016; 4 (01) 2-9
  • 64 Oragui E, Nannaparaju M, Sri-Ram K, Khan W, Hashemi-Nejad A, Skinner J. A new technique of endoprosthetic replacement for osteosarcoma of proximal femur with intra-articular extension. Int J Surg Case Rep 2013; 4 (01) 101-104
  • 65 Chandrasekar CR, Grimer RJ, Carter SR, Tillman RM, Abudu AT. Modular endoprosthetic replacement for metastatic tumours of the proximal femur. J Orthop Surg 2008; 3 (01) 50
  • 66 Bai XS, Thomas JM, Ha AS. Surgical correction of articular damage in the knee: osteoarticular transplantation to joint reconstruction. Semin Musculoskelet Radiol 2017; 21 (02) 147-164
  • 67 Eck JC, Aboulafia AJ. Endoprosthetic reconstruction for treatment of tumors about the knee. Curr Opin Orthop 2004; 15 (01) 41-44
  • 68 Ding HW, Yu GW, Tu Q. , et al. Computer-aided resection and endoprosthesis design for the management of malignant bone tumors around the knee: outcomes of 12 cases. BMC Musculoskelet Disord 2013; 14: 331
  • 69 McMillan A, Coulter-O'Berry C. Literature review: Comparison of surgical options, function, and psychosocial issues in treatment of children with solid tumors of the lower extremity. Rehabil Oncol 2008; 26 (02) 15
  • 70 Aponte-Tinao L, Ayerza MA, Muscolo DL, Farfalli GL. Survival, recurrence, and function after epiphyseal preservation and allograft reconstruction in osteosarcoma of the knee. Clin Orthop Relat Res 2015; 473 (05) 1789-1796
  • 71 Ramanathan D, Siqueira MB, Klika AK, Higuera CA, Barsoum WK, Joyce MJ. Current concepts in total femoral replacement. World J Orthop 2015; 6 (11) 919-926
  • 72 Lipton A, Berenson JR, Body JJ. , et al. Advances in treating metastatic bone cancer: summary statement for the First Cambridge Conference. Clin Cancer Res 2006; 12 (20 Pt 2): 6209s-6212s
  • 73 Jehn CF, Diel IJ, Overkamp F. , et al. Management of metastatic bone disease algorithms for diagnostics and treatment. Anticancer Res 2016; 36 (06) 2631-2637
  • 74 Böhm P, Huber J. The surgical treatment of bony metastases of the spine and limbs. J Bone Joint Surg Br 2002; 84 (04) 521-529
  • 75 De Felice F, Piccioli A, Musio D, Tombolini V. The role of radiation therapy in bone metastases management. Oncotarget 2017; 8 (15) 25691-25699
  • 76 Palmerini E, Chawla NS, Ferrari S. , et al. Denosumab in advanced/unresectable giant-cell tumour of bone (GCTB): for how long?. Eur J Cancer 2017; 76: 118-124
  • 77 Xu SF, Adams B, Yu XC, Xu M. Denosumab and giant cell tumour of bone—a review and future management considerations. Curr Oncol 2013; 20 (05) e442-e447
  • 78 Zhang Y, Ilaslan H, Bauer TW. Giant cell tumor of bone: imaging and histology changes after denosumab treatment: Comment on: von Borstel D, Taguibao RA, Strle NA, Burns JE. Giant cell tumor of the bone: Aggressive case initially treated with denosumab and intralesional surgery. Skeletal Radiol 2017;46:571-578. Skeletal Radiol 2017; 46 (07) 961-962
  • 79 von Borstel D. , A Taguibao R, A Strle N, E Burns J. Giant cell tumor of the bone: aggressive case initially treated with denosumab and intralesional surgery. Skeletal Radiol 2017; 46 (04) 571-578
  • 80 Lalam RK, Cribb GL, Tins BJ. , et al. Image guided radiofrequency thermo-ablation therapy of chondroblastomas: should it replace surgery?. Skeletal Radiol 2014; 43 (04) 513-522
  • 81 Motamedi D, Learch TJ, Ishimitsu DN. , et al. Thermal ablation of osteoid osteoma: overview and step-by-step guide. Radiographics 2009; 29 (07) 2127-2141
  • 82 Ockendon M, Gregory JJ, Cribb GL, Cool WP, Mangham DC, Lalam R. Osteoid osteoma: can impedance levels in radiofrequency thermocoagulation predict recurrence?. Radiol Res Pract 2011; 2011 (11) 753502
  • 83 Kashima M, Yamakado K, Takaki H. , et al. Radiofrequency ablation for the treatment of bone metastases from hepatocellular carcinoma. AJR Am J Roentgenol 2010; 194 (02) 536-541
  • 84 Nagata S, Nishimura H, Uchida M, Hayabuchi N. Usefulness of diffusion-weighted MRI in differentiating benign from malignant musculoskeletal tumors [in Japanese]. Nippon Igaku Hoshasen Gakkai Zasshi 2005; 65 (01) 30-36
  • 85 Costa FM, Canella C, Gasparetto E. Advanced magnetic resonance imaging techniques in the evaluation of musculoskeletal tumors. Radiol Clin North Am 2011; 49 (06) 1325-1358 , vii–viii
  • 86 Mangat KS, Jeys LM, Carter SR. Latest developments in limb-salvage surgery in osteosarcoma. Expert Rev Anticancer Ther 2011; 11 (02) 205-215
  • 87 Myers GJC, Abudu AT, Carter SR, Tillman RM, Grimer RJ. Endoprosthetic replacement of the distal femur for bone tumours: long-term results. J Bone Joint Surg Br 2007; 89 (04) 521-526
  • 88 Sevelda F, Schuh R, Hofstaetter JG, Schinhan M, Windhager R, Funovics PT. Total femur replacement after tumor resection: limb salvage usually achieved but complications and failures are common. Clin Orthop Relat Res 2015; 473 (06) 2079-2087
  • 89 Stevens SK, Moore SG, Kaplan ID. Early and late bone-marrow changes after irradiation: MR evaluation. AJR Am J Roentgenol 1990; 154 (04) 745-750
  • 90 Ehara S, Shiraishi H, Abe M, Mizutani H. Reactive heterotopic ossification. Its patterns on MRI. Clin Imaging 1998; 22 (04) 292-296
  • 91 Zagarella A, Impellizzeri E, Maiolino R, Attolini R, Castoldi MC. Pelvic heterotopic ossification: when CT comes to the aid of MR imaging. Insights Imaging 2013; 4 (05) 595-603
  • 92 Straub JM, New J, Hamilton CD, Lominska C, Shnayder Y, Thomas SM. Radiation-induced fibrosis: mechanisms and implications for therapy. J Cancer Res Clin Oncol 2015; 141 (11) 1985-1994
  • 93 Henrot P, Stines J, Walter F, Martinet N, Paysant J, Blum A. Imaging of the painful lower limb stump. Radiographics 2000; 20 (Spec No): S219-S235
  • 94 Sehirlioglu A, Ozturk C, Yazicioglu K, Tugcu I, Yilmaz B, Goktepe AS. Painful neuroma requiring surgical excision after lower limb amputation caused by landmine explosions. Int Orthop 2009; 33 (02) 533-536
  • 95 Kitcat M, Hunter JE, Malata CM. Sciatic neuroma presenting forty years after above-knee amputation. Open Orthop J 2009; 3 (01) 125-127
  • 96 Tins B, Cassar-Pullicino V, McCall I, Cool P, Williams D, Mangham D. Radiofrequency ablation of chondroblastoma using a multi-tined expandable electrode system: initial results. Eur Radiol 2006; 16 (04) 804-810
  • 97 Christie-Large M, Evans N, Davies AM, James SL. Radiofrequency ablation of chondroblastoma: procedure technique, clinical and MR imaging follow up of four cases. Skeletal Radiol 2008; 37 (11) 1011-1017
  • 98 Rybak LD, Rosenthal DI, Wittig JC. Chondroblastoma: radiofrequency ablation--alternative to surgical resection in selected cases. Radiology 2009; 251 (02) 599-604
  • 99 Rosenthal DI, Hornicek FJ, Wolfe MW, Jennings LC, Gebhardt MC, Mankin HJ. Percutaneous radiofrequency coagulation of osteoid osteoma compared with operative treatment. J Bone Joint Surg Am 1998; 80 (06) 815-821
  • 100 Lassalle L, Campagna R, Corcos G. , et al. Therapeutic outcome of CT-guided radiofrequency ablation in patients with osteoid osteoma. Skeletal Radiol 2017; 46 (07) 949-956
  • 101 Hojan K, Milecki P. Opportunities for rehabilitation of patients with radiation fibrosis syndrome. Rep Pract Oncol Radiother 2013; 19 (01) 1-6